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We study the 'H —'He binding energy difference, taking into account the Coulomb interaction
and charge symmetry breaking of the nuclear force consistent with recent NN experimental data.
Realistic interactions are generated which describe the charge symmetry violations reflected in the
different nucleon-nucleon scattering lengths. The influence of nuclear charge symmetry breaking
on the perturbative Coulomb contribution to the He binding energy is discussed. It is shown that
the experimental mass difference can be explained by these and theoretical estimates of other
known effects.

I. INTRODUCTION

In the early history of nuclear physics, the binding en-
ergy difference between H and He was used to show
that the nuclear force was approximately charge sym-
metric. ' In fact, in those days this difference was con-
sidered one of the most convincing pieces of evidence for
charge symmetry. Today this same difference is used to
gauge the charge asymmetry of the nuclear force.
Indeed, the difference in the binding energies of the
A =3 nuclei may be considered the best present evi-
dence for charge symmetry breaking (CSB).

Although the two-nucleon system might seem a priori
more appropriate for studying CSB, this has not been
the case. ' The simplest instance of nuclear CSB would
be a difference in the interaction between two neutrons
and that of two protons after the latter has been correct-
ed for the obvious CSB due to the Coulomb force. The
singlet state nucleon-nucleon (NN) scattering length is
the classic focus for studies of this kind. Because this
state is almost bound, the absolute value of the (negative)
scattering length is large and is extremely sensitive to
small changes in the strength of the force, so that, in
principle, this would be a favorable quantity to investi-
gate. However, there are uncertainties in the proton-
proton scattering length a due to some model depen-
dence in the electromagnetic corrections, and in the ex-
perimental determination of the neutron-neutron scatter-
ing length a„„. For a long time different types of experi-
ments gave substantially different results for this later
quantity. The differences were so large that even the
sign of the nuclear CSB effect was uncertain.

Recently the situation seems to have changed. It ap-
pears that the results for a„„,as obtained from different
types of experiments, are finally beginning to converge
(see Table I). In view of this, it is worthwhile to once

again question whether the charge asymmetry apparent-
ly evidenced in the NN system is consistent with that
seen in the trinucleon bound states.

In Sec. II, the experimental and theoretical status of
charge asymmetry in the NN system is briefly reviewed.
Section III contains our results for the binding energy
differences between the trinucleon states due to the
Coulomb interaction and to a charge asymmetry in the
NN force. A concluding discussion of the results may
be found in Sec. IV.

II. CHARGE ASYMMETRY IN THE NN SYSTEM

A. Empirical evidence

Whereas the neutron-proton and the Coulomb un-
corrected proton-proton scattering lengths, a„and app,
respectively, can be obtained directly from the corre-
sponding low-energy, two-body data, the neutron-
neutron scattering length a„„ is more elusive since direct
nn scattering experiments have not been feasible. The
experiments from which this scattering length has been
extracted can be subdivided into those with either two
nucleons or three nucleons in the final state. An exam-
ple of the former type of experiment is the reaction

d~ nny, while an instance of the latter is the
nd~nnp reaction. A decade ago a value of
a„„=—16.4+1.2 fm was obtained from the analysis of a
large number of results from both types of experiments.
Recently, however, an experimental value of
a„„=—18.S1+0.42 fm has been recommended —again
based on data from both types of experiments. ' ' This
variation in the quoted value of such an important phys-
ical observable reflects the difficulties in the performance
and analysis of such experiments. A summary of the ex-
perimental values for the 'So scattering lengths is given
in Table I.
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TABLE I. Singlet S-state low energy NN scattering parameters.

Experiment Theory'

np

nn

PP

a (fm)

—23.748%0.010

—18.45+0.46
—18.8+1.0
—17.1+0.3

r (fm)'

2.75+0.05

2.83+0.16

2.83+0.03

Reference

7d

8c

4,6,9

a (fm)

—23.744

—18.42

—17.11

r (fm)'

2.704

2.78

2.80

'Predictions from the charge-dependent potentials applied in this work.
Scattering length.

'EfFective range.
"From the reaction m d~ynn.
'From the reaction nd~pnn.
'Corrected for electromagnetic effects.

B. Status of theory

The sources of CSB in the NN system are several.
The first that come to mind are the purely electromag-
netic effects, the most important of which is the
Coulomb interaction, present in the pp system and miss-
ing in the nn system. The separation of the Coulomb
from the nuclear effects in pp scattering is not totally
unambiguous and leads to the model dependence in the
Coulomb-corrected single-S scattering length a

pp
alluded

to above. Another source is the difference in the kinetic
energy of the nn and pp systems due to the n —p mass
difference. All CSB effects other than these are usually
referred to as CSB of the NN interaction.

Theoretical investigations of CSB in the NN potential
often give conflicting results, so that the theoretical situ-
ation over the last several decades has been more uncer-
tain than the experimental one. Calculated values of the
contribution to the difference in scattering lengths
ha =app a„„ from the intermediate-range 2~-exchange
part of the nuclear force vary from +0.3 fm (Ref. 11) to
= —2.0 fm (Ref. 12). The recent result of Ref. 11 takes
6 isobars into account and appears more comprehensive.
More systematic work is clearly needed. The longest
range contribution to CSB comes from irreducible
meson-photon exchange. This effect has been studied in
the literature, but again, there is little agreement be-
tween various authors. Estimates of this effect on ha
range from a small fraction of a femtometer' ' to
—1.31 fm. ' Finally, electromagnetic mixing of neutral
mesons of the same spin and parity, but of different iso-
spin, can contribute to CSB. The best studied examples
are m-g and p-~ mixing. ' ' A contribution of the order
of 1 fm to ha from the mixing of the p and the co mesons
was found, whereas the m.-g mixing contributes negligi-
bly. A more complete discussion of the topics of this
section can be found in review articles. ' '
III. THE H —He BINDING ENERGY DIFFERENCE

A. NN charge asymmetry

The effect of CSB of the NN potential on the
H —He binding energy difference can be expected to 0 =tG,PP, (2)

come almost entirely from the 'So NN interaction, since
the bulk of the binding energy in the three-nucleon sys-
tem comes from the 'So and S&- D

&
NN potential am-

plitudes. ' Higher partial waves, where CSB effects are
possible but problematic, contribute very little to the
three-nucleon binding energy, so the neglect of those
partial waves for the binding-energy difference appears
to be justified. Therefore, only the 'So and S, - D& par-
tial waves are included in the three-nucleon calculations
of this section. We base our CSB study solely on the
empirical NN data by using three potentials fitted to sets
of NN observables which differ only in the 'So scattering
lengths and effective ranges. For the np potential, we
use the momentum space one-boson-exchange potential
(OBEPQ) of Ref. 19. The nn and pp potentials are
modified versions of this static Bonn potential adjusted
to fit the currently accepted values of a„„,app and the
corresponding effective ranges. These potentials differ
from OBEPQ only in the coupling constant for the
effective 0 meson, and then only for the isospin-one po-
tentials (see Table 5 of Ref. 19). The coupling constants
used for the nn and pp potential are 8.205 and 8.1797,
respectively. These charge-dependent potentials describe
well the currently accepted low-energy scattering observ-
ables (see Table I).

For our three-nucleon Faddeev calculations we as-
sume identical, equal mass particles. The NN interac-
tion, although dependent on the two-nucleon isospin
projection quantum number MT, is assumed to conserve
spin and isospin. Thus, the NN interaction has the gen-
eral property

((LS)JTMr
~

V
~

(L'S')J'T'MT. &

JSTMT
~SS'~ TT'~M M,~JJ' ~LL'T T'

In order to make explicit the approximations which we
use here, we sketch the development of the Faddeev
equations, insofar as it differs from the usual case of
charge-independent interactions. The formal equation
for the Faddeev amplitude for identical particles has the
form
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where P is the sum of the cyclic and anticyclic permuta-
tion operators, t is the two-nucleon t matrix (in the
three-nucleon Hilbert space), and Go is the three-nucleon
free Green's function. We define the Faddeev amplitude

4(p, q, a}=%'(p,q, P;d", o"„V,T, )=(p, q, a i
4),

where

a= [[(LS)J(I—,')j ]cP,8,;(T,')—5'7,I (4)

is the set of quantum numbers which, together with the
Jacobi momenta p and q, specify the basis states
ip, q, a), and where P represents the quantum numbers
[LSJTjlI. The spectator momentum is q and the spec-
tator quantum numbers are shown in lower case. Using
the completeness of the state i pqa), we rewrite Eq. (2)
as

q'(p, q, P;+,4„'T, 'T, )= g f p' dp'q' dq'p" dp "q" dq" (p, q, a i
t ip', q', ')

a'a"

lp" q"a"
& „„„

(E ——,'q' —p' )

The evaluation of the matrix element of the permutation operators is exactly the same as for the charge-independent
case (we use the particular notation of Ref. 20). This matrix element is given by

5(p' —p &
(q', q, x) ) 5(p —p 1 (q, q', x) )

&p', q, a
i
P

i p, q, a & =5,,5, , 5 g, , f dx Gg(q, q, x)
p, + (q', q, x) pl+ (q, q', x)

where the function p, is defined as

p&(a, b, c)=( ,'a +b —+abc}'i

and x =—(q q')/( qq'}. The geometrical coefficient Gtr& is given explicitly in Ref. 20. Using the properties of the NN
potential as given in Eq. (1), we may express the matrix element of t in the form

It

(p, q, a i
t

~

p', q', a') = 5d+5+ +, 5& & g ttL™(p,p', E ——', q )(T,'MT8
i

"TT—,)(T,'Mr8
i
'T'7—;),

q 2 z z z M 8T7

(g)
where ( T,'Mz 8

~

"T'T,—) is a Clebsch-Gordan coefficient. The final form of the integral equation for the Faddeev am-

plitude is

'p(p, q, p;4, 4, 7;7;)= g f q" dq" f dx g (T,'M&8 i'TV', )(T—,'MT8i 7'T, —)

0
MT, 8

ttr. (p pi(q q" x}E —
—,'q }

X
p, (q, q",x)

Gpg (q q x} e{p,(q",q, x),q",p";8,8„V', 'T, }

[E ——,'q —p, (q, q",x)] p, (q, ",q, x)
(9)

where P—:[L'SJTlj j.
If one were to assume charge independence of the po-

tential, so that the two nucleon amplitude t is not depen-
dent on the isospin projection MT, the sums over the iso-
spin magnetic quantum numbers collapse and we regain
the usual form of the Faddeev equations. In the more
realistic case which we consider here, isospin is no
longer a good quantum number. One sees from Eq. (9)
that isospin- —, admixtures are present in the trinucleon
wave functions. We shall assume here that these
isospin- —, admixtures are small and have a negligible
effect on the binding energy, and arbitrarily restrict our
wave functions to be pure isospin- —,

' states. This assump-
tion has been shown to be valid when only the Coulomb

t '='= y i
&1 ,'M, 8

~

-'~
& i
't-

MT

(10)

,'t ='(n, p)+ ~t ='(p, p) (—for He)

=—,'t ='(n, p)+ —,'t ='(n, n) (for H) . (12)

I

potential is responsible for isospin mixing. ' With this
simplifying approximation, we can cast Eq. (9) in the
same form as the Faddeev equations with a charge-
independent potential be defining the isospin-averaged t
matrix to be
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Using the potentials of Table I, we construct the ap-
propriate t for He and H, and solve the corresponding
five channel Faddeev equations. Our calculated values
for the binding energies are, respectively, 8.111 and
8.170 MeV, which gives a contribution of 59 keV to hE
from the NN charge symmetry breaking.

B. The Coulomb energy

The largest contribution to the H —He binding ener-
gy difference comes from the Coulomb potential. We
evaluate the Coulomb contribution to the He binding
energy in first order perturbation theory. This is expect-
ed to overestimate the result by about 1%. ' The
Coulomb potential between nucleons in the coordinate
representation is given by

(rl r2 r3 I
V'(23 1)

I ri r2 r3 & = 1+i,(2)

2

1+~,(3) p(x —rz)p(y —r3)
~(r1 rI H)(r2 12)5(r3 r3)f d x d y2

(13)

where p describes the charge distribution of the proton. The expectation value of the Coulomb potential between two
pointlike protons in He is evaluated in momentum space as

22 2 t2

g&Ti f f f p'dp'p'dp e'de +s(p' e P'2 ~, ,' ,')Qi-—
7T p 0 0 0 &PS'

Vs(P, q, P; —,', cP„—,', —,') . (14)

Numerically, the logarithmic singularity present in the
integrand of Eq. (14) is treated by the Lande subtraction
method.

We calculate the Coulomb energy with Eq. (14) using
the same five channel He wave function discussed in
Sec. III A. For the point Coulomb interaction we obtain
a value of 687 keV. Repeating the calculation to take
into account the finite size of the protons, we find a
Coulomb energy of 646 and 649 keV for the proton form
factors of Refs. 23 and 24, respectively. We also calcu-
late these quantities using a charge-independent He
wave function obtained from a 34 channel solution of
the Faddeev equations, using as input the Bonn OBEPQ
potential. ' The 34 channel calculation adds 1 keV to
the corresponding five channel result. Here the He and
H wave functions —aside from their trivial V',

dependence —are degenerate. Such a calculation is obvi-
ously inconsistent with our treatment of the nuclear CSB
effect. However, previous estimates of the Coulomb
shift have been done in this manner. The results are 697
keV for point protons and 654 and 657 keV for the form
factors of Refs. 23 and 24, respectively. Thus, the as-
sumption of charge-independence (for a potential fit to
the np scattering length) leads to an overestimate of the
Coulomb energy, comparable in size to the overestimate
due to the use of (first-order) perturbation theory. ' This
overestimate of about 1% can be understood as the
effect of the stronger attraction between the protons in
the charge-independent case. The protons are then
closer together, increasing the Coulomb energy.

SUMMARY AND CONCLUSIONS

W'e summarize in Table II the various contributions to
hE, as calculated here or taken from the literature. '
The total "theoretical" contributions add up to 742 keV,
which is to be compared with the experimental value of
764 keV. We emphasize strongly that the many small

contributions in Table II should be considered only as
estimates. In particular, the CSB effects, as we have
treated them here, are obviously strongly dependent on
the current empirical values for the 'S0 nn and
Coulomb-corrected pp scattering lengths. Further
refinements in the experimental value of the first and a
better extraction of the latter will have implications for
the precise H —He binding-energy difference. In addi-
tion, the accuracy of the approximation made in the
neglect of isospin- —,

' admixtures due to the NN CSB is

yet to be established. We are currently considering this
latter question.

The conclusion which we draw from this work is that
at the current leuel of our understanding, the charge
asymmetry observed in the two-nucleon system is con-
sistent with that evidenced in the trinucleon bound-state
systems. It is interesting to note that our result is con-
sistent with considerations of heavier nuclei, ' where it
was shown that a difference in the scattering lengths of
about 1 fm (a value very close to our assumption and
present empirical evidence) explains the so-called
Coulomb or Nolen-Schiffer anomaly.

Static Coulomb
Charge symmetry breaking forces
Finite size effects

p —n mass difference in kinetic energy
Second order perturbation corrections
Other electromagnetic effects

687
59

—39
12

—6
29

This work
This work
This work

25
21
25

Total (theory) 742

Experiment

TABLE II. Charge asymmetric contributions to the
H —He binding energy difference.

AE (keV) Reference
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