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Microscopic approach to enforced SU(6) symmetry in random phase approximation
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Explicit construction of Dyson, Holstein-Primakoff, and Schwinger representations for random-

phase approximation phonon operators is given within Lie algebraic framework. It is shown that
these representations emerge as exact boson realizations of quadrupole collective algebra, but the
enforcement of SU(6) symmetry involves important constraints embodied in definite nonlinear con-
ditions imposed on random-phase approximation phonon amplitudes. The constructed Schwinger
representation could be employed to provide alternative approach to the interacting boson model

parameters, avoiding standard procedures of mapping the shell-model SD subspace into the sd bo-
son space.

I. INTRODUCTION

An important role in the microscopic approach to nu-
clear collectivity is played by the concept of the
random-phase approximation (RPA) phonon, which is
defined in the fermion space. ' It is often useful to map
RPA phonon operators into the boson space. ' In partic-
ular, in connection with the success of the interacting-
boson model (IBM) (Refs. 2 and 3) as "new phenomenol-

ogy,
" and with attempts to give a microscopic founda-

tion of the IBM, it is of interest to study the mapping
of RPA quadrupole phonon operators onto the boson
space spanned by the s and d bosons of IBM.

The Holstein-Primakoff quadrupole boson representa-
tion, which presents a boson representation in a closed
form, has been obtained for Tamm-Dancoff phonon
operators in the so-called SU(6) approximation. ' For
the generalized coordinates and momenta q,p, the
Holstein-Primakoff representation (HPR) has been intro-
duced heuristically. ' In fact, no complete analysis of
the consequences from the enforced SU(6) symmetry has
been done and not all SU(6} enforcing conditions were
stated explicitly; thus some constraints on the ampli-
tudes have been overlooked. The point is in the
difficulty of guessing the SU(6) enforcing conditions in
the case of RPA phonon operators. On the other hand,
there are well known advantages of the RPA over the
Tamm-Dancoff approximation (TDA}: (i) The RPA
treats ground and excited states on an equal footing, and
(ii) the RPA properly treats the inherent symmetries
(spurious states are separated from the physical ones). '"

These reasons provide motivation for a detailed study
of a microscopic derivation of HPR and a Schwinger
representation (SR) of the quadrupole collective RPA
phonon operator. We will also consider the Dyson rep-
resentation (DR). It should be noted that our derivation
differs from the traditional method of boson map-
pings. "

Our approach differs from the procedure utilized in

Ref. 13 in the fact that we are using exact realizations.
We introduce the quadrupole RPA phonon operator in a
standard way, and following the approach of Jolos,
Janssen, and Donau, ' we enforce the closure of the Lie
algebra (cf. Secs. II and III), referred to as quadrupole
collective algebra (QCA). We show that this algebra is
isomorphic to the SU(6) Cartan-Weyl canonical algebra.
The apparatus of classical Lie algebras seems to be ideal-
ly suited for our purpose. We construct explicitly the
microscopic Dyson, Holstein-Primakoff, and Schwinger
representations and show that they occur as exact boson
realizations of the QCA, provided definite constraints
are fulfilled [SU(6) enforcing conditions]. In addition to
the SU(6) enforcing conditions modified with respect to
the previous TDA case due to the presence of backward
going amplitudes, we deduce a new set of restrictions
which should be fulfilled by the amplitudes of RPA pho-
non operators. If we neglect the backward going ampli-
tudes, i.e., if we consider the TDA, these additional con-
straints convert into trivial identities. These new restric-
tions should be verified in comparison to data, as it has
been done previously for Tamm-Dancoff phonon opera-
tors. ' The microscopic derivation of the DR, HPR,
and SR, presented in this paper, is by no means a
straightforward generalization of the TDA case.

At the same time, advanced microscopic nuclear mod-
els (such as nuclear field theory, ' the quasiparticle pho-
non model, ' and boson expansion theories' '

) are
based instead on RPA phonon operators, not on TD
ones. Hence the obtained microscopic 'realizations can
be (and were) used' to construct the "SU(6) limit" of
microscopic nuclear models based on pairing plus
quadrupole-quadrupole interactions.

Keeping only the quadrupole collective degree of free-
dom, it is possible to separate out a part of the Hamil-
tonian which is expressed in terms of the QCA, which
consists of RPA phonon operators and their commuta-
tors. In this way we explicitly construct microscopic
SU(6} Hamiltonians in the DR, HPR, and SR. In par-
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ticular, substituting the SR of QCA generators into a mi-

croscopic Hamiltonian with a separated quadrupole de-
gree of freedom, we can obtain the IBM Hamiltonian,
with the microscopic expressions of the parameters that
appear with different boson structures. ' This method of
obtaining the IBM from the microscopic point of view is
an alternative to the standard approach.

II. OUTLINE OF THE PROCEDURE

It is well known that for the SU(6) Cartan-Weyl
canonical algebra there exist the DR and HPR. They
have been explicitly constructed in Ref. 24. For the
quadrupole collective algebra (QCA), associated with
SU(6) boson symmetry, the DR, HPR, and SR have been
investigated, ' but not on the microscopic basis.

To obtain the microscopic DR, HPR, and SR we per-
form the following steps.

First we introduce the RPA phonon creation and an-
nihilation operators"

Q»] = ,' g ['P,",-A'(JJ', 2V) ( 1}'—"0—,", A (jj'2—
] )]

JJ

A (jj';2—]M)= g (jmj'm'
~

2 —]M)a .a
mm'

(4)

where a and a are quasiparticle creation and annihi-
lation operators in the spherical basis, respectively.

In the second step we introduce the generating state'
with the ansatz

2

~a&=exp g af g», ~0&,
p= —2

where
~
0) is the vacuum for RPA phonons, not for TD,

as in Ref. 27,

Generally, the RPA operator is denoted g&„;, where )[,

denotes multipolarity, p denotes z projection in the labo-
ratory system, and i is the label of the solution of RPA
dynamical equation (i =1 corresponds to the collective
solution). A and A denote two-quasiparticle creation
and annihilation operators,

A (jj ', 2p) = g (jmj 'm'
~
2p)aj aj (3)

mm'

Q»[ I0)=0 (6)

Q»[ ———,
' g [O'JJ', A (JJ",2P) —( —1) "&t&j~)~, A (J'J';2 P}] . —

JJ

(2)

Now we study the matrix elements of the operators
Q»], Q z„], and [Q»],Q „,] between the generating
states (5). They read

&algx„, Ia'&=(&& g y X X, ([ [[Q„,Q, ] Q, ], . . . , Q, ]a, a, a,
~ ~ ~

2

x exp X a,g, a'),
T= —2

&a(Q2„2(a'&=(o Q„'+ X
m =1w), . . . , r

m 2

[ [Q„,Q, ], . . . , Q, ]a, a, exp X a,Q, a'),
7= —2

&X& m

&al[{?2e2'Q221(la'&=(p [Q„Q ]+ x x
2

I'''[[Q„,Q ]Q,, ] Q, , l Q, ]a,
,
'''a,

m =1r), . . . , r

2

X exp g a,g, a'
7= —2

(9)

On the right-hand side (rhs) of Eqs. (7)—(9) the notation Q, and Q, stands for Qz„and Qgt, [, respectively.
As it turns out, the multipole commutators of the RPA-phonon operators contain not only the operators Qg ] and

Q»] but the noncollective roots Q]„„;and gz„; also [cf. Eqs. (16)—(18)].
2@1

The general RPA solution for creation and annihilation operator has the standard form'

Q~„=-,' X['P,,'A (JJ'Ji ) ( 1)" "0,", A(jj', )[ ——
( )]-,

JJ

(10)

Q]„p,
———,

' g [qpj~j' A (jj ', Ap, ) —( —1) "&t&~, A (jj '; J&, p)], —
JJ

with

(jj',Ap)= g (jmj'm'
~

)]p)a a'
mm'

(12)

A (jj ', A, p) = g (jmj 'm '
~

A—, —p )a, ,a,
mm'

(13)
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with the closure relations

y ( q/k/ q/A. ( @A.l C kt } 5 5 ( 1 } I 2j +j —~

J1J1 J2J2 J 1
J'1 J2J2 '1J»'1J 2 JlJ2 J2J1

l

The inverse transformation reads

~'uJ';~~}= z~,", Ql„;+( 1}'-"~,", Q. „, , (14)

~ (iJ';~ I }=—g +,'J'Q~ „;+(—1}""@,", Q~, (15)

Using Eqs. (10}—(13) and the anticommutation relations for quasiparticle operators a,aJ, we obtain the expres-
sions for commutators appearing in Eqs. (7)—(9).

The single commutators are
. I

[Qi,q, , Qg~, ]=5gg 5„„5;;— g g B(j'ijp, A, 'p, ')( —1) ' '(2A, +1)'~ (2A, '+1)' (Eius, 'iu'
~

A,pp, o)
p gl I

J1J2ji I'

A 0
qg Aiy . o'0

( 1 )
A.

' .
Jz J1 J&

1) 0@ 0 @0Ai
J1J2 J 1J1 Ji J&

(16)

. I

[Q,'„,, Q', , ]= y yB(j,j'„x'~)(—1)""'(2x+1)'"(2x,+1)'"(x~x~,~x'I')
jlj2J 1

i"

Ao i(
0'0@)ki . .

( 1 )
0 qyki(y 0. 0 . .

( 1 )~
J1J2 J2JI J~ J~ Jp 12 J2J1 J) J~ j (17)

where

B(jj'; i(i)u= g (jmj 'm'
~
Aiu)a ( —l)J+ a'

mm'

We also need the commutator

(17a)

[B(JiJz,&iu), Q,„,]=&5(2A,+1)' g (2vAiM
~

A, 'iM') Q„,„,, g ( —1) '

A, }M 1 Jl
~ I

2
, ( 1)k@A.'i' @21

j& j& j&

2
+

Jz

iL A,
'

, (y21 C 1,'i'

J ) J ) J1J1 J2J 1

I. I

+( 1)x'—P'Q y ( 1)Ji+J i
( 1)x . CA'i' qy21, .

j& j'& j&Jl

2 A, A,
'

.+21 /pe, l

jp J ) j] J1J1 J2J1
(18)

Using expressions (10}—(18), one obtains, in a straightforward way, double commutators which appear in (7)—(9).
Let us write only one double commutator in order to illustrate terms which are included and left out in the SU(6) mi-
croscopic boson model of Ref. 9,
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[Q'„, , [Q,„,, g,' „,]]
[(2A.'+ 1)(2k+ 1)(2Ao+ 1)(2A,"+1)]'~2

j j j j kKA, p I

Jp J)
X ( —1) '

(AuuoAP
~

k~)(AP Aiu
~

ka)( —1) ' '
j2 j, A,

A,o k

X(gt qgiLi y o'ops i y''il"i" +(. 1)i."—p"g ygi q o'og g i q''i, "i"
)

1 J2J2 J1J2 ~ 1 2 J 1J1 J2J2 J 1J2

Jz
—(i(,—pA, 'p'

~

kir)(A, "p"Ao p& ~

—ka)( —1) ( —1) ' '
j2 J& ~0

k

X (Q~„„.„lf), Q t IP & IP~ i +( 1)k"—P"g q) 0 o(qadi qgvi' q)v'i"
)J IJ1 J2J2 J 1J2

+( —1) ' (A.auo)(, "iu"
~

ka)( —1)" "(~' p'~p
~

«)—

J2 J&

X( 1) i i ' '
g (Q ggki + 0 0+ili@k.l.

J2J2
k

+( 1)jI.
"—P"gt ggjLi gP 0'og)P. i"Cii i")''"-~"" J»2 Jlil i2i2 ili2

—( —1) "(A, —iu A,o
—iuo ika. )( —1) ' '(A, —p, A. iu

~

ka)

J2

x( —1)" "(—1) ' '
j&

J) A,

~OIO A,i A. i A.'iji Ao (Q~„ J lJ1 J IJ2 J2J2

k

+( 1)g"—p"gt q o'o@ki (qadi' (yi "i"
)

(19)

It is seen that even if we set A,o
——A, =A,

' =2 and

io ——i =i =1, i.e., restrict our consideration to the com-
mutators among the RPA quadrupole collective opera-
tors, there are the terms with A."&2 and/or i "&I which
"scatter" out of quadrupole collective subspace due to
summation on the rhs of Eq. (19). These terms are re-
ferred to as "scattering terms. "

However, if we enforce A,
" to A,"=2 only, and i" to

i"=1, i.e., if we neglect the "scattering terms, " the ex-
pression significantly simplifies. In this case the double
commutators are approximated by the terms which do
not lead out of the RPA quadrupole collective subspace.
This approximation will be referred to as "scattering"
approximation. In this way the original, untractable

IQ„Q„' [Q„Q„,] [Q„Q„,][Q„' Q„', ]I (20)

constitutes a closed algebra. It should be pointed out
that the operators (20) generally do not close an
algebra —the closure was enforced by neglecting scatter-
ing terms. Here we have introduced the notation

algebra SO(2Q), closed by two-fermion operators

[ aa, a a, a a ], will be restricted to a tractable but en-

forced SU(6) Lie algebra, i.e., SO(20) DSU(6).
If the scattering approximation is imposed, the double

commutators appearing in expressions (7)—(9) can be (cf
Sec. III) expressed as linear combinations of Q2, &

and

Q2„. Therefore, the set of operators
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Q„,Q„, labeling quadrupole collective operators associ-
ated with the "scattering" approximation.

In the following step we shall impose the condition
that the operators (20) form a Lie algebra. This will be
referred to as Lie algebra enforcement. %'e will show
that in this case the set of 35 operators

IQ„Q„[Q„Q„,]l (p po=o +1 +2}

forms an algebra isomorphic to the SU(6) Cartan-Weyl
canonical algebra. ' ' This algebra is referred to as
quadrupole collective algebra (QCA).

The two requirements together, the "scattering" ap-
proximation and Lie algebra enforcement, are referred to
as the SU(6) approximation. We will show that in this
case the commutators [Q,Q] and [Q,Q ] vanish.

Employing SU(6} approximation the infinite series in
(7)—(9) terminate at the double commutators and we
shall obtain closed expressions for the matrix elements

(a
~ Q„~ a'), (a

~ Q„~ a'), and (a
~ [Q„,Q„] ~

a') in
terms of a„and their derivatives 8/Ba„.

In the next step ap and a/aalu will be mapped into
quadrupole boson creation and annihilation operators

a„~b„, a ~b„.
Bu„

Upon this replacement we shall obtain microscopic
Dyson boson realization for Q„,Q„and [Q„,Q„].

In the following step, using the microscopic DR we
shall derive the microscopic HPR and microscopic SR.
Alternatively, we shall derive the microscopic HPR
directly, by performing a complete analysis of the en-
forced QCA closed by IQ„,Q„,[Q„,Q„]J. Having ex-
plicitly constructed the microscopic HPR of the QCA in
a straightforward way, we construct the microscopic SR
of this algebra.

III. QUADRUPOLE COLLECTIVE ALGEBRA IN TERMS OF RPA QUADRUPOLE PHONON OPERATORS
AND RPA-SU(6) —ENFORCING CONDITIONS

Imposing the SU(6) scattering approximation, we can present the double commutator (19) in the compact form
2

~) I y" +Q~"
p, = —2

with

4 K

C„»+-——g CIr g (2p'2po
~

KK)(2p"2p
~

Ka),
K=0 x= —K

4 K

D„„„~= g Dx g [(—1)"(2p2 p'~KK)(2p—o2p" ~Ka)+( —1)" (2p'2po K')(2 p"2p, ~Kx)—],
K=0 x= —K

(21)

(22)

(23)

Ji 2

j, 2 (4 4., 4', 4., —4 4., 4,4, . ),J 1J1 J2J2 J 1J2 1 2 J 1J1 J2J2 J 1J2
2 I(

J

J2 J&

Dx ———" g ( —1) ' '
j2 j) 2 (4 4., %,4, , —4. 4., %,4, , ).

2 J1J1 J2J2 J1J2 1 2 J1J1 J2J2 J 1J2
J1J2J 1J2 2 2 K

(24)

(25)

Here, 4 and 4 stand for + ' and 4 ', respectively. In
obtaining Eqs. (21}—(25) we have used the relations'

[Q„' Q„', 1=—[Q„Q„,]=—0 *

Let us write the expression for another double corn-
mutator,

[Q„[Q„Q„',ll= —2 & (Q„-C„„„-+Q„'-D„„
P

(27)

If we consider the Tamm-Dancoff phonon operators, i.e.,
by neglecting the backward going amplitudes N, from
Eqs. (17), (21)—(25), and (27) there follows

[Q' [Q Q']]-Q',
[Q [Q Q l]-Q,

and in Eqs. (7)—(9) the infinite series terminate at double
commutators. In this case we easily obtain exact boson
realization of [Q,Q, [Q,Q„] I in the form of
the DR. As for CK, it exactly reproduces the corre-
sponding quantity C& given in Ref. 14.

The case of RPA phonon operators is more complicat-
ed because RPA phonon operators do not automatically
commute [see Eq. (17)), and the double commutators
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contain both Q and Q terms [cf. Eqs. (21) and
(27)]. There is no apparent termination of the infinite
series in (7)—(9) and, therefore, the exact boson realiza-
tion does not emerge in a simple way as it does in the
Tamm-Danco6' case.

On the other hand, we can directly check that the DR
and HPR should exist as particular solutions for the
commutation relations satisfied by [Q„,Q„,[Q„,Q, ]].
The main point is to derive conditions under which the
DR and HPR occur as exact realizations of QCA. This
will also result in the microscopic expression for N, the
quantum number associated with the linear Casimir
operator of the SU(6} group.

We have started with the set of operators

[Q~; Q~„; [Q~„; Q~~,;, ] [Q~„; Q~~,;, ] [Q~; Q~~,;, ]]
corresponding to the algebra SO(2n). Applying the
"scattering" approximation, this set of operators was re-
stricted to a smaller set,

[Q„Q„[Q„Q„',] [Q„Q„,] [Q„' Q„,]] ~

Now we apply the Lie algebra enforcement: We re-
quire that the operators of the restricted algebra (28)
satisfy Jacobi identities. In this way we obtain a number
of constraints imposed on the RPA amplitudes 4 and 4
(cf. the Appendix):

K 2

J Jp 1 2j)'

(29)

al. The most intricate point is to establish Dz ——0. This
is a crucial step in the microscopic derivation of the DR,
HPR, and SR.

We note that up until now 4 and 4 are assumed to be
the solutions of standard RPA equations. However, the
task of determining 4 and 4 could be reformulated, tak-
ing into account the constraints (29)—(33}which lead to
a system of dynamical linear equations for %,4 and fre-
quency co, coupled with the nonlinear RPA-
SU(6)—enforcing conditions.

In the Appendix we show explicitly that, due to (29)
and (30), there holds

I'Q„,Q„]=o, [Q„,Q„]=o. (34)

We stress that all these relations stem unambiguously
from the corresponding Jacobi identities (cf. the Appen-
dix). The enforcing RPA-SU(6) conditions (29)—(33) are
essential for our microscopic derivation of the DR and
HPR for RPA phonon operators. On the other hand,
these relations resolve some of the problems appearing in
Ref. 9: The dimculties of Ref. 9 were that the relation
K& ——L& was not shown, and that the boson number N in-
cluded terms which should exactly vanish as required by
Jacobi identities. Now, by substituting the expressions

pii 2 ii ~/i ' &ii

into the expressions for the quantities K& and L& of Ref.
9, we obtain

E& ——C& —2D&, Lr ——Cr+2D& .

From D& ——0 [Eq. (30)], there follows E& L& and——

for E =1,3 and any [j,jz];
w'(i, i, ;re) =o (30)

2 1 1
N =Int —= Int —=Int

K L C
(35)

for E =0,2, 4 and any [j &jz );

D» ——0 (K =0, 1,2, 3,4),
c,=c,=o,
Co =Cg =C4 =C (E independence of C» )

(31)

(32)

(33)

It should be noted that relations (34} and (35) have
been proved to hold exactly if the SU(6) enforcing condi-
tion is assumed; we do not use the RPA assumption that
the number of quasiparticles in the ground state is small.

We can easily show that the quantities Co, Cz, and C4
are related to the norm of the two-phonon state,

where D» and C» are defined by Eqs. (25} and (24), re-
spectively.

The constraints (29)—(33) will be referred to as RPA-
SU(6)—enforcing conditions. In the Tamm-Dancoff case
(@JJ'=0) the relations (29)—(31) are automatically
satisfied. In the RPA case these conditions are nontrivi-

2
[Qz Qzbsr IO&

where
I
0) denotes the vacuum of Q„, Q„ I

0) =0. By a
straightforward derivation, we obtain, for the two-
phonon norm,

[Q2 Q2]JM I
o& =-,' X &2i '2vo

I
JM&&2s 2@0 I

JM &&o
I Q„[[Q„Q„']Q„', ] I

o&+I
PpP PpP

=1——,
' g (2p'2@0

I
JM)(2}M2po

I
JM)C(5„„5,+5„„5,)=1—C,

PpP PpP
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i.e., C takes into account, on the average, the Pauli prin-
ciple.

We note that in view of Eq. (34) the enforced RPA
phonon operators commute and therefore odd momenta
do not contribute to the two-phonon norm; thus C& and

C3 should not contribute, in agreement with Eq. (32).
RPA-SU(6) —enforcing conditions lead to essential

simplification of the algebra (28). By virtue of Eqs. (34)
and (35), the commutators [Q„,Q„] and [Q„,Q„]drop

out, and we are left with the set of 35 linearly indepen-
dent operators,

I Q„Q„,[Q„g„',]]

which is just the number of operators corresponding to
the SU(6) algebra.

Using Eqs. (31)-(33) the double commutators (21) and
(27) can be brought into a simple form:

[g„'., [g„,Q„' ])=ca„.„g„' +ca„„g„',,

[g. [g. g'. ))= —~.'.Q. —fi-,g. .

(36)

(37)

Here we have used the relation

K =0,2,4, x= —K
( 2]u2v

I

KK ) ( 2A, 2p I
KK )

= —,'(&„~&,],+&~,fo„)

Now we turn to the microscopic derivation of the DR of
the QCA.

Therefrom, we have

[[Q„,g„],[g,g, ]]=C5 [Q„,g, ]—C5„,[g,g„] .

(38)

IV. MICROSCOPIC DYSON REALIZATION FOR THE QCA

Let us now insert the commutation relations (35)-(37) into the rhs of Eqs. (7)—(9).
From Eq. (7) we get

2 2

la ~Qe ~~a']=(0 Q„exp g a,Q, a' = 0 exp g a,Q, Q„a'),
T= —2 T= —2

x

which can be written in the form

(39)

(a
I Q„ I

a') = (a
I

a') .
Ba&

Similarly, from Eqs. (8) and (9) we get

l 2 2

(a
~ Q„~~ a'l=(0 Q„~g, [Q„,Q, la, + g, [[Qt,Q, ],Q, ]a, a, exp g a,Q, a'l,

T T]T2 T ——2

l 2

&a
l [Q„,Q„] l

0'&=(0 [Q„,Q„I+X, [[Q„,Q„],Q, la, exp X a Q, a') .
T] T= —2

(40)

(41)

(42)

In order to simplify (41) and (42), let us determine the
effect of Q„, Q„, and [Q„,g„] on

I
0). In Sec. VII, we

will show that the QCA is isomorphic to the SU(6)
Cartan-Weyl canonical algebra; Q& are raising genera-
tors, Q

t are lowering generators, and [Q„,Q „) are
lowering generators for v&p and belong to a Cartan
Abelian subalgebra for v=p.

Previously, we have considered the RPA vacuum (6):
Q I

0) = (0
I Q =0. When we replace the RPA quad-P

rupole phonon operators I Q2„„Qz ] I by I g, Q
which belong to the SU(6) Lie algebra, as it is natural
[because of QCA=SU(6) isomorphism) to replace the

I

g„ I
o) =(o

I
g„'=o,

&o
I [Q„Q'.1=&„.&o

I
.

(43)

(44)

Using (37), (43), and (44) we transform the relations
(41) and (42) as follows:

original phonon vacuum
I
0) by the highest weight state

of the totally symmetric irreducible representation of
SU(6). This is a straightforward group-theoretical
identification of the state

I
0). As a consequence, we

have

2

(aIQ„ Ia')= a„—a C g a,
= —2

'Ba (a
I
a'),

&al [g„,g.') Ia &= fi„. 1 —Cga, Ba
—Ca

Rap
(a Ia') .
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In this way we have obtained closed expressions for
the operators of the QCA in terms of a and 8/Ba:

a
p Rap

Q„~a„—Ca„g a,
= —2

This presents the desired microscopic HPR for RPA
phonon operators and their commutators.

It should be noted that there is also a direct
method' ' of deriving the microscopic HPR for the
simplified QCA given by commutation relations
(36)—(38). Following the method of Refs. 12 and 29, we
introduce the ansatz

[Q„Q'.] ~„, 1 —C X
T= —2 1a

Making the replacement

a„~b„, ~b„,a
Ba„

a—Cav
ap

TPCT

Tpi~»x~2

Q„=b„+g X', 'b b b+
TPCT

we obtain Dyson boson realization for the RPA phonon
operators

and calculate the coefficients order by order. In this way
we obtain

Qu" =b.
Q =b 1 —C gbtb

[g„,g'„] "=S„,'1 —Cybtb, —Cb'„b„.
T

Let us introduce

1
N =Int

C

gt bt bt"2 N "8 N
'n

(2n —3 )!!

0 n!2" N

and, analogously,
1/2

Q = 1 ——

' 1/2

=b~ 1 ——
N

as the integer nearest to 1/C.
Now we present the DR in the standard form'

gDR b

2

T= —2

2

[Q„,Q„] "=5„„1——g b,b, — b„b„. —
T= —2

(45)

(46)

(47)

In this way the HPR was obtained in the Tamm-Dancoft'
case, i.e., for the simplified QCA (/=0). '

VI. MICROSCOPIC SCHWINGER REALIZATION
FOR THE QCA

Schwinger boson realization for RPA phonon opera-
tors is directly obtained from the Holstein-Primakoff
realization (48)—(50) by replacing

N gb2b2 +s —s, —
V. MICROSCOPIC HOLSTEIN-PRIMAKOFF BOSON

REALIZATION FOR THE QCA
bq 1 ——gb2b2

1
1/2

~N-'/2d's
p

Using the microscopic DR (45)—(47), it is easy to
derive the HPR. To this end we employ an orthogonali-
zation procedure with the transformation operator

g = N —y btj !/N! '/2

where s and d~ denotes creation operators for s and d
bosons, respectively.

In this way, we obtain

In this way we obtain

g HPR —gQ DRg
P P

' 1/2

g tHPR gg tDRg —1

P P

' 1/2

1 ——
N

(48)

(49)

~ fsR d tsN —1/2
~c

QsR s td N —1/2
P P 7

(51)

(52)

(53)

[g gt ]HPR

with

N= gbP„.

bP„, —
Schwinger boson realization is associated ' with the

interacting boson model (IBM). In the present
framework this representation is particularly convenient
for establishing the one-to-one correspondence between



846 G. KYRCHEV AND V. PAAR 37

the QCA and Cartan-Weyl canonical algebra,

IQ„Q„' [Q„g'.]] IHk E.l .

VII. ISOMORPHISM BETWEEN THE QCA
AND CARTAN-WEYL CANONICAL ALGEBRA

In order to complete our derivation of boson realiza-
tions, we have to establish isomorphism between the
QCA and Cartan-Weyl canonical algebra
(CWCA). ' ' This isomorphism was used in obtaining
relations (43) and (44). Furthermore, establishing this
isomorphism enables us to clarify the Lie-algebraic
meaning of Q&, g„. This is also important for under-
standing why the SU(6) algebra appears as the dynamical

I

(a)

algebra associated with the quadrupole degree of free-
dom.

In order to express one-to-one correspondence be-
tween the QCA and CWCA, it is necessary to introduce
a correspondence between indices utilized in both alge-
bras. In the QCA index ]]4 denotes the projection of
L =2 angular momentum in the laboratory system. In
the QCA we also need the combined index t pvI related
to [Q„,Q „].Taking v &]]4 we have two types of commu-
tators, [Q„,Q„] and [Q„,g„]. In the CWCA there are
k =P indices related to the Cartan Abelian subalgebra
(k =1, . . . , 5) and five simple roots (P=1, . . . , 5), and

y indices which specify the raising operators connected
with nonsimple roots (@=6,. . . , 15). We take the fol-
lowing unambiguous convention for the correspondence
[] J [k=&1 [] vI

and

10i+j 23 24 25 26

(b)

10

34 35

12

36

13

45

14

46

15

56

For a given y we first determine the corresponding i
and j using Table (b), and then we assign i —1~]]4,
j—1~v, using Table (a).

First, we establish the role of Q„and Q„as raising
and lowering operators, respectively. To this end we are
going to use a standard commutation relation for the
SU(6) CWCA

[E,E ]=r(a) H .

Using (51) and (52), or directly (53), we have

[Q„,g„]=—(sos —dtd„) .t

Using the root system of the SU(6} CWCA from Ref.
28, we obtain

I

Thus,

[gp, gpss]= r(P) H .
12

(55)

1/2
Xt ~b].

&12
s d =E13~gp 1———

From Eq. (55) it follows that Q„and Q„can be
identified with the raising and lowering generators of the
SU(6) CWCA:

s s —d„d„=12r(P) H,
with I]]4)~IPSE [cf. Table (a}]. Here, r(P) are five simple
roots of the SU(6) CWCA and H= [H], ) are the ele-
ments of the Cartan Abelian subalgebra:

H] —— —(s s —d 2d 2),

=sd N

&12 "d s=E p~gp b 1———
' 1/2

(56)

—(s s+d 2d p
—2d ]d ]}

H3 ———„(s s+d 21 2+d ]1,—3dodo), (54)

=d sNP (57)

H4 —— —(s s+d qd 2+d ]d ]+dodo —4d]d]),
4&15

H5 —— —(s s+d 2d 2+d ]d ]+dodo6&10

Using relation (38) we see that diagonal commuta-
tors [Q„,Q„] vanish. Therefore, they must be linearly
related to the elements of the Cartan Abelian subalgebra
of the SU(6) CWCA,

+d,d, —5d2d2) . H=MH', (58)
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where subalgebra of the QCA are

Hi

H2 H'=N
[Q zQ z]

[Q2 Q2]

(59)

H5

is given, by Eqs. (54), and elements of the Cartan Abelian
The explicit form of M matrix can be easily found

with the help of Eqs. (54), (58), and (59):

1

2&6
1

6&x
1

12

1

4&15
1

6v'10

1

3&2
1

12

1

4&15
1

6&10

1

4&15
1

6&10

1

&15
0

1

6v'10 6v'10

(60)

Thus, there is also a one-to-one correspondence,

{Hk j [N [Q„Q„)j

Using Eq. (53) for v& p, we have

[N[Q„,Q„],(N[Q„,Q, ]) ]=—,', (dg, dtd„) . —

(61)

operators
~ Q„,Q„~ belong to the Cartan Abelian

subalgebra and thus the highest weight state 0) is their
eigenstate.

In fact, the highest weight state for the totally sym-
metric irreducible representation of SU(6) is a vacuum of
b bosons,

~

0) = ~0)b. From Eqs. (50), (57), and (63) it
then follows that

d„d =E ~N[Q„,Qt]=b„b„=d„d, ,P (62)

dtd„=E ~N[Q„,Q„)=b„b„=dg„. (63)P —'Y

Relations (56), (57), (62), and (63) are of the type

SR=CWCA~QCA=HPR=SR .

Thus, by use of relations (56), (57), and (61)—(63), we
have established the isomorphism IQCA}~[CWCA}.
It is easy to check that other commutation relations of
the SU(6) CWCA are satisfied too.

We have shown that the operators Q„and [Q„,Q, ]
for v& p are the lowering generators. Therefore, the re-

sult of these operators acting on the highest weight state
&0

~

is zero [Eqs. (43) and (44)]. On the other hand, the

Using the root system of the SU(6) CWCA, we get, for
any values [pvj (Refs. 26 and 28),

—,', (dP„d„d„)=—r—(y) H

where [y j+-+Ipvj.
Therefrom it follows that N[Q„,Qt]t=N[Q„Qt]

and N[Q„,Q„] play the roles of raising and lowering
generators in the QCA, respectively, corresponding to
the nonsimple roots

' 1/2

=0,

b &01 b„b& ——0, p&v
0

I [Q„Q.)= &0
~

fi"

Thus,
~
0) is the zero-energy state of the free Hamiltoni-

an.
The consequence of our proof that Q„and Q„are the

raising and lowering operators, respectively, correspond-
ing to the simple roots, is a group-theoretical
identification of the generating state (5): this state is, in
fact, the SU(6) coherent state.

Let us also mention a simple interpretation of rela-
tions (31), (34), and (35) in analogy with the CWCA.
Relations (34) and (35) are associated with the vanishing
commutators between the raising and lowering genera-
tors corresponding to simple roots ([Es,E&]=0). The
vanishing of Dz, D„„„., Eq. (31), is associated with the

fact that raising and lowering generators do not mix on
the rhs's of commutators of the CWCA ([Hk, E~

~

]
rk(+)E+

~

).

VIII. BOSON IMAGES OF OPERATORS
8 (jj;2p) AND 8 (jj;00)

Finally, we have to determine the boson images of the
operators B(jj ', Ap), defined by Eq. (17a). These opera-
tors enter, on an equal footing with RPA phonon opera-
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tors, into model Hamiltonians and in other physical
operators. Therefore, we have to construct their boson
images too.

Our starting point is the ansatz (A6). We have to

determine explicitly the coeScients X,(j,jz,LM). To
this end we calculate the commutators
[8(j ij z', LM), Q„] by using Eqs. (A15), (A16), and (36).
We obtain the relation

X„.(jijz,LM')+6 „QX„„(jijz,LM)=N&5(2L+1)'Jz(2PLM ~2v)S'+'(j,jz,.L),

(64)

where we have used Int[1/C) =N. The quantity S+(j,j z,LM) is defined by Eq. (A4).
Taking diagonal matrix elements, p=v and summing over p, we obtain Q„X„„(j,j z,LM). Thus, finally we obtain

X„„(jijz', LM)=N&5(2L +1)' (2pLM
~

2v)S'+'(j ijz, LM) 5&,65—N —
&&z g (irJJ J +4J J ) .9~6 (2

~ + 1)i/z J(J J(J

In particular, for L =0 we obtain

X~„(J)jz;00)=N5 „5 (2j, +1)

2

B(jj;00)=(2j+1) 'J g(% '+HAJJ') g bp, ,
T= —2

and comparing with (66} we have

(65) 2

ga a = g(4;+4 ') g btb, . (67)

8(jj;00)=(2j+1) ' gaJ aJ (66)

Using (A6), (50), and (65},we obtain

For physical applications of direct interest, we have
the operators 8(j,jz,2M) and 8(jj;00). The latter is
proportional to the quasiparticle number operator [cf.
(17a)]

Thus, in the case of SU(6) enforced symmetry the quasi-
particle number operator is proportional to the number
operator of quadrupole bosons.

The Physical significance of the oPerators 8 (j,j z, 2M)
stems from the fact that they enter the quadrupole mo-
ment operator and generate quasiparticle-quadrupole
phonon interactions in microscopic nuclear models
based on pairing plus quadrupole-quadrupole force. ' '

From (64) we have

J +J j] j
X„„(jijz,2M)=5N(2p2M ~2v) g( —1) '

2 2
. '(O'J J %J +4J J4J J )=5N(2p2M ~2v)S'+'(jijz, 2) .

J

(68)

It can be easily checked that the diagonal part of
X„„(j,j z', LM) for L =2,4 does not contribute to
8(j,j z, LM). Then, we can write Eq. (A6} in the factor-
ized form

B(JiJz,LM)=5S'+'(Ji Jz&L)(bz Xbz)L~, L =2,4 (69)

where the tensor product is defined as

(b z Xb z )LM ——g ( 2p2&
I
LM )Jb z, ( —1 )~b z

PT

and we have used the HPR of [Q,Q ] given by Eq. (50).
We note that the expression (69) is a generalization of
the boson image of the operator 8 (jj;LM}in the case of
a single-j shell. '

IX. CONCLUSIONS

We have explicitly constructed microscopic Dyson,
Holstein-Primakoff, and Schwinger realizations for the

I

RPA quadrupole phonon operators. Using as a starting
point the standard RPA quadrupole phonon operators,
we enforce these operators and their commutators to
close the Lie algebra —the QCA. Due to the presence of
backward going amplitudes 4, the derivation becomes
rather complex. The analysis performed on the corol-
laries steming from Jacobi identities showed that
simplifications appear in a nontrivial way and at a price
of a set of constraints on the RPA quadrupole phonon
amplitudes. In terms of these operators and their com-
mutators, the QCA comes out directly in the canonical
form. Thus, for our purposes of explicitly constructing
the SR, HPR, and DR, the RPA quadrupole phonon
operators turned out to be a natural and suitable repre-
sentation.

In conclusion, we have constructed —in the frame-
work of the RPA —three types of boson images of all
elements IQ„,Q„,[Q„,Q„]~8] needed for an SU(6)
Hamiltonian expressed in terms of bosons. Using the
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Schwinger realization of the above elements of the QCA,
we shall obtain the interacting boson model (IBM),
while using Holstein-Primakoff realization we shall ob-
tain the truncated quadrupole phonon model (TQM). ' '
Thus, the obtained microscopic realizations provide a
new microscopic foundation of the IBM, alternative to
the traditionally employed approach. An advantage of
this approach is that the total boson number N appears
as a microscopic quantity (35). The efficiency of this ap-

proach is under investigation and preliminary results are
encouraging. '

The authors express their gratitude for useful discus-
sions to B. Barrett, A. Faessler, D. Janssen, R. V. Jolos,
F. Doenau, E. Nadjakov, E. Mandova, T. Marumori, I.
N. Mikhailov, V. Y. Ponomarev, D. J. Rowe, V. G.
Soloviev, T. Tarnura, V. V. Voronov, and V. G. Zelevin-
sky.

APPENDIX: DERIVATION OF SU(6}-RPA—ENFORCING CONDITIONS FROM JACOBI IDENTITIES

If we assume that the SU(6) "scattering" approximation is valid, the commutators (16)—(18) can be written in the
following compact form:

[Q„,Q t ]=5„„—g 8 (j,j 2LM)&5(2L + I )'~ ( ELM I 2po }S' '(j
&j»L ), (A 1)

j &j 2LM

[Q„,Qq ]=5 g 8(j)jq', LM)(2p2po
I
LM }[1—( —1) ]W(j2jt,'L)( —1) '

J ) J2LM
(A2)

[8(j &j2,'LM), Q„]=+5(2L+I)'~ g (2p'LM
I

2p, "}[Qt-S'+'(jtj2,L)+( —1)" Q „.[1+(—1) ]W(j&j2,L)),

with

Ji J 2

'I
J

(A3)

(A4)

Ji J 2
W(j,j,;L)= g( —1) '

J2
(A5)

By comparing commutation relations (21) and (A3}, we observe that the 8-tensor operators commute with Q
t opera-

«r»n the same way as the [Q, Q ] commutators, i.e, 8's should be linear combinations of [Q, Q ]'s. Also taking into
account (Al), we introduce the following ansatz for 8 operators:

8 (J i J'2;LM) = g X„(j~j2,LM)(&„—[Q, , Q, ]) . (A6)
P7

Jacobi identity for operators d, b, c will be denoted [a,b, c ]=0. Let us now consider the Jacobi identities (i) —(iii) as
follows.

(i) [B(j,j,;LM), Q, Q„]=[[8(J,J,;LM), Q ],Q ]

+[[Qp Q. l»(jtj2'LM)]+ HQ'. »(ji jp,'LM)], Q„']=0 .

Utilizing (Al)-(A3) and the commutator

[8 (j ',j 2', L'M'), 8 (j,j2,LM}]=( —1)L+ &(2L +1)(2L'+1)

Ji J2—5., ( —1) ' 'B(j,j,';L "M' L" L J]
L IIMft
L'M'LM

we can represent this Jacobi identity in the form

Y(J(J2 ,LM, p~v I J iJ2 , L''M')8(J g2, L''M')=0,
j 'lj 2L'M

(A7)
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where
. I . I

Y(j &j z, LM P, v
~j IJ&,L'M')=—5&5(2L + I)'~ S'+'(j~ jz,L) W(j zj&', L')( —1) ' '[( —l)~ —1]

X g [[(2pLM
~

2p, ")(2 vL—'M'
~

2p, ")(—1)']—[p~~v]j

+&5(2L + I)'~ S' '(j Ij z,'L')W(j~ jz', L)[1+(—1) ]

X g [[(2vLM
~

2p")(2 p"—L'M'
~

2p)( —1)" ]—[p~~v]I

+5( —1) (2L+1)'~ g (2L "+1)'~ [(—1) —1](2p2v
~

L "M")
I It'll

J&
X(L"M"LM

~

L'M') ( — ~+~ . , '( —1) ' 'W(j )j I,L")5L" J2Jp
1)

J2 J2 L
'( —1} ' '

W(j jzz'L")5
J& J)J)

(AS)L' L

[[8(J~Jz,LM), Q„],Q„]+[[QQ(J,J„LM)],Q„]=[[8,Q„],Q„]—[[B,Q„],Q„], P~~v

The symbol [p~~v] means that in the expression in parentheses to the left the index p should be replaced by v and
vice versa.

Y(j j~z, LM, p v Ij Ij z,L'M')=0

for any set of indices

(A9)

and the third group of terms originates from the double
commutator

[[Q„' Q', ]»(Jj z'LM}]

when we use commutator

[&(j Ij z,L'M'},&(j )Jz LM)]

written above.
In order that the identity (A7) be valid, it is necessary

that

for odd L values (L = 1,3) and any set [j,j z,p, v
~j ',j z ].

We see that ifj ', =j z
——j„butj z&j z, then we deduce

10(2P2v
~

L —M )( —1 )™W(j&j z,L) '=0
+2j, +1

for odd L values and any [j,jz,p, v]. We can always
take such values satisfying p+ v= —M that the
Clebsch-Gordan coefficients are different from zero.
Hence, we infer that W(j &jz', L) must vanish for odd
momenta L =1,3 and any Ij,jz) pair of a single particie
set of quantum numbers

!JiJz LM p vl JIJz ~™1. W( j&j z', L)=0, (Alo)

5. .
JlJ l

x&.. ~

V'2J i+1
L

5
J2J2

J'z+ 1

=0

We see from (A8) that if we take L ' to be even and L to
be odd, then only the third group of terms in (A8) is
different from zero. If, moreover, we take L' to be equal
to zero, we obtain (A9) in the form

10(2p2v
~

L —M)( —1)™W(JiJz'L)

and hence relation (29) in the text has been proved.
Let us now take L to be even and L' to be odd. In

this case the first group of terms in (A8) gives zero, and
the third group of terms does not contribute because,
due to the factors [(—1) —1] and [(—1) —1], there
aPPear W(j,j z, L} for odd L, which, in accordance with
(A10), is zero. Only the second group of terms contrib-
utes to the lhs of (A9). In the case L = even, L'= odd,
(A9) reads

&5(2L +1)'~ S' '(j &j z', L')W(j &jz',L)2+ [(2vLM
~

2P")(2 P"L'M'
~
2P)( —1—)"

Let us set L =0; then (Al 1) gives

—(2pLM
i
2p")(2 p"L'M'

i
2v)( —1)—" ]=0 . (All)

2+5$~ ~(j jiz~L )W(jrjz~0)[1 ( 1)~ ](2 vL M
l
2P~ =0
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There are two possibilities:

(1) S' '(j',j,';L')=0,
(2) W(j,j,;0)=0 .

If we assume S' '(j',j2',L')=0, we come to the con-
clusion that [Q„,Q„]=5„„,i.e., the single commutatorst '='
(Al) reduce to a c number. We prefer to go beyond the
RPA so that we have to choose the second possibility,
i.e., W(j,jz,0)=0.

Let us now take the set of indices

L =2, M =1, p= —2, v=1, L'=3, M'= —3 .

In this case (Al 1) reads

2&5&9S' '(j',j,';0) W(j,j„4)(—1)— =0
2 v'21

From here we conclude

W(j, j2;4)=0 . (A13)

Therefore we have shown the enforced vanishing of
W(j ij 2,'L) for even values of L and thus the validity of
relation (30) has been established:

In this case (A 1 1) reduces to W(j,j„L)=0, L =0,2,4. (A14)

(A12)

L =4, M =0, p= —1, v=2, L'=1, M'=0 .

—10S' '(J |jz',3)W(i&J2', 2)( —1)—,', &30=0 .

Using the same reasoning as above, we infer

W(j&jz, 2)=0 .

Let us now take the set of indices

From (A10) and the explicit form (A2) of the commuta-
tor [Q„,Q„], it follows immediately that [Q„,Q„], and
also [Q„,Q„], vanish if the Lie algebra enforcement is

imposed. Thus (34) has been proved.
The consequence of relations (A3) and (A14) is that

the commutators [8,Q ] do not contain Q terms, but
only Q terms:

[8(j,j2,'LM), Q„]=&5(2L+I)'i g (2p'LM
~

2p,")S'+'(j,jz,L)Qt„. (A15)

As a result of (Al) and (A15), we find that the double
commutators [Q, [Q,Qt]] contain only Q terms,

1.e.,
I IIC„„„=C„„.„- for any p, po, p, p

[Q ' [Q Qp ]]=2&cp'p ~"Q
P

(A16)
Using (22) this gives

where C„.„„„is given by Eq. (22).

On the other hand, if we use (A3) instead of (A15) for
the commutator [Q„,Qt ], a straightforward calculation

Po

gives

[Q„[Q„Q„',]]=2+[c„„„~Q„+D„„„~Qp ]
P

g C» [(—I }»—1]g (2p'2p
i
K&) (2p02p

(A19)

Taking two sets of p values —[p', p, po, p"
J

= [1,0, 2, —1 J and [ —1, 1, —1, 1I —we obtain

CI —C3 ——0, C1+4C3 0 .
(A17) Thus, we have obtained the relation (32),

where D„„„+~ is given by Eq. (23). The comparison of
(A16) and (A17) leads to the result

D„„„-=0 for any p'p, po, p" .

From the definition for the D matrix (23), we then have

CI ——C3 ——0 .

We now turn our attention to the third Jacobi identity,

(iii) HQ„Q'. ] [Q., Q,'] Qg]=0

Using relations (21), (27), and (A18), we obtain
D~ =0, E =0, 1,2, 3,4 . (A18}

X Q 6 X ( 7ppE VE'gE' pT«E f/lEE
In this way the relation (31) is proved. Thus, the rela-

tion (A18) is a direct corollary of relation (A14),

(ii) [Q„,Q„,Q„]=0 . 1.e.,

+ C«„~,cp„,. p,g, «„„)=o,

Using the relations (27), (34), and (A18), we obtain

g Q„-(C„,„„„—C„„,„„}=0,
P

X 7ppE«EgEpT«E gp'pp'
+C„„~,cp„, —Cp,g, c p„.)=0 (A20)
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a+y =a'+y
P'+&'=0+~ .

(A21)

For a+y=P+5=0, from (22) it follows that C,&rs
has the form

for any set ls, v, r,p, j,e'
Using definition (22), we get a simple selection rule for

indices in each term appearing in (A20): the term
C~&~&C~.&z.& can be different from zero only if

The integers m 2, m 4 satisfy the condition

0 if a~P,
4 1/R if a=P .

On the basis of definition (22), we can represent identi-
ties (A20) in a more transparent form by taking different
concrete Ip, v, r,p, g, e'j sets. For the series of five sets
t0, —1, 1,2, 0,0j, I2, 2, 0, 1, —1,0j, I2, 0, 2, 2, 1, —lj,
I2, 2, 0, —1, 1,0j, and [ —1,0, 1,0,0,0j, we get, respec-
tively,

C p&s
='( m p Cp +m 2 C2 +m 4 C4 )R (A22) (C4 —C2 )( 14Cp+ 10C2 —24C4 ) =0, (A24)

( C4 —C2 )(7Cp —10Cq +3C4 )=0,

0 if a&P,
1/R if a=P,

( C4 —C2 )(2C2+ 5C4 ) =0,
(A23) ( C4 —'

C2 )( 14Cp +25C2 —39C4 ) =0

with the integers mo, m2, m4 satisfying the conditions
(A25)

(A26)

(A27)

and R is a real constant. The condition follows from the
orthogonality relation for Clebsch-Gordan coefficients in
definition (22) [cf. the relation below Eq. (38)].

For a+y=P+5&0, the expression for C &rs takes
the form

C~itrs ——(m 2C2+m 4C4)R
' .

(14Cp+ 15C2+ 6Cq )(14Cp+ 10Cq —24C4) =0 . (A28)

Physical meanings have positive real C values. Hence,
(A26) implies C4 ——C2. On the other hand, from (A28)
stems 14CO+ 10C2 —24C4 ——0. Therefrom, we obtain
Cp ——C2 ——C~=C, i.e., Eqs. (33) have been shown. All
other relations —(A24), (A25), and (A27)—are automati-
cally satisfied.
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