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The Ne(a, 2a)' 0 reaction at 140 MeV incident energy is analyzed in the framework of the
distorted-wave impulse approximation. The bound state a wave functions in Ne are generated
using the orthogonal condition model. The predicted results agree with the experimental data.
They are also in rough accord with the results obtained with the Woods-Saxon a wave function.

There is ample evidence that, in addition to the com-
plimentary independent particle model and the collective
model, nuclei possess cluster structure. These clusters,
due to the reduced importance of the Pauli blocking, are
confined to the low density surface region of nuclei. The
size and composition of these clusters are determined by
their intrinsic binding energies. Due to this, a particles,
which have maximum binding energy, stand the greatest
change of being found as recognizable clusters. To ex-
plore their distribution quantitatively, the knock-out re-
actions, like (a,2a), have been performed experimentally
on various nuclei. It is expected that the analysis of
these data will yield reliable information about the a
cluster probability in nuclei. However, initially there
were some setbacks in this respect, when it was found
that calculated distorted-wave impulse approximation
(DWIA) cross sections, for the known a structure nuclei,
were two orders of magnitude smaller than the corre-
sponding measured values. ' Soon the causes for this
large discrepancy were identified by some of us (N.R.S.
and B.K.J.) and a modified procedure was proposed.
This procedure exploited the peripheral nature of the
(a, 2a) reaction and described the a distorted waves
directly in terms of the measured a nucleus phase shifts,
in contrast to the earlier calculations where the a dis-
torted waves were generated through an optical poten-
tial. Describing the a cluster in the nucleus as a single
particle moving in a certain orbit (given by the conserva-
tion of the oscillator quanta) of the a core potential this
formalism successfully reproduced the experimental data
on various nuclei.

These results, of course, had some uncertainty due to
a somewhat arbitrary choice in the a core binding po-
tential. This potential was assumed to have the Woods-
Saxon form with the radius parameter being guided by a
"folding" model and an arbitrarily chosen diffuseness pa-
rameter. In the present paper we remove this uncertain-
ty by generating the bound state a wave function micro-
scopically. As a test case we present the results for the

Ne target nucleus as there is ample evidence to suggest
that this nucleus is a dominant structure of a and ' O.
The binding potential is taken to be an orthogonality
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where S is the spectroscopic factor, Fk is the kinematic
factor, and o. is the free a-a cross section in its center
of mass at the appropriate laboratory energy E and
scattering angle 0. In the eikonal approximation and by
use of the surface localization of the (a, 2a) reaction, the
"distorted" momentum distribution, PLM(Q) of the ini-
tially bound particle is given by (for details see Ref. 3)

PLM(Q)=(2m) ' f e' JM(k b)F~L(y)SL~(8)
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with the nuclear part of the distortion factor Dk ex-
pressed as

Dz(b, z)= expPN(b)[l+erf(zl&2ab )]I, (3)

and

y =(A —4)/A,
where X(b) [=25(b)] are the a nucleus phase shifts for
the angular momentum I ( =kb ——,') and a is the mea-
sure of the diffuseness of the nuclear surface. k and k

condition model (OCM) potential whose parameters are
fixed by comparing the energy surface calculated within
the OCM to that calculated using the generator coordi-
nate method (RGM). The (a, 2a) cross section is cal-
culated at 140 MeV incident energy as the uncertainties
due to off-shell effects become negligible around and
above this energy.

In the factorized on shell version of the DWIA the
differential cross section for the (a, 2a) reaction can be
written as
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3

dQ, ,dQ2dE(

37 873 1988 The American Physical Society



874 BRIEF REPORTS 37

TABLE I. Best fit parameters for a-' 0 phase shifts at various energies.

Energy (MeV)

146
69.5
49 5'
39.3
19.8'

0.3315
0.0
0.0
0.0
0.0

0.144
0.0
0.0
0.0
0.0

L,

21.47
14.94
12.82
11.34
9.63

Lp

15.207
14.94
12.82
11.34
9.63

0.7458
0.599
0.494
0.584
0.358

1.702
0.599
0.494
0.584
0.358

2.09
2.10
1.906
1.598
2.297

Results not shown in Fig. 1 but used in calculating cross sections in Fig. 2.
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are the longitudinal and transverse components of the
recoil momentum Q, respectively. Fzl is the radial part
of the a-particle bound state wave function which is nor-
malized to unity. The Coulomb part of the distortion is
evaluated using the appropriate Coulomb potential.

For the elementary free a-a cross section, we have
used the final energy prescription to fix E. o is taken
from the measured values at these energies.

The nuclear phase shifts needed to describe the distor-
tion in the initial and final states are parametrized as

The parameters in these expressions are numerically
searched by fitting to the a —' 0 elastic scattering data
at 146, 69.3, and 39.3 MeV. For 140 MeV incident en-

ergy the energy of the outgoing a particles in an energy
sharing experiment at the quasielastic angle centers
around 65 MeV. The best fit parameters are listed in
Table I and the computed a-' 0 cross section along with
the experimental data are shown in Fig. 1.

For the radial wave function, FNL (y ), the bound state
a cluster wave function in Ne, is generated in the
orthogonality condition model. In this model the cluster
wave function, g,(r), is related to the solution P,(r) of
the following single particle equation:

A(T+ V)P~=EP

where V is a local potential and the operator A projects
on to the Pauli-allowed state. P (y) is related to P,(y)
through

P (y)=& ' 'P (y),

3
10 o(+"O

where the integral operator A ' is defined as

~ '"= f dy'~(y, y'), (9)
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FIG. 1. Parametrized phase shift fits to the a-' 0 elastic
scattering data at various energies.

FIG. 2. Energy-sharing distribution for the Ne(a, 2a)' 0
reaction at 140 MeV (quasifree angle pair 43.7 -43.7').
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Here 4's are the internal cluster wave functions and A
is the intercluster antisymmetrizer. The radial function
FJvt (y) is related to g (y ) through

4.(7')=~'"(I )FJvL(r»IM(~»

where S, as used in Eqs. (1) and (2), is the spectroscopic
factor and F&L (y) is normalized to unity.

Eq. (7) is solved with the potential V(y) parametrized
as

1'()')= —Vo exp( ('Y h'o)'l . (12)

The parameters Vo and yo are fixed by comparing the
energy surfaces calculated with this potential within the
OCM to that calculated microscopically (i.e., the genera-
tor coordinate method). (The energy surface is the ex-
pectation value of the Hamiltonian of the two cluster
systems, with their respective harmonic oscillator poten-
tials fixed in space, as a function of their relative dis-
tance. ) The microscopic energy surfaces have been cal-
culated with the Volkov 2 two body interaction. The
Majorana admixture in this force was taken to be 0.638.
This force yields almost the correct separation energy
for the a+' 0 system. The resulting values of the pa-
rameters Vo and yo are 169.76 MeV and 2.703 fm, re-
spectively.

With the above wave function the calculated cross sec-
tions for Ne (a, 2a) ' Os, at 140 MeV incident energy
along with the experimental data' are shown in Fig. 2
(dashed curve). The shape of the energy spectrum
around the central maximum is reproduced. The lack of
agreement away from this region is probably due to
significant contributions coming from the reaction mech-

with the kernel, A (y, y'), given by

~(r r')=(&i@,+.&(r —r,.)) I~i+,C'.6(r' —7',.)I& .

(10)

(R ) = &R iy2+ 577 (0 ) (13)

where a' is taken equal to 0.65. (R ) is obtained from
the folding model potential. However, to take account
of the antisymmetrization effect, the folding model value
is arbitrarily increased by 1.0 fm. ' As shown in Fig. 2
the spectroscopic factor obtained with this wave func-
tion is 0.20 fm. The quality of the shape agreement with
the data is similar to that obtained with the OCM wave
function. This means that in Ne, so far as the (a, 2a)
reaction on it is concerned, the wave function generated
in the Woods-Saxon potential (with parameters fixed as
above) and that obtained in the OCM are similar to a
great extent. If we extrapolate this observation, it may
be reasonable to suggest that in those situations where
the microscopically generated a wave functions are not
available it should be possible to extract the spectroscop-
ic factors from the experimental data using the u wave
functions generated in a phenomenological Woods-Saxon
potential with appropriate parameters.

anisms different from the single step knock-out mecha-
nism. The value of the spectroscopic factor determined
by normalizing the calculated peak cross section to the
corresponding measured cross section turns out to be
0.36. The theoretical value of the spectroscopic factor
from the above OCM wave function is 0.54.

Considering the present uncertain status of the field
and the fact that the above results are practically param-
eter free the extent of agreement arrived above with the
experimental data is quite satisfactory. It definitely gen-
erates confidence that the procedure advocated in Ref. 3
for the analysis of the (a, 2a) data at medium and high
energies is useful.

In Fig. 2 we have also shown results corresponding to
one more wave function. The solid curve corresponds to
the 4S a wave function generated in a Woods-Saxon po-
tential. The half-value radius parameter of this potential
is fixed from
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