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We have completed a compilation of experimental results for the electric quadrupole transition

probability B(E2)f between the 0+ ground state and the 6rst 2+ state in even-even nuclei. The
adopted B(E2) f values have been employed to test the various systematic, empirical, and theoreti-
cal relationships proposed by several authors (Grodzins, Bohr and Mottelson, Wang et al. , Ross
and Bhaduri, Patnaik et al. , Hamamoto, Casten, Moiler and Nix, and Kumar) on a global, local,
or regional basis. These systematics offer methods for making reasonable predictions of unmea-

sured B(E2) values. For nuclei away from closed shells, the SU(3) limit of the intermediate boson
approximation implies that the B (E2) f values are proportional to (epNp+e„N„), where ep (en) is
the proton (neutron) effective charge and Np (N„) refers to the number of valence protons (neu-

trons). This proportionality is consistent with the observed behavior of B(E2)f vs NpN„. For de-

formed nuclei and the actinides, the B(E2) f values calculated in a schematic single-particle
"SU(3)" simulation or large single-j simulation of major shells successfully reproduce not only the
empirical variation of the B(E2)f values but also the observed saturation of these values when

plotted against NpN„.

I. INTRODUCTION

We have recently completed an exhaustive compila-
tion' of experimental results for the reduced electric
quadrupole (E2) transition probability B(E2)1' between
the 0+ ground state and the first 2+ state in even-even
nuclei. This compilation contains adopted B(E2) values
for 281 nuclei. It also contains adopted energies E of
the first 2+ stes for these nuclei, together with ener-
gies, but not 8(E2) values, for an additional 176 nuclei.
An overall view of the data in this compilation is shown
graphically in Fig. 1. The 2+ energies are relatively
high for nuclei with closed proton or neutron shells and
relatively low in the middle of the shells. They also
show an overall decrease going from the lightest to the
heaviest nuclei. By contrast, the 8(E2) values are small
for nuclei at the beginning or near the end of a closed
shell and attain maximum values for nuclei in the middle
of a shell. While the 8(E2) values are only about 10
times the single-particle value for nuclei in the 10-40
mass number range, they increase to about 300 times the
corresponding value for the transuranium nuclei. These
overall trends can be seen in Fig. 1 or in the more de-
tailed figures presented in Ref. 1.

With this 8 (E2) compilation as a starting point, it is
now possible to test the various systematic, empirical,
and theoretical relationships that have been proposed by
difFerent authors to exist amongst these 8 (E2)
values. These systematics constitute the main topic of
this paper. They are interesting not only for the intrin-
sic reason of providing new physics insights but also for
the practical reason of supplying a reasonable prediction
for a nucleus without an experimentally determined

8(E2) value. Even though most of these relationships
were proposed one or two decades ago, their use (and
subsequent citation) either as a prelude or as a postlude
to new measurements has been extremely limited. The
absence of an up-to-date comprehensive 8 (E2) compila-
tion capable of subjecting these relationships to rigorous
tests probably contributed to their underutilization.

After presenting in Sec. II some useful formulas relat-
ing 8 (E2) values to mean lifetimes r or deformation pa-
rameters P2 or intrinsic quadrupole moments Qp we
proceed to discuss three broad types of systematics in
terms of the measured B(E2) values or these related
quantities. The first is global systematics which essen-
tially bring out the energy and mass number depen-
dences of the y-ray transition probability as discussed in
Sec. III. Next is local systematics, which bring out the
correlations between the 8 (E2) value for an (N, Z) an-
chor nucleus and those for the nearby (N+2, Z),
(N, Z+2), and (N+2, Z+2) nuclei. This approach is
discussed in Sec. IV. The third broad type might be
called regional systematics, the regions being bracketed
by the magic numbers of protons and neutrons. Five
different regions are considered in Sec. V. We attempt
in Sec. VI to understand these regional systematics in
terms of macroscopic intermediate boson approximation
(IBA) and microscopic schematic models. There also ex-
ist two global calculations of equilibrium nuclear shapes.
The calculation by Moiler and Nix' '" is based on a
macroscopic-microscopic model and that by Kumar' on
a microscopic model. In Sec. VII, we compare the in-
trinsic quadrupole moments [which are proportional to
the square root of the corresponding 8 (E2) values] mea-
sured for 272 nuclei with those calculated by Moiler and
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Following the method chosen by Grodzins to present
the data, we show in Fig. 2 a plot of all available ~
values versus energy (E) of the first 2+ states for even-
even nuclei. If the exponent of E is fixed as —4, a least-
squares fit to the data excluding those for closed-shell
nuclei results in (r in psec)

=3.16X10' E (8)

This fit is shown by the dashed line in Fig. 2 and has
physical significance as discussed below. Permitting the
exponent of E to vary results in the following best fit:

& =4-84X10 Ey

This fit is shown by the solid line in Fig. 2.
Reverting to the functional form given in Eq. (7), a

least-squares fit to all available ~r values except those for
closed-shell nuclei results in

Wang et al. claimed that they derived the above expres-
sion from first principles and without any free parame-
ters. They also claimed that the ratios of values calcu-
lated with Eq. (14) to experimental values fell between

~ ~

1P5

1O4

7 =2.74 X 10' E Z A '
y (10)

We show in Fig. 3(a) the ratios of calculated [via Eq.
(10)] to experimental r values. Eighty-six percent of
these ratios fall between 0.5 and 2.0. The calculated vy
values tend to be low [calculated 8(E2) values tend to
be high] for light nuclei and for nuclei near closed shells.

V
0)

B. Systematics of Bohr and Mottelson M
O.

Within the framework of the hydrodynamic model
with irrotational How, Bohr and Mottelson ' have de-
rived simple expressions for the 8 (E2) values (and
hence for rr values). For small harmonic vibrations of
spherical nuclei,

vy=06X10' E Z A '~

and for collective rotations of axially symmetric nuclei,

10

1p2

10

0

~,=1.4X 10'4E-4Z-'A '" . (12)

These expressions follow by substituting Eqs. (4) and (5)
into Eq. (1). The E Z dependence in the above ex-
pressions was adopted by Grodzins [see Eq. (7)], but he
replaced A' with A. We find that the experimental
data (excluding those for closed-shell nuclei) can be fitted
equally well with

10 -1

~ =5.94X10' E Z A'r — . (13)

which difFers from the Bohr and Mottelson expressions
[Eqs. (11) and (12)] only in the multiplicative constant.
The test of Eq. (13) is shown in Fig. 3(b). Eighty-six
percent (the same as for Grodzins) of the
calculated:experimental ratios fall between 0.5 and 2.0.
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C. Systematics of Wang et al.

Another theoretical expression concerning the energy
dependence of the E2 transition probabilities for the
2~+~0~+ transitions in even-even nuclei was derived by
Wang et al. 5. Their expression is (w in psec and E in
keV)

E (keV)
FIG. 2. Gamma-ray mean lifetimes ~~ as a function of the

energies E of the first-excited 2+ states in even-even nuclei.
This plot is similar to Fig. 2 of Grodzins (Ref. 3). The dashed
line represents a forced E fit to the data and the solid line a
best E fit to the data. In both cases, the data for closed-
shell nuclei were omitted in the fits but are included in the
plot.
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0.2 and 1.7 for 95% of the 214 lifetimes known to them.
We find that the good agreement found by Wang

et al. is spurious because these authors failed to proper-
ly take into account the correction due to internal con-

101
7 =5.25' 10 E Z A'

y
—. (15)

version. Nevertheless, if we retain the functional form
of Eq. (14} and carry out a least-squares fit (excluding
data for closed-shell nuclei), we obtain
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The validity of this expression is shown in Fig. 3(c).
Fifty-eight percent of the calculated:experimental ratios
fall within 0.5 and 2.0. The agreement with the data is
inferior to the other two fits [see Figs. 3(a) and (b)].

The work of Wang et al. can be faulted for an even
more serious reason. Their derivation of Eq. (14) is
based on the assumption that the first 2+ state corre-
sponds to the vibrational excitation of the center of mass
of the nucleus. According to Newton's law of motion,
the interactions between the nucleons cannot lead to any
center-of-mass motion. Hence, despite some apparent
success, Eq. (15) has no physical basis.

D. Best global fit

10
101

0

0 0
t [9 0

V
1N
V

~10'—

10 ~

10

Bohr and Mottelson

p p 0~ ODgC3 ~ 0~ n
r=.—) Wj+P

0 p
0
0

Because the electromagnetic interaction is proportion-
al to Z, the transition probability should vary as Z and
hence, the y-ray mean lifetime as Z . With only this
constraint, a purely numerical best fit to the data (ex-
cluding as before data for closed-shell nuclei}, where the
exponents of E and A are allowed to vary, yields (~ in
psec and E in keV)

g =1.25~10' E ' Z A '

y (16)

Figure 4 shows the data and the fit. Ninety-one percent
of the calculated:experimental ratios fall between 0.5 and
2.0, which is a slight improvement over the 86% ob-
tained earlier with both Eqs. (10) and (13). It is a re-
markable coincidence that the E dependence derived
by Bohr and Mottelson [Eqs. (11) and (12)] is also man-
dated by the data [Eq. (16)]. The exact A dependence is
not critical; the best A dependence [Eq. (16)] is inter-
mediate between A' of Grodzins [Eq. (10)] and A' of
Bohr and Mottelson [Eq. (13)].
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IV. LOCAL SYSTEMATICS

A. Systematics of Ross and Bhaduri

While Eqs. (10) and (13) predict the global trends, they
are not very accurate, as can be seen from Figs. 3(a) and
3(b), respectively. However, these figures also show that
the calculated:experimental lifetime ratios for neighbor-
ing nuclei do not differ much except near closed shells.
This observation raises the possibility that more accurate
local systematics may be developed from the experimen-
tal data. This was first done by Ross and Bhaduri.
After defining

F (N, Z) = [EXB(E2)T ]
1P

40 ep

I I

120 160 200 240
MASS NUMBER A

FIG. 3. Ratios of calculated to experimental values of the
y-ray mean lifetimes as a function of the mass numbers. The
calculated values correspond to (a) Eq. (10), (b) Eq. (13), and (c)
Eq. (15). The experimental values are from Ref. l.

these authors suggested that the value of F(N, Z) for the
anchor N, Z nucleus is related to the values for three
neighboring nuclei by the difference equation

F (N, Z)+F(N +2,Z +2) F(N +2,Z) F(N,—Z +2)—
-0 . (18)
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)017
equation. Hence we may write

F(N, Z)=f((N)+fq(Z) . (23)
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The difference equation, Eq. (18), immediately follows
from Eq. (23).

We have tested this difference equation with the data
in the 8 (E2) compilation and obtained the results
shown in Fig. 5(a). Except near closed shells, the devia-
tions from zero are typically +30% of the average of the
four 8 (E2) values. There are altogether 132 anchor nu-
clei, and 73% of these fall within this +30% band.

)pl4
Ip

I I ~ ~

50 100
MASS NUMBER A

300

FIG. 4. Plot showing best overall fit [see Eq. (16)] to the y-
ray mean lifetime data excluding data for closed-shell nuclei.

F(N, Z) =C(n IR e ro )82Z A (19)

where the constant C is —,", for vibrational nuclei and —",

for rotational nuclei. In the hydrodynamic model, the
inertial mass parameter Bz is given in terms of the nu-

cleon mass M as

82 (3/8n)Mr A—— (20)

Substitution of Eq. (20) into Eq. (19) leads to Eqs. (11)
and (12) given earlier. Ross and Bhaduri replaced this
estimate for B2 with a more refined one based on the
cranking model of Inglis. ' The latter estimate incorpo-
rates the effects of single-particle motion plus pairing
and hence is likely to reproduce the fluctuations about
the smooth behavior predicted by the hydrodynamic
model. Ross and Bhaduri showed that under reasonable
assumptions, the cranking model formula for Bz(N, Z)
can be written in a separable form as

8 (N, Z)=b, (N)+b (Z) .

Using this expression, they found

F(N, Z) cc [b, (N)+b2(Z)]Z A

(21)

(22)

for both spherical and deformed nuclei. The quantities
b, (N) and bz(Z) may change appreciably with N and Z,
but Z A is smoothly varying and is approximately
constant for the four nuclei appearing in the difference

If Eq. (18) is valid, it is possible to derive the F value for
the fourth nucleus provided the F values for the three
neighboring nuclei are known. Because the energies of
the 2+ states are invariably known long before their
8(E2) values, a knowledge of F leads to a 8(E2) pre-
diction. The predicted B(E2) values can be employed,
in a bootstrap procedure, to yield still more B(E2)
values.

The origins of Eq. (18) trace back to the work of Bohr
and Mottelson. From their formulas [see Eqs. (4) and
(5)] it follows that

B. Systematics of Patnaik, Patra, and Satpathy

It was noted by Patnaik, Patra, and Satpathy that a
difference equation similar to that proposed by Ross and
Bhaduri is also satisfied by E, the energy of the first 2+
state, and by the reduced transition probability 8 (E2).
Thus they propose

E (N, Z)+E(N +2,Z +2)—E(N +2, Z) E(N, Z+—2)

-0, (24)

and

8 (E2)[N,Z)+B(E2)[N +2,Z +2]
—8(E2)[N +2, Z] —8 (E2)[N, Z +2]-0 . (25)

Patnaik, Patra, and Satpathy argued that the low-lying

yrast states of a nonspherical nucleus can be described to
a good approximation by states of definite' angular mo-
menta projected from an intrinsic state obtained self-
consistently by a Hartree-Fock calculation. The
difference equations follow if one assumes that the in-
trinsic state of N neutrons and Z protons is not altered
very much by the addition of two neutrons or two pro-
tons.

As shown in Figs. 5(b) and 5(c), the difference equa-
tions (24) and (25) are well satisfied by the experimental
data except near closed shells, where the 8 (E2) values
are comparatively low. The 8(E2) residuals fall within
the +30% band for 69% of the 132 cases. The
difference equation for the energies for the first excited
2+ states [Eq. (24)] works much better; 64% of the 316
cases (four-nuclei clusters) fall within the narrower
+10% band.

Another way to test these difference equations is to
compare the predictions, made originally by the pro-
ponents of these equations, with new measurements.
This is done in Table I. The overlap between the pre-
dicted and the measured values is good for 9 out of 16
entries. Doubling the uncertainty in either the predicted
or the measured value extends this agreement to 13 out
of 16 entries. Disagreements exist for Se, " Pd, and

Xe, but the worst of these three, " Pd, is unusual be-
cause the predicted value for this nucleus is based on an
extrapolated value for " Pd. If the measured value for" Pd (see column 4 of Table I) is employed, the predic-
tions for " Pd in both columns 2 and 3 of Table I drop
considerably to a value of 0.64+0. 10.
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A. Systematics of Hamamoto

Pp/Pp(, ) B+A(1—e—— " '),
where A, B, and a are constants. The smooth behavior
is especially striking for isotopes heavier than Pb. The
data point marked ' Dy in Fig. 7(d) appears to be very
low; this point is based on a single, unpublished mea-
surement (see Table II of Ref. 1).

Figures 7(a) and 7(b) represent our attempts to extend
these N~N„systematics to lighter regions where the data
points are a priori expected to show wider scatter. In
Fig. 7(b), the four data points for Zr, Zr, Zr, and

Zr are low due to the subshell closure at Z =40 and
have been excluded in the fit. In an overall sense, the re-
gional systematics shown in Fig. 7 appear to be capable
of yielding a P2/Pz(, ) prediction with an accuracy of
about 10%, which translates to a B(E2) prediction of
about 20% accuracy.

(26)

The notion that it is the neutron-proton (n-p) interac-
tion that deforms nuclei is a key to understanding the
midshell bumps in the B (E2) values plotted in Fig. 1(b).
Because the p-p and n-n interactions are predominantly
of the pairing type, they cannot be responsible for the
deformation of a nucleus. Pursuing this line of reason-
ing, Hamamoto suggested more than two decades ago
that the deformation is roughly proportional to the
product N N„, where the valence number of protons
(neutrons) N (N„) is defined as the number of particles
below midshell and the number of holes past midshell.
It then follows that the B (E2) values (for some fixed N„
values) would peak roughly midway between closed
shells. In the 50(Z & 82 region, the B (E2) values for
the Gd, Dy, and Er isotopes with N =14, 16, and 14,
respectively, indeed show this type of behavior.

Hamamoto plotted the quantity [P2/P2(, )]/N N„as
a function of Z and noted that this quantity was roughly
constant over the entire mass region (both spherical and
deformed) except for the regions near closed shells. The
data available to her in 1965 were quite limited; she plot-
ted 28 points in the 54&Z (78 region. Our equivalent
plot is shown in Fig. 6. There are now 90 data points in
the same region and the ordinate values are no longer
especially constant as a function of Z. Nevertheless,
striking regularities are present in the data and to bring
these out, we have plotted the quantity [P2/P2( p)] as a
function of N N„ for nuclei in five different regions as
shown in Fig. 7. The solid line in each figure is a fit to
the data of the form [similar to Eq. (3) of Ref. 15]

N

FIG. 5. Test of the difference equations of (a) Ross and Bha-
duri [see Eq. (18) connecting F values for four adjacent nuclei],
(b) Patnaik, Patra, and Satpathy [see Eq. (25) connecting
B(E2)t values], and (c) Patnaik, Patra, and Satpathy [see Eq.
(24) connecting the energies of the first-excited 2+ states]. The
deviation from zero of the respective equation is divided by the
average of the four values, expressed as a percentage, and plot-
ted along the ordinate.

B. Systematics of Casten

The investigations by Casten of the correlations of
B (E2) values with the product N N„of the valence pro-
tons and neutrons outside a closed shell is motivated by
the same physical arguments used earlier by Hamamoto.
Casten has broadened the N N„systematics to include
the energies of the first 2+ states and the E(4i+)/E(2i+ )

ratios; in fact the 2~+ and 4~+ energy systematics were his
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TABLE I. Comparison of predicted and recently measured B(E2)f values.

Nucleus

e
72S

102Mo

'04Mo
106Mo
108R

110Ru

112RU

»2pd
114pd

124Xe

146Ce

148Ce

152Nd

182@

184OS

Ref. 6
Predictions

B(E2)y(e b )

1.05+0.15
1.56+0.32
1.74+0.50
1.25%0.20
1.23+0.25
1.28+0.35
0.90+0.10
0.9720.13
0.99+0.14
1.07+0.10
1.82R0.20

3.4620.54
3.4120.35

Ref. 7
Predictions

B(E2)1'(e 2b2)

0.20+0.02
0.44+0.08

1.0820.15
1.12%0.18
1.19+0.22
0.90+0.09
0.96+0.10
1.10+0.07
1.05+0.07

3.64+0.18
3.75+0.47
3.54+0.23

Ref. 1

Experiment
B(E2)f(e2b2)

0.14+0.02
0.18+0.03
1.06+0.12
1.08+0.08
1.30+0.07
1.03+0.14
1.11+0.13
1.12%0.20
0.63+0.10
0.34+0.10
1.49+0.09
0.93+0.13
1.89+0.15
2.6%0.7

3.81+0.33
3.20+0.15

starting points. When he arrived at the 8(E2) sys-
tematics, he discerned greater details and regularities in
them. For example, Fig. 8(a) shows the data in the very
broad Xe (Z =54) to Pb (Z =82) region with a straight-
forward method of counting N~ and N„values based on
the magic numbers. A subset of these data with a
different method of deducing the N and N„values is
shown in Fig. 8(b). Casten showed that the B(E2)
values split into two groups (Z &64 and Z&66). The
E(2&+) and the E(4t+)/E(2t+) data behave in a similar
manner. He provided a natural explanation for this be-
havior in terms of a significant subshell closure at
Z =64. He also generated 8(E2) systematics in the
A —100 region' in which the protons fill either the
28-50 or the 38-50 shell and the neutrons fill the 50—82
shell. Tabor' extended these systematics to the A -80
region in which neutrons and protons fill the same
28-50 shell.

Because we are interested here only in the overall sys-
tematics, we have reverted to the simple method of
counting N and N„values relative to the major magic
numbers (Z, N =28, 50, 82, 126, and 184) and have plot-
ted in Fig. 9 the 8(E2) systematics in five different re-
gions. For reasons that will become clear in Sec. VI, we
have omitted the data points for N, N„&4. These data
points (corresponding to N N„& 16) have been included
in the pz/pz~, ~ ~

plots shown in Fig. 7.

VI UNDERSTANDING Np N TRENDS

We now present three schematic models that attempt
to explain the p2 and 8 (E2) trends shown in Figs. 7 and
9, respectively. The first is macroscopic and based on
the SU(3) limit of the IBA. The second is microscopic
and based on an SU(3) simulation of a major shell and
the resulting symmetry properties. The last is also mi-
croscopic but based on a single large-j simulation of a
major shell.

We consider nuclei that are not too close to shell
boundaries. Thus we restrict ourselves to nuclei with
four or more valence protons and neutrons and regard
them as being "well deformed" in the sense that the
low-lying states of the yrast band of such a deformed nu-
cleus can be projected from a single intrinsic state. ' In
that case, the 8 (E2) value is approximately proportion-
al to the square of the intrinsic electric quadrupole mo-
ment Qo,

0.3

~ ~

0.2

0.1

~ ~

~ ~

~ ~

~ ~
0

I 0

~ I ~

~ ~ I ~
~ ~ ~

~ ~

~ ~

~ ~

~ ~ I'
I
~ ~

~ ~ ~ ~
~ ~

~ ~

~ ~ ~
~ ~ I~ ~

~ ~ ~
~ ~ ~
F 11

~ ~

0.0
30 50 70

ATOMIC NUMBER Z

80
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Data points for Z =48, 50, 52, 80, 82, and 84 have been omit-
ted. This plot is similar to Fig. 2 of Hamamoto (Ref. 8). The
valence number of protons (neutrons) N~ (N„) is defined as the
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8(E2) f =(5/16m )Qo .

We can write Qo as

Qo pQp+ nQn

(27)

(28)

where Q and Q„are the mass quadrupole moments of
the valence protons and neutrons, respectively, in the in-
trinsic state of the nucleus, and e& and e„are the proton
and neutron effective charges, respectively. We have to
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use the effective charges to simulate the contribution of
the core, which is not entirely inert but is polarized by
the valence nucleons. We consider two different ap-
proaches for calculating Q and Q„as valence protons
and neutrons are added to a nucleus.

ALL DATA

+ +

A. Macroscopic SU(3) (IBA)

The first approach, based on the SU(3) limit of IBA,
provides a direct, though approximate, insight into the
N N„ trends. We assume that the yrast band of a well-

deformed nucleus, to a good approximation, belongs to
an SU(3) representation (A, ,O} where A. is equal to the
maximum angular momentum of the band. In the IBA
based on (s, d) bosons,

~ + V

4 Xe
+ 8a
~ Ce
o Nd
& Sm
+ Gd

Py
~ Hg

+ Er
Yb

~ Hf
+ W
m) os
~ Pt
o Pb

Jm~~ 2N~ +2Ny NP +NII (29)

where N„(N„}is the number of valence proton bosons
(neutron bosons). According to SU(3) algebra, ' the
states of different angular momenta corresponding to an
SU(3) representation (A, ,p) can be projected from an in-

trinsic state and the mass quadrupole moment Q of the
intrinsic state is proportional to (2A, +p). Hence the
mass quadrupole moment of an IBA SU(3) representa-
tion (A,, O} can be written as

Q =CA '"(2A, ) =CA '"2(N, +N„)=Q, +Q„, (30)

where C (in units of b) is a constant. The A '~ factor is
introduced to take into account the effect of the general
increase in the size of the nucleus with the mass number.
The intrinsic electric quadrupole moment is given by
[see Eq. (28)]

cv 5

4

Cl 3

I t [

SUBSET OF DATA

& Ce
o Nd
o S~
~ Gd

T Dy
+ Fr
~ Yb
~ Hf

Qo
——CA' 2(e N +e„N„) . (31) 0

0 50 100 )50 200 250 300
This intrinsic state does not satisfy the Pauli principle
exactly. If A, is not too small, the 8 (E2) 1 value is given
by [see Eq. (27)]

B(E2) t =(5/16m )C A 4[e N~+e„N„]

We write

(32)

B(E2)1 =(4.07X10 ')A N, [N~+(e„le~)N„]

(33)

where N, (in units of eb) and (e„le&) are constants to be
determined by fitting this expression (see Sec. VIC) to
the data in a particular region. The application of Eq.
(33) to five difFerent regions is shown in Fig. 9 by means
of solid lines. The agreement between the calculated and
measured trends is quite adequate except in the actinide
region. The main point to emerge from these compar-
isons is that the physical parameter governing the
8(E2)T behavior is (e N +e„N„) and not N&N„. In
the actinide region, the IBA schematic model predicts
8 (E2) 1' values that increase with N~N„, whereas the ex-
perimental 8 (E2)1 values show saturation [see Fig.
9(e)].

From Fig. 9 it appears that Eq. (33) is adequate for ex-
plaining several regional B(E2) trends. For deforined
nuclei that can be described by the SU(3)-O(6) limits of

N N
p n

FIG. 8. Systematics of B(E2) values in the A =150 region.
The bottom plot is similar to Fig. 24 of Casten (Ref. 9). The
curves are fits to the data of the form Eq. (26). To construct
the abscissa values, Casten (Ref. 9) employed the following
definitions: (a) for Z(64 and N &90, the proton shell is
50-64; (b) for Z (64 and N & 90, the proton shell is 50-82; (c)
for Z &66, the neutron shell is 82-126 and the proton shell is
50-82. We have adopted these definitions in constructing the
bottom part of this figure. The top part is based on the stan-
dard Z =50-82 and N =82—126 definition of the shells.

O(6):8(E2) 1 = (e N„+e„N ) (34)

and

SU(3):8(E2)1 = 2N+3 (e,N„+e N ) (35)

where e (e„) is the proton (neutron) boson eifective

IBA, the 8 (E2) values are given exactly' by the expres-
sions
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charge in units of eb and N (N„) is the number of pro-
ton (neutron) bosons. The sum of N and N„ is denoted

by ¹ We expect the ratio of the boson effective charges
(e„/e ) to be equal to the ratio of the nucleon effective

charges (e„/e ). On the basis of the above expressions,
Casten and Wolf have suggested a single empirical for-
mula that interpolates between the SU(3) and O(6) limits.
Their formula is
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FIG. 9. B(E2) values as a function of N~N„ for
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the ratio of neutron effective charge to proton effective
charge is indicated for each region. The solid lines
connect B(E2) values for different isotopes calculated
according to the macroscopic SU(3) (IBA) model [see
Eq. (33)].
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B(E2)$=C (e N„+e N ) (36)

where C=0.5(1—0. 1X) is given in terms of the IBA
quadrupole operator parameter J determined by fitting
the level energies. This parameter varies over the range
—1&X&0. Casten and Wolf claim that Eq. (36) gives
values that are within +12% of detailed nutnerical IBA
calculations that had been shown earlier' to reproduce
the general trends of B (E2) values in the A =100—200
region.

B. Microscopic models

I. Single particle "S-U(9)"

We are interested in estimating the intrinsic mass
quadrupole moments Q and Q„of the valence protons
and neutrons in order to evaluate the intrinsic electric
quadrupole moment Q0 [see Eq. (28)]. On the basis of
Hartree-Fock calculations in the s-d, f p, and f pg---
(g9&z only) shells, and from the relative constancy of the
slopes (beyond, say, Pz=0. 15) of the majority of the
Nilsson levels throughout the periodic table, we con-
clude that the mass quadrupole moments are close to
their asymptotic values within their respective shells.
These values are just the eigenvalues

qa =(k
I
QD"

I
k & (37)

of the single-particle mass quadrupole moment operator.
The qz values for the deformed eigenstates

~
k & of QD

'

We now consider a microscopic approach to under-
standing the observed B(E2) trends. Bohr and Mottel-
son ' and Otsuka, Arima, and Iachello have attempted
to analyze the nature of collective states in nuclei by re-
placing a shell consisting of many j single-particle states
with a shell of just one large j value. In a similar spirit,
we simulate the different shells in two ways: (1) single-
particle SU(3) representation, and (2) large single-j repre-
sentation. In both cases, the degeneracy is chosen to be
approximately the same as that of the shell under con-
sideration.

Consider, for example, the N, Z=50-82 shell. The
total number of single-particle states required in this
shell is 32. We simulate this shell by a schematic
"s-d-g" shell corresponding to the (4,0) representation of
SU(3). This SU(3) shell contains 2(1+5+9)=30 single-
particle states rather than the required 32; we ignore this
small difference. We also simulate the 50-82 shell with
a single j=—", shell with 32 states. Similarly, we replace
the 82 —126 shell with a p-f-h" SU(3) or a j= —", shell,
and the 126—184 shell with a "s d g i" S-U(-3)-or a j= —",

shell. Although these simulations are expected to be
reasonable only for shells with large degeneracies, we
also consider the N, Z=28-50 shell and simulate this
shell with a "p-f" SU(3) representation that has the
right approximate degeneracy. This "p-f" representa-
tion is actually more appropriate for the N, Z=20-40
shell.
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FIG. 10. Schematic single-particle SU(3} simulation of the
major shells. The number of protons (neutrons} is denoted by
N~(N„), the deformed eigenstate by k, and the eigenvalues of
the single-particle mass quadrupole moment operator by qI, .
The qk values are in units of a, where a =A/Mco is the oscil-
lator parameter.

for the "s-d-g" shell are proportional to 8, 5, 2, —1, and
—4. The constant of proportionality is the oscillator pa-
rameter a ( =Ii/Mco) for an oscillator SU(3) model. We
retain a as the appropriate unit and include an adjust-
able parameter in our model. The spectrum of k = (1, &

and the associated q& values are sketched in Fig. 10 for
the "s-d-g" shell simulation of the N, Z =50—82 region
and for similar simulations of the three other shells.

Figure 11 shows the method of constructing the in-
trinsic state and estimating the Q and Q„values for a
typical nucleus, '& Ba6z. The six valence protons occupy
the three orbits with k =0 and +1 with qz values of 8
and 5 units, respectively. The twelve valence neutrons
occupy the orbits with k =0, ( —1, +1), and ( —2, 0, +2)
with qz values of 8, 5, and 2 units, respectively. In this
manner, the Pauli principle is explictly taken into ac-
count. The resulting Q~ and Q„values are given in Fig.
11. The intrinsic electric quadrupole moment is now
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given by [see Eq. (28)]

Qo ac(e 36+e„48)a (38)

where a has the numerical value of 0.01013 ' b. We
write the corresponding B(E2)1 value (in units of e b )

as

B(E2)l'=(1.02X10 }A Nz[36+(e„/e )48] . (39)

%'e generalize by writing

B(E2)f=(1.02)&10 )Az~ Nz[Q +(e„/e )Q„]2,

(40)

where N2 and (e„/e ) are constants to be determined by
fitting the calculated values to the experimental data in a
particular region (see Sec. VIC}. The resulting fits and
the corresponding Nz and (e„/e ) values are shown in

Fig. 12. The agreement between the calculated and mea-
sured trends is again quite adequate in all except the
lightest region [Fig. 12(a)]. In the case of the actinides,
the predictions of the single-particle SU(3) model agree
better with the data [see Fig. 12(e)] than those of the
macroscopic SU(3) IBA model [see Fig. 9(e)]. In partic-
ular, the measured B (E2) values for Cm (Z =96,
N = 148, 150, and 152) and Cf (Z =98, N = 152 and 154}
isotopes remain approximately constant. The calculated
values reproduce this trend because neutrons in the
148-158 region are filling orbits with qk

—0 (see Fig. 10,
126 &N, Z & 184 region) and therefore not causing a net
increase in the Qo or B (E2) values. There is also a hint
of saturation in the deformed rare earth region [see Fig.
12(d}]. By contrast, the B (E2)f values tend not to satu-
rate in the macroscopic SU(3) IBA model [see Eq. (33)
and Figs. 9(d) and 9(e}].

The observed B(E2) trends in the N, Z=28 —50 re-
gion are not reproduced well [see Fig. 12(a)] by the
single-particle SU(3) model. The reason for this failure

Np

~n
e

-2

JEST
'I }

Qp (18 + 10 + 10} 38

Q {18+10+10+4+4+4} 48

FIG. 11. Proton and neutron occupations of eigenstates for
a typical nucleus 56 Ba62 and the estimation of the correspond-
ing Q~ and Q„values in units of the oscillator parameter a2.

is related to the rapid rise in the deformation of nu-
clei with proton and neutron numbers in the 34—42
range. The effective shell size for these nuclei is known
to be much larger than that assumed in the "SU(3)"
model with only 20 single-particle states. The effective
shell sizes assumed for the remaining regions, on the
other hand, appear to be adequate to describe their de-
formation trends.

2. Single-j simulation

The lowest-energy, single-determinant intrinsic state
of nucleons filling a single-j shell has an oblate shape.
We do not choose this state because nuclei are generally
prolate. Instead we consider the lowest-energy, axially
symmetric, prolate intrinsic state in the j space. We
can construct such a state by sequentially adding nu-
cleons to orbits characterized by k =91/2,
k3/2, . . . , kj. The expectation values of the mass
quadrupole moments for the different

~

k ) orbits,

ek =&Jk
I
Qo"

I jk & (41)

are proportional to the Clebsch-Gordan coefficients
(j2k0

~
jk }. The Q„or Q~ values, obtained by adding

up the qk values for the occupied orbits, are given in
Table II for nucleons in the j=—", , —", , and —", shells.
These values are in the same units as those for the SU(3)
states also given in this table. They are normalized to
the SU(3) values at N (or N„) values of 12, 20, and 28
for the j=—", , —", , and —", shells, respectively.

With the aid of Table II we calculate the B(E2)
values in the same manner as before. We write [cf. Eq.
(40)]

B(E2)1=(1.02X10 )A ~ Ns[Q +(e„/e )Q„]

(42)

The results are shown in Fig. 13. The agreement with
the data is comparable to the SU(3) simulation.

C. KfFective charges

We discuss here how the effective charge ratios e„/e
given in Figs. 9, 12, and 13 were chosen. Mottelson
has shown that the effective charges resulting from the
quadrupole polarization of the "core" are given by
e = [( A +Z)/A ]e and e„=(Z/A )e. The ratio
e„/e~=Z/(A+Z) changes slowly from nucleus to nu-
cleus, always hovering around 0.3. In our fits to the
B (E2) values, we find that if we use the above prescrip-
tion we generally obtain a much larger spread in the cal-
culated B(E2) values (for nuclei corresponding to a
fixed value of N~N„} than is warranted by the data. We
therefore prefer to treat e„/e as a parameter, whose
values in different regions are to be determined by fits to
the experimental B (E2) values, the calculated values be-
ing generated by Eqs. (33), (40), and (42) corresponding
to the three different models. We ignore the expected
sma11 variations in this ratio and try to find a single
value for e„/e for each region.

To determine the optimum e„/e value for each of the
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five shells shown in Figs. 9 and 12 and for the three
shells shown in Fig. 13, we proceed as follows. In a
given shell, we calculate the B (E2) values for a number
of values for the ratio e„/e ranging from 0 to l. For

each value of e„/e&, we determine the sum of the
squares of the differences between the calculated and
measured B(E2) values for all nuclei in the shell. Fig-
ure 14 shows the variation of this sum as a function of
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FIG. 12. B(E2) values as a function of N~N„ for
even-even nuclei in five different regions. The data are
plotted in the same way as in Fig. 9 but the solid lines

now connect B(E2) values for different isotopes calcu-
lated according to the microscopic "SU(3)" model [see
Eq. (40)].
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TABLE II. Mass quadrupole moments Q~ (g„)of protons (neutrons) for various shells. The quad-

rupole moments are in units of the oscillator parameter a =A'/Men=1. 01&(10 A ' b. The moments

for the j= '~', ~, and —', shells are normalized (indicated by underlines) to be equal to those for the

sM-g, p f h-, a-nd s d -g -is-hells at N, (N„)=12, 20, and 28 respectively

X (X„)
50-82

( —") (~~ g)
82-126

(43)Jv (p f I )N

126-184
( —) (s-d-g-i)

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58

9.3
18.3
26.9
34.9
42.0
48.0
52.8
56.0
57.4
56.8
54.1

49.0
41.3
30.7
17.0
0

16
26
36
40
44
48
46
44
42
40
32
24
16
8
0

10.0
20.0
29.7
39.0
47.8
56.0
63.4
70.0
75.6
80.0
83.2
85.0
85.3
84.0
80.9
76.0
69.0
59.9
48.6
35.0
18.9
0

20
34
48
56
64
72
74
76
78
80
76
72
68
64
60
50
40
30
20
10
0

11.1
22.2
33.1
43.8
54.2
64.1

73.6
82.6
90.9
98.5

105.3
111.1
116.1
120.0
122.8
124.3
124.7
122.2
119.7
115.7
110.1
102.9
93.9
83.1

70.3
56.6
38.8
19.8
0

24
48
60
72
84
96

102
108
114
120
120
120
120
120
120
114
108
102
96
90
84
72
60
48
36
24
12
0

e„/e~ for the three models. Except in 3 out of 13 cases,
the e„/e„ratios employed in Figs. 9, 12, and 13 are
those that give a minimum, however shallow, in Fig. 14.
The Z =28-50, N =50-82 curves decrease monotonical-
ly [see Figs. 14(a) and (b)], and we have elected to show
the calculated curves corresponding to e„/e =0.60 for
these two cases in Figs. 9(b) and 12(b). The Z =50—82,
N =82-126 curve behaves similarly [see Fig. 14(b)] and
the calculated curves shown in Fig. 12(d) correspond to
e„/e„=0.80.

Once the e„/ez value for a particular region is chosen,
a separate least-squares fit yields the other parameter X&
in Eq. (33). The same procedure applies for Nz in Eq.
(40) and N3 in Eq. (42). The N„Nz, and N3 values are
also given explicitly in the different frames of Figs. 9, 12,
and 13.

To clarify the effect of e„/e on the goodness of fit,
consider the Z=50-82, N=82-126 region. If we em-
ploy the IBA SU(3) model, we obtain via Eq. (33) the
three sets of curves shown in Fig. 15 for e„/e~ ratios of
0.30, 0.82, and 1.0. It is clear that a small value of
e„/ep, close to the value prescribed by Mottelson, gives
rise to a family of 8 (E2) curves (upper panel of Fig. 15)

that is considerably wider than the data. This family is
narrower for e„/e =1.0 (bottom panel of Fig. 15) but is
most compact when e„/e =0.82 (middle panel of Fig.
15). The middle choice is then shown in Fig. 9(d).

VII. GLOBAL CALCULATIONS

We consider here two detailed calculations of equilib-
rium deformations carried out throughout the periodic
table within the framework of two different theoretical
models. The first one by Kumar' uses a microscopic
dynamic deformation model in which the nuclear shapes
as well as spectroscopic properties of nuclei are calculat-
ed using a schematic pairing plus quadrupole effective
interaction. Results are available for only about 65
nuclei from A =10 to A =250. The calculated values
are compared with the experimental ones (whenever pos-
sible) in Fig. 16(b).

Moiler and Nix' '" have developed a macroscopic-
microscopic model to calculate the masses and equilibri-
um shapes of nuclei throughout the periodic table (ex-
cluding nuclei lighter than ' 0). They have based their
calculation on the macroscopic liquid-drop model to
take into account the major part of the ground state
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FIG. 13. B{E2)values as a function of N~N„ for even-even
nuclei in three different regions. The data are plotted in the
same way as in Figs. 9 and 12, but the solid lines now connect
8 {E2)values for different isotopes calculated according to the
microscopic large single-j model [see Eq. (42)].

FIG. 14. Sum of the squares of the differences between the
calculated and measured B{E2)values vs ratio of the neutron
and proton effective charges treated as a parameter. The cal-
culations use (a) Eq. (33) of the macroscopic SU(3) model, (b)
Eq. (40) of the microscopic "SU(3)" model, and (c) Eq. (42) of
the microscopic large single-j model.
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mass of the nucleus. This model is then appropriately
and extensively extended to take into account the correc-
tions due to the effects of the finite diffuseness of the sur-
face, finite curvature of the surface, shell structure, and
pairing. The nuclear shape is allowed to have Qz and

Q4 deformations. The equilibrium deformation of the
nucleus is determined by minimizing the total macro-
scopic and microscopic potential energy of each nucleus
as a function of the shape parameters c.2 and c4. The ab-
solute values of the intrinsic quadrupole moments of the
equilibrium shapes of nuclei calculated by Moiler and
Nix' are compared (whenever possible) with the experi-
mental values in Fig. 16(a). The underprediction in the
theory might be related to the neglect of dynamic defor-
mation effects.

Finally, we note that in addition to these two calcula-
tions, Vautherin ' has carried out Hartree-Fock calcula-
tions for a few light and rare earth nuclei using the
Skyrme interaction. These calculations reproduce the
intrinsic electric quadrupole moments of these nuclei
quite well.

VIII. DISCUSSION AND SUMMARY
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FIG. 15. Effect of changing e„/e„ratios on the calculated
8(E2) values (solid lines). The calculations use Eq. (33) of the
macroscopic SU(3) model.

The recent completion of a comprehensive compila-
tion of B(E2,0~+~2(+) values for even-even nuclei has
provided us with a unique opportunity to examine
different ways of systematizing these values and related
quantities. The y-ray mean lifetimes vary over nine de-
cades (10 3-106 psec), yet show strikingly regular global
behavior (Fig. 2} when plotted against three decades of
energies (0.04—7 MeV} of the first 2+ states. These life-
times can be reproduced (to within a factor of 2) by rela-
tively simple expressions anchored on sound physical
principles.

The available data indicate, nay mandate, that the y-
ray mean lifetimes of the first 2+ states vary with the en-
ergies E of these states as E [see Eq. (16)]. This be-
havior for these collective states of nuclei is expected
from the hydrodynamic model. In this model, the E
dependence essentially follows from the assumptions that
for spherical nuclei the vibrations are harmonic and for
deformed nuclei the moment of inertia of the intrinsic
state is proportional to the square of the deformation.
Because neither of these assumptions is strictly valid, we
might have expected to observe some deviations from a
strict E dependence. It is, therefore, a bit surprising
that we failed to do so.

The dependence of the lifetimes on the mass number
A is far less stringent. The best fit to the data indicates
an A dependence, but an A ' dependence suggested
by the hydrodynamic model or an A ' dependence sug-
gested empirically on the basis of an earlier smaller
8(E2) compilation would work nearly as well. The
A ' dependence in the hydrodynamic model arises [see
Eqs. (4) and. (5)] from the combined eff'ect of an A'~
dependence of the nuclear radius, which is empirically
well established, and an A dependence of the inertial
mass parameter, which is less well established. Any
deficiency in the latter could explain any slight break-
down of the A ' dependence.
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FIG. 16. (a) Experimentally determined (Ref. 1) intrinsic electric quadrupole moments
~ Qo ~

for 278 nuclei compared with the

predictions of Moiler and Nix (Ref. 10). (b) Experimentally determined (Ref. 1) B(E2)f values for 55 nuclei compared with the

calculations of Kumar and his co-workers (Refs. 12 and 35-40).

The local regularities in the B(E2) values are such
that simple closure relationships apply. These relation-
ships can be employed to make reasonable predictions
(good to about +30%) of unmeasured B(E2) values. A
number of such predictions, made more than a decade
ago, have been borne out by recent measurements.

The compilation of B (E2) values has helped to estab-
lish clearly the smooth dependence of nuclear deforma-
tion (see Fig. 7) on the product N N„of the valence pro-
tons and neutrons throughout different regions of the
periodic table and especially for the heavier nuclei. An
empirical formula has been developed [Eq. (26)] that pre-
dicts the deformation parameter Pz of a nucleus with an

accuracy of about +10%, which translates to a B (E2}
prediction of +20% accuracy. This formula has three
constants and a simple method of counting Np and N„
values based only on the major magic numbers.

If the Pz values show certain regularities, so will the
B(E2) values. Quite apart from their utility in making
predictions of unmeasured B (E2) values through extra-
polation or interpolation (the latter being more fre-
quent), these regional trends might have remained some-
what jejune to us had we failed to relate them to some
underlying physics.

To understand the regional B (E2) trends, we have in-
voked three schematic models based on the central idea
that the main result of the pp, nn, and pn effective in-
teractions is to give rise to an intrinsic state. This idea
implies, in turn, that the B (E2) values are a quadratic
function of the linear combination (e&N&+e„N„) or,
more generally, of (e Q +e„g„). The end result is a
family of calculated B (E2) curves when plotted as a
function of NpN The spread in these curves can be

controlled by choosing an appropriate e„/e ratio, and
the agreement between the resulting family of curves and
the experimental data is good.

From a purely empirical point of view it should be
possible, of course, to force a single curve (or two
curves} to approximately represent the B (E2) trend in a
particular region. From a theoretical point of view,
however, it would be diScult to either explain such a
curve or deduce a relationship in which the B(E2)
values depend solely or even dominantly on just the
N N„product. Thus, while retaining the spirit of earlier
conjectures that nuclear deformation should be some
dominant function of NpN„[and hence B(E2) values at
least a quadratic function of N N„], the eventual rela-
tionships that we have arrived at differ in details and
also turn out to be slightly more complex.
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