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Application of Gamow resonances to continuum nuclear spectra
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Neutron and proton Gamow resonances are evaluated in 2%Pb and they are used together with
bound states as single-particle representation to calculate random phase approximation particle-
hole excitations. A good account of the escape width corresponding to the particle-hole giant res-

onances is obtained.

The treatment of continuum spectra in nuclear physics
is an old and outstanding problem. The main reason for
this is that one has to somehow discretize the continuum
to treat it numerically. One is thus left with an infinite
set of coupled equations which is difficult to solve.2
Yet, it is necessary to include the continuum in the
study of many nuclear processes, e.g., the formation of
the a particle in a decay or the building up of resonant
states lying high in the nuclear spectra.

The study of resonances and other processes
influenced by the continuum is an actual problem not
only in nuclear physics but in other branches of physics
as well.3~% An important step in the study of the con-
tinuum in nuclear physics was given in the 1960’s%~3
with the introduction of the so-called Gamow reso-
nances (GAR), i.e., a solution of the time independent
Schrodinger equation with purely outgoing waves at
large distances. Such a function (which diverges at
infinite) is not square integrable but one can still define
the norm of a GAR (Refs. 6 and 9) and an inner product
between two GAR."'8

Gamow resonances have recently been applied in
molecular and atomic physics also.*> Even from a
mathematical point of view the GAR are being studied
as probable powerful tools in spectral analysis.°

An important and rather peculiar property of the
GAR is that although they are orthogonal to any real
continuum state, they are generally not orthogonal to
wave packets formed from a superposition of the contin-
uum states. Moreover, the GAR have a large overlap
with wave packets that are peaked at the resonance ener-
gy.!! Therefore, from a physical point of view it makes
sense to use GAR to describe states which are immersed
in the continuum, especially considering that bound
states, GAR, and an integral over a deformed path L in
the complex E plane provide a completeness relation.’
Recently it has been shown that an expansion on this
basis can be defined in different ways both in spheri-
cal?~!% and in deformed systems.!® In this paper we
will use the completeness relation of Ref. 7, i.e.,

S |m)m|+3 [n){a|+Int(L)=1, (1)

m

where m (n) labels bound states (GAR) and Int(L) is the
contribution from the integral over the contour L. Due
to the flexibility in choosing this contour one can include
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in the basis the resonances which fit best the physical
problem under consideration. The widths of observable
resonances are usually smaller than their energy cen-
troids. Therefore, one expects that rather narrow GAR
in the energy range of interest play an important role
while the others should have little effect on the results.
In this paper we will use as basis vectors only bound
states and GAR with imaginary parts not larger (in ab-
solute value) than the corresponding real parts, i.e.,
GAR not broader than twice their energies, and we
neglect the continuum integral in Eq. (1). In this way
we expect to include in a feasible manner the most im-
portant effects induced by the continuum on observable
nuclear spectra. We shall see below that the results
confirm the soundness of this choice.

In this paper we will study resonances in '®0 and in
208pp, but we will present details of the calculations only
for the more complex case of 2®Pb. We will first ana-
lyze the single-particle spectrum, i.e., the bound states
and GAR. For this we solve the one-particle
Schrddinger equation with a Woods-Saxon potential, in-
cluding the spin-orbit term, by using the computer code
GaMow.'” In 'O we obtained single-particle states
which fit the experimental spectrum rather well.'® In
particular, a 96 keV wide d;,, neutron state has been
observed in the experiment at 5.085 MeV, while our cal-
culation gives 5.201 MeV for the energy of the 0d;
state and 40 keV for its width. Since this is only the es-
cape width, one can consider the agreement to be rather
good. In 2%Pb we obtained the single particle states
shown in Table I. As one would have expected the abso-
lute value of the imaginary part of the single particle en-
ergies (decay widths) are smaller for protons than for
neutrons due to the Coulomb barrier. In the same way
states with large orbital angular momenta have small de-
cay widths due to the centrifugal barrier. Together with
the calculated states we give in Table I the experimental
values which are uncertain for high lying states. When
comparing the experimental and calculated values in
Table I one has to keep in mind that the experimental
values do not refer to pure single-particle states.’’ In
fact, the calculated bound single-particle energies in
Table I are approximately the same as those obtained by
similar previous calculations.?! From the point of view
of this paper, the interesting feature is the set of un-
bound states. Although the proton resonances are nar-
row, the width of the neutron resonances varies widely,
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TABLE 1. Single-particle states used in the calculations for
28pp. The proton (neutron) energies E, (E,) are in MeV. The
experimental data are from Ref. 19. Note that all imaginary
values are negative, as it should be for outgoing (decaying) res-
onant states (Ref. 11). The parameters in the Woods-Saxon po-
tential are ¢ =0.75 (0.70) fm, ro=1.19 (1.27) fm, V(,=66.0
(44.4) MeV, and V,,=9.5 (8.25) MeV for protons (neutrons).

No.  State E, Expt. E, Expt.
1 0fyp —22.67
2 0fsp —20.17
3 1p3, —18.32
4 1p,pp —17.33
5 0go/ —16.23 —20.99
6 0gy, —12.37 —11.48 —18.06
7 s, —11.04 —9.68 —17.06
8 Ohyp —9.26 —-9.35 —14.96
9 1d;, —9.10 —8.36 —15.51
10 25y, —8.71 —8.01 —15.30
11 Ohy )y —3.78 —3.80 —10.69 —10.78
12 1fy, —3.54 —2.90 —10.49 —9.71
13 Oiy3p —1.84 —2.19 —8.57 —9.00
14 2p;, —0.69 —0.68 —8.35 —8.27
15 1fs;, —0.52 —0.98 —8.08 —7.94
16  2p,,, 0.49 —0.17 —7.41 —-17.37
17  1gy,,  4.03—i0.00 -3.93 —3.94
18 0iy,,  5.43—i0.00 —2.80 —3.16
19  0j;5,, 5.96—i0.00 —1.88 —2.51
20 2ds,, 6.75—i0.00 —2.07 —2.37
21 35y, 7.84—i0.04 —1.44 —1.90
22 1gsp 8.09—i0.00 -0.77 —1.45
23 2d,, 8.53—i0.03 —0.78 —1.40
24 2fq,, 2.10—i0.87
25  lhy,., 2.25—i0.03
26 2fs;, 2.70—i2.32
27 Oky1,; 5.03—i0.00
28  lhy, 5.40—i0.73
29 Ojizp 5.41—i0.01
30 liy, 7.66—i1.04

from states with practically negligible widths up to the
broad state 2f5,, for which the width (4.64 MeV) is
nearly twice the energy.

With bound states and GAR as single-particle repre-
sentation we are in a position to analyze more complex
excitations. We will present here random phase approxi-
mation (RPA) particle-hole calculations done using a se-
parable multipole-multipole interaction.?*?* The isoscal-
ar strength of the interaction was fixed, as usual, by
fitting the experimental energy of the first excited state.
Thereby we calculated the isovector strength as in Ref.
22. In order to calculate the RPA matrix and the ener-
gy weighted sum rule (EWSR) for electromagnetic
operators we had to determine the single-particle matrix
elements of rd¥ /dr and r*, respectively, between all
combinations of bound and resonant states. Due to the
divergent character of the GAR we had to apply a spe-
cial procedure for the calculation of the radial integrals.
The idea is the same as the one used in Ref. 9, which
later became known as “exterior complex scaling.”?*

With the interaction matrix elements thus calculated we
diagonalized the corresponding RPA matrix making use
of the complex diagonalization routine F02BDF.%

The calculated RPA energies are complex. The real
part corresponds to the position of the resonance while
the imaginary part is related to its width. The experi-
mental width consists of the escape width, produced by
particle emission, and the spreading width, due to mix-
ing with more complicated configurations (including col-
lisional damping?). It is usually the spreading width
that one calculates.”® The calculation of the escape
width requires a proper inclusion of the continuum.!?"%
In our case, however, the imaginary part of the energies
corresponds to the escape width as it is implied in the
definition of the GAR.

In the rather simple case of %0 we calculated the gi-
ant dipole resonance (GDR) adjusting the strength of the
interaction to obtain a zero-energy solution (the spurious
1~ state). We then obtained the GDR at an energy of
(23.69—1i0.28) MeV, exhausting 94% of the EWSR, in
fairly good agreement with experiment.!® We also tested
the reliability of our method by comparing with the clas-
sical calculation of Ref. 1, where the continuum is treat-
ed exactly. For this we chose the potential parameters
as in Ref. 1 (case without absorption so that only pro-
cesses that contribute to the escape width are included).
The results thus obtained agree with those in Ref. 1
within 100 keV. Moreover, we also compared with the
continuum RPA calculation of Ref. 27 (here we used the
particle-hole Migdal force of Ref. 27) and the results of
both calculations agree within 150 keV.

In the case of *Pb we calculated the quadrupole
states within the basis of Table I. In Table II we present
the calculated correlated states up to an excitation ener-
gy of 13 MeV. There are some striking features in Table
II worthwhile to be commented. The escape width of

TABLE II. Correlated particle-hole energy E. up to 13
MeV and the corresponding contribution to the isoscalar ener-
gy weighted sum rule S, for the operator rd¥ /dr in 2%Pb. The
energies are in MeV and the sum rule is given in arbitrary
units. E, (E,) are in MeV. The experimental data are from
Ref. 19.

EC S(‘
4.09—i0.00 67—i5
5.44—i0.00 10—i3
5.51—-i0.00 5—i2
5.81—i0.00 0+i0
10.13—i2.33 2—i2
10.18—i0.87 0+i0
10.44—i0.06 349—i23
10.49—i0.86 10—i10
10.78 —i2.33 0+i0
11.06—i2.33 0+i0
12.59—i0.88 04-i0
12.78—i0.03 0+i0

12.79—i0.87 0+i0
12.94—i0.03 0+i0
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the GDR in heavy nuclei is small, only about 15% of
the total width.’® The same value is usually assumed for
the isoscalar quadrupole giant resonance (SQGR) in
those nuclei.?® The experimental SQGR in Pb ex-
hausts about 70% of the EWSR and is located at 10.6
MeV with a total width of about 2.0 MeV.>! Thus, ac-
cording to the previous argument the experimental es-
cape width would be 0.30 MeV.

In our case, between 10 and 11 MeV of excitation en-
ergy in the uncorrelated spectrum all states are very
broad, either 1.74 or 4.64 MeV wide. Thus, it would
seem that our calculation would predict a too wide giant
resonance. Even more, up to 13 MeV in that spectrum
the values of the corresponding sum rule are so small
that it is not clear whether there would be any collective
state at all between 10 and 11 MeV. However, in the
correlated spectrum of Table II a very collective state
appears (it exhausts 76% of the EWSR) at 10.44 MeV
with a width of only 0.12 MeV just engulfed by noncol-
lective, but very wide, states. This is the SQGR. Al-
though already this in itself is a surprising result, it is
also remarkable that the giant resonance is not the
lowest state among the AN =2 excited states as it would
be within a real (bound) basis. To analyze this in more
detail we also calculated the quadrupole states using the
computer code RPAPH (Ref. 32) within a harmonic oscil-
lator representation with standard parameters.’> We
found that bound states are about the same in both cal-
culations, but the SQGR is indeed the first AN =2 excit-
ed state in the harmonic oscillator case. It lies at 8.66
MeV of excitation energy. This value is very low but
agrees with the one given in Ref. 34. In our case, the
first AN =2 excited state is the very broad one at 10.13
MeV, which is only weakly excited by the external field.
This indicates that our method differs considerably from
the usual treatment of resonant states.

In general, the main features of the SQGR mentioned
above appear for the isovector case as well.

Just opposite to what one would have predicted from
the uncorrelated spectrum, our calculated giant reso-
nances turn out to be narrow. The main reason for this
is that the most important components of these states
are built upon high spin single-particle states, all of

which are either bound or narrow.

Although the calculated position of the SQGR agrees
well with the corresponding experimental value, the cal-
culated width seems to be too small. However, one has
to consider that the escape width extracted from the ex-
perimental spectrum is rather uncertain. Moreover, only
a small mixing of the giant resonance with the near lying
wide states would enlarge it considerably.

Our strength function is also complex. While the
imaginary part of the energy gives the width of the state
concerned, it is not clear what meaning should be as-
signed to the imaginary part of the strength function
and, in general, to the imaginary part of any transition
probability. A reasonable interpretation of this quantity
is that it is related to the interference between the reso-
nance and the background of the process being studied.*
In our case, however, the EWSR has small imaginary
components.

We also calculated the sum rule corresponding to an
electromagnetic field to see if the long range components
of this field would be unrealistically enhanced by the
divergent GAR but we found that the structure of the
corresponding strength function is very similar to the
raV /dr case analyzed above.

To see the effect of the size of the basis upon the re-
sults we increased the number of states in Table 1 by
20% but the complex energies of the giant resonances
remained practically the same while the total EWSR in-
creased by only 3%. We also verified that a known
property of the RPA energy weighted sum rule is
satisfied, namely the total values of the uncorrelated and
correlated EWSR exactly coincide.’

Finally, it is worthwhile to point out that graphical
calculations of the spreading width may be conveniently
done within the formalism presented in this paper.
Since the energies can now be complex, one may avoid
the cSi}vergences associated with zero energy denomina-
tors.

We would like to express our gratitude to T. Berggren
for illuminating discussions. One of us (P.C.) was par-
tially supported by Consejo Nacional de Investigaciones
Cientificas y Técnicas (CONICET), Argentina.

*On leave from Institute of Nuclear Research of the Hungarian
Academy of Sciences, H-4001 Debrecen, Pf. 51, Hungary.
TPermanent address: Faculdad de Ciencias Exactas, Universi-
dad Nacional de la Plata, Casilla de Correo 67, 1900 La Pla-
ta, Argentina.

IPermanent address: Departamento de Fisica, Universidade de
Coimbra, 3000 Coimbra, Portugal.

1B. Buck and A. D. Hill, Nucl. Phys. A95, 271 (1967).

2C. Mahaux and H. A. Weidenmuller, Shell Model Approach to
Nuclear Reactions (North-Holland, Amsterdam, 1969).

3D. A. Micha and R. D. Piacentini, Phys. Rev. A 25, 204
(1982).

4Y. K. Ho, Phys. Rep. 99, 1 (1983).

5E. Briandas, M. Rittby, and N. Elander, J. Math. Phys. 26,
2648 (1985).

6Y. B. Zel'dovich, Zh. Eksp. Teor. Fiz. 39, 776 (1960) [Sov.
Phys.—JETP 12, 542 (1961)].

T. Berggren, Nucl. Phys. A109, 265 (1968).

8W. J. Romo, Nucl. Phys. A116, 617 (1968).

9B. Gyarmati and T. Vertse, Nucl. Phys. A160, 523 (1971).

10E, Baslev, in Proceedings of the International Conference on
Resonances: Models and Phenomena, Bielefeld, 1984, Vol.
211 of Lecture Notes in Physics edited by S. Albeverio, L. S.
Ferreira, and L. Streit (Springer-Verlag, New York, 1984), p.
27.

11w, J. Romo, Nucl. Phys. A419, 333 (1984).

12T, Berggren, Nucl. Phys. A389, 261 (1982).

13J, Bang and F. A. Gareev, Lett. Nuovo Cimento 32, 420
(1981).

14w J. Romo, Nucl. Phys. A398, 525 (1983).

I5E. Engdahl, E. Brindas, M. Rittby, and N. Elander, J. Math.
Phys. 27, 2629 (1986).

16B. Gyarmati, A. T. Kruppa, Z. Papp, and G. Wolf, Nucl.
Phys. A417, 393 (1984).



37 BRIEF REPORTS 879

17T, Vertse, K. F. Pal, and Z. Balogh, Comput. Phys. Com-
mun. 27, 309 (1982).

18F, Ajzenberg-Selove, Nucl. Phys. A460, 1 (1986).

19A. H. Wapstra and G. Audi, Nucl. Phys. A432, 1 (1985); M.
R. Schmorak, Nucl. Data Sheets 43, 383 (1984); M. J. Mar-
tin, ibid. 22, 545 (1977).

20G. F. Bertsch and 1. Hamamoto, Phys. Rev. C 26, 1323
(1982).

211, Rydstrom and J. Blomqvist, Research Institute of Physics,
Stockholm, Annual Report, 1980, p. 86.

22A. Bohr and B. Mottelson, Nuclear Structure (Benjamin, New
York, 1975), Vol. 2.

23D. R. Bes, R. A. Broglia, and B. S. Nilsson, Phys. Rep. 16C,
1 (1975).

24B, Simon, Phys. Lett. 73A, 211 (1979).

25Numerical Algorithms Group library manual (Oxford Uni-
versity, 1982).

26D. Cha, B. Schwesinger, J. Wambach, and J. Speth, Nucl.
Phys. A430, 321 (1984).

27G. Co’ and S. Krewald, Nucl. Phys. A333, 392 (1985).

28G. F. Bertsch, P. F. Bortignon, and R. A. Broglia, Rev. Mod.
Phys. 55, 287 (1983).

293, Shlomo and G. Bertsch, Nucl. Phys. A243, 507 (1975).

30F, T. Kuchnir, P. Axel, L. Criegge, D. M. Drake, A. O. Han-
son, and D. C. Sutton, Phys. Rev. 161, 1236 (1967).

31F. E. Bertrand, E. E. Gross, D. J. Horen, R. O. Sayer, T. P.
Sjoreen, D. K. McDaniels, J. Lisanti, J. R. Tinsley, L. W.
Swenson, J. B. McClelland, T. A. Carey, K. Jones, and S. J.
Seestrom-Morris, Phys. Rev. C 34, 45 (1986).

320, Civitarese, computer code RPAPH, available at the Niels
Bohr Institute, Copenhagen.

338, G. Nilsson, C. F. Tsang, A. Sobiczewski, Z. Szymanski, S.
Wyceck, G. Gustafson, I. L. Lamm, P. Moller, and B.
Nilsson, Nucl. Phys. A131, 1 (1969).

34D. R. Bes, P. Curutchet, S. L. Reich, N. N. Scoccola, and H.
M. Sofia, Nucl. Phys. A452, 531 (1986).

35T. Berggren, Phys. Lett. 73B, 389 (1978).

36D. J. Thouless, Nucl. Phys. 22, 78 (1961).



