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A corrected closure approximation is used to calculate the reduced rates for radiative capture of
negative pions from 1s and 2p orbitals in 'H, 'He, and He. For 'He and He the calculated rates
are in good agreement with experimental data. In the case of H, the calculated value for 1s cap-
ture is combined with the measured radiative capture branching ratio to obtain a value of
I,",t=2.2+0.4 eV for the total width of the ls level in the 'H pionic atom. This value when com-
pared to the measured total width of the 1s level in pionic He implies a small but definite contri-
bution of singlet spin nucleon pairs to absorption of s-wave pions.

I. INTRODUCTION

It is well established that the process of radiative pion
capture in complex nuclei is a one body process' that
can be treated in the impulse approximation analogously
to muon capture. Bernabeu showed ' that the strong
dependence on an unknown "average" energy transfer in
the closure approximation to the total muon capture
rate could be largely eliminated by calculating the next
higher energy moment of the distribution of transition
strengths. Excellent agreement with the measured muon
capture rates in He, Li, and a number of other nuclei
was thereby achieved. Application of these techniques
for the purpose of calculating total radiative pion cap-
ture rates is extended in the present work to the non-
self-conjugate nuclei H and He through the introduc-
tion of isospin projection operators ' which exclude
physically unrealizable anal states. These states are
those which would be coupled to the ground state by ra-
diative capture of positive pions and implicitly occur in
the usual double commutator introduced in the lowest
order correction to closure.

Radiative pion capture rates in pionic atoms cannot
be measured directly but are obtained as branching ra-
tios for emitting high energy gammas as compared to all
processes which a stopped pion can undergo. A
knowledge of the total width of a pionic atom level is re-
quired to convert a radiative capture rate into a branch-
ing ratio. The calculation of a branching ratio is gen-
erally complicated by the circumstance that atomic lev-
els of two or more different orbital angular momenta are
normally involved in the primary reaction, pion absorp-
tion, and in radiative capture. The radiative capture
branching ratios in the s-shell nuclei were measured
more than a decade ago. However, more recent deter-
minations of total ls widths in He and He (Refs. 6—8)
and the extraction of 2p widths and capture schedules in
the same nuclei from x ray yield data allow the mean-
ingful comparison of theoretical and experimental
branching ratios.

A principal motivation of the present work was to ob-
tain a value for the 1s absorption width of H in order to
gain insight into the absorption process of low energy
pions on nucleon pairs. If the singlet spin pp pair in He
plays no role in the 1s absorption process one would ex-
pect the 1s absorption widths in H and He to be the
same, 'o aside from the effects of differing probability
densities of the pionic wave functions at the position of
the nuclei. %hile sufficiently high resolution spectrome-
ters exist" with which the total 1s width could, in prin-
ciple, be measured [I't,', ( H)=1 eV], the background
from the radioactivity of a tritium target prevents such a
measurement. ' The value of the H 1s width which we
obtain from the calculated total radiative capture rate
and the measured branching ratio does, however, indi-
cate a small contribution from the singlet spin nucleon
pairs. The size of the contribution is qualitatively con-
sistent with the Silbar and Piasetzsky' (n, pn) and
(n+, pp) absorption cross sections on He and 4He.

II. GENERAL FORMULATION

The radiative pion capture process

( A, Z), +n. ~( A, Z —1)s+y

occurs when a pion in an atomic state nl is captured by
a nucleus in state a and a high energy gamma is emitted
leaving the nucleus in state b. This interaction is sup-
posed to occur between the pion and a single initial pro-
ton and direct application of the impulse approximation
leads to the following expression for the rate of the tran-
sition:

A~'(a ~b) =E (k„, )X„t(Z)ZA„"'(a~b),
where

(21 +1)(1+klM)(l+p, lM)2A
(1+k /MA )p,

'

N„l, the normalization constant of the atomic wave func-
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tion is defined by P«(r) =N«r'YP (r)R«(r), M and p are
the masses of a nucleon and pion, respectively, and A is
the strength in units of p ' of the ~+cr.c& term in the
photoproduction amplitude. Consistent with the formal-
ism of Bernabeu the reduced rate for radiative pion cap-
ture is defined by

Z A„"'(a —k b) = —,
'

~
( b

~ g 0 i (k», }
~

a )
~

P A j
(3)

Using the Wigner-Eckart theorem to convert 0 & to 0'&
one obtains

X aa, (b g O(~ (k ) a)
'

b j
(1—1 T, T„(T» T», —1 }

(1oTo Toz I T» Toz )'

Xgco», b, T» QOJ'i(k)
~
a, T, , (7)

b J

Oi (k»o)= exp( ik» —'r)

Xr (o'i Ki+Li )(pr)'YP(r)R«(r) . (4)

The K& and L& are derived from photoproduction am-
plitudes which, for the present application, contain no
terms of higher order than linear' in either the pion or
photon momenta. For the most important case of s-
wave pion capture K& ——A c &, L& ——0, A, being the polar-
ization state of the emitted photon. The momentum of
the photon is k», and the function R«(r) is defined such
that for hydrogenic wave functions R«(0) = l.

The total reduced capture rate ZA,"' is found by sum-
ming over all energetically accessible nuclear final states
b. Expanding each term in the sum around a fixed value
k of the photon momentum and retaining the leading
two contributions to the summation over final states one
arrives at

ZA,"'= X — b Q0&(k) a)4A' b P

+(k», —k) d k

dk p

2

X b QOJi (k) a
J

The first term within the large square brackets consti-
tutes the closure approximation, ZA„"'(k ). If the photon
energy is related to the nuclear excitation energy cob„
k», ——p —co», (1—p/MA), where MA in the recoil
correction is the mass of the final nucleus, the total re-
duced capture rate can be expressed as

ZA„" = 1+(1—p/MA)co —ZA," (k )
dk p

—(1—p, /MA )
d k

dk p 4A'

where averages over initial spin states and sums over
final spin states are understood. The operator Oz is
defined by

' 1/2

where the sum over final T» is necessary for T, &0 nu-

clei. Because the summation over energy states b on the
right-hand side (rhs) of Eq. (7) also implies averages over
initial magnetic quantum numbers and sums over final

ones, it is equal to

X qua, (bTb Q, OJ*&(k) a, T, (&)
b j

This equality is usually a sufficient condition for writing
the rhs of Eq. (7) as a standard double commutator of
the nuclear Hamiltonian H with 0', 0'~. Unfortunately,
0' and 0' generate transitions to final T states which
cannot be connected to the initial isospin state by 0
An example of such an unphysical T would be Tb ———,

' in

the case of radiative capture on H (T, = —,', T„=——,'),
the final state of three neutrons being restricted to a sin-

gle isospin state, Tb ———,', Tb, ————', . If projection opera-
tors P ( T) for the physically allowed final isospin states
are employed a new transition operator A & can be intro-
duced,

A i
——[P(T, )OiP(T» )+P (T» )OiP(T, )]

X[1 5T T ]+P—(T. )0'„P(T, )5r T .

Since A & does not connect the initial nuclear state to un-

physical final states, the standard replacement of the
sum over excited states by a double commutator can be
carried through to give

geo»,
~
(b, T»

~
0&(k)

~
a, T, )

~

b

=(~ T,
/

—,'[[A', (H, A'„)]

+ [(A &,H ), A & ] I ~
a, T, ) . (10)

III. APPLICATION TO S-SHELL NUCLEI

A. Closure approximation

Ignoring momentum dependent terms in the pho-
toproduction amplitude, the closure approximation to
the reduced total radiative capture rate for negative
pions in the 1s orbital is the same as for negative muon
capture'

zA,"(k)= (R '„(r) ) [1—p(A, Z}F,d(k )] .

Xg,. ~

(b
~
0;(k)

~

(6)
An average over R„&(r, )R„&(rz)exp(ik. r, 2) has been ap-
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proximated by &R &, (r)&F„~(k). The relative form fac-
tor is taken over the relative neutron-proton wave func-
tion in the ground state of the nucleus. The parameter

I

P(A, Z)= —,
'

( H), =—,
'

( He), and =1 ( H and He).
The closure approximation to the reduced total radia-

tive pion capture rate from the 2p state is given by

ZAP'(k)= — &R2 & p r + (B +C +D )/A [1—P(A, Z)F„,)(k)]1 Zk, ,~ k'
p p

+p( A, Z) — +y( A, Z)r +—k F„,(k )
B-a

4 '
A ak

(12)

where r is the rms matter radius of a point nucleon in the ground state and B, C, and D are the amplitudes of the
terms linear in pion momentum in the photoproduction amplitude. The parameter y(A, Z) takes on the values
y(A, Z)=1 ( H), = —,

'
( H and He), and = —', ( He). Its significance is that [1 y(N, Z—)]r is the mean square radius

of an np pair in the ground state.

B. Double commutator

The specific form of the closure approximation obtained above depends on retaining only the dominant completely
symmetric principal 5 state in the ground states. Consistent with this simplification the nuclear Hamiltonian need
contain only central potential terms which can be expressed by the the usual four exchange terms,
V = V~+ VMP„—VHP, + V~P . Then the double commutators for capture of 1s pions in the three nuclei of interest
are

H:
k2

g~b. I
&b

I
O~ (k) la &

I
'=&Rf, & +&@'

I

—3(VH+VM)+( 2VB +VH+ 3VM )expikr»
I
@&

4A b 2M

(13a)

He: k

4A b

+cob, I
&b IOq (k) la&

I
=&R„& +&4I4V~ —VH —5VM+( —2V~+3VH+5VM)expik r&2I@&M

(13b)

4He: k
„-,Xba I

&b
I
O~ «)

I
a & I'=&R i. & +4&@

I [Va —VH —2VM][1 —expik ri2] I
@&

b

(13c)

4He:

Note that the sum of the potential energy contributions to the double commutators for H and He are equal to the
double commutator for "He. This equality illustrates the point made in Ref. 10 that the sum over the rates for both
A =3 nuclei is equivalent to evaluating the double commutator of 0 and 0& for the self-conjugate nucleus with six np
pairs.

The importance of radiative pion capture from the 2p orbital is presumably nil in H, small in He, but significant in
He. We therefore give the double commutator result for 2p pion capture solely for He:

2

g cob, I
& b

I
0g (k )

I
a &

I

'= —
& R ~~ &

~ (3+k ~r~ 2 +——

+2&4
I p (r)+r2)+p, Vk —2—k.Vk+

B — 2k (B+C+D)
A p A

The kinetic energy part of the double commutator for 2p
capture agrees with the result of Lipparini et al. '

up to
a factor of —,

' which seems to have been inadvertently in-
troduced by these authors in converting matrix elements
of the operator 0& into matrix elements of 0&. The po-

2k D
&&( Va —VH 2VM ) — VB [1—exp(ik'r12)]

I
@&

p A

(14)
I

tential energy parts cannot be compared bemuse a
momentum dependent Skyrme interaction containing
delta functions of position 5(r, —r2) was used in Ref. 15
to simplify the evaluation of potential energy parts of
the double commutator. Note that the L& part of the
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photoproduction amplitude, proportional to D, com-
mutes with VzP since it is spin independent.

C. Evaluation of reduced capture rates

A critical element in the evaluation of the reduced to-
tal capture rates is a suitable representation for the rela-
tive form factors F„~(k ) which are the normalized ex-
pectation values & cr, .o &exp[it. (r, —r2 ) ] ) /& cr, cr 2 ) tak-
en over np pairs in the ground state. While detailed
charge and magnetic form factors for the A =3 nuclei
have been published there does not exist a similar tabu-
lation for the desired relative form factors. If both the
neutrons and protons in the ground state are assumed to
have identical distributions and the constraint that the
center of mass of the system be fixed is imposed it can be
shown that

(15)

where R is the position coordinate of the center of mass.
This suggests that for low momentum transfers the rela-
tive form factor can be related to the charge form factor
through

F (k )=F k F krel c
A —1

(16)

F, (k )=(1+ak )exp( kr, /6), — (17)

where r, is the rms charge radius of the nucleus. The
proton form factor is taken as

F (k')=(1+d'k') '

d =1/18.23 fm
(18)

The rms charge radius of He has been measured' to be
r, ( He) = 1.93%0.03 fm, somewhat larger than the
charge radius of H, r, (~H)=1.81+0.05 fm. What is
really needed in the present calculation is & r, z ) for the
np pairs in each nucleus and it has been obtained for
both A =3 nuclei using the relationship

) /3 =2 & „)/3+ &, ) /3, (19)

where u refers to the rms matter radius of the unlike nu-
cleon (the proton in H, the neutron in He) and I refers
to the like nucleon matter radius. The matter radii of

where A is the atomic weight of the nucleus and F is
the proton form factor.

A two-body correlation function for nucleons derived
from the completely space symmetric component of an
A =3 bound state wave function utilizing the Reid soft
core potential' has been tabulated in Ref. 18. From the
table we obtain [&rfz)/3]' =1.9 fm, in qualitative
agreement with Eq. (15), but quantitative agreement can-
not be demonstrated because the single particle rms radii
of the symmetric component is not given in either of the
publications referenced above.

A satisfactory common functional representation of
the charge form factors of the S-shell nuclei for momen-
tum transfers below 2 fm ' is'

the neutrons in both H and He are unknown but can
be determined from the proton charge radii in He and
~H, respectively. Neglecting Coulomb effects r„( H)
=r ( He), r„( He)=r ( H). However, Gibson, Payne,
and Friar have calculated that Coulomb repulsion be-
tween the two protons dilates all radii in He by about
2% so that we have used r„( H) = l. 89 fm,
r„( He)=1.85 fm. In applying Eqs. (17) and (18) for the
purpose of evaluating F„&(k ) the following parameters
were used in the one body form factor:

H: a =0.038 fm, r, =1.84 fm,

He: a =0.038 fm, r, =1.88 fm,

He: a =0.0057 fm, r, =1.68 fm .

(20)

The He parameters were obtained from fitting low-
energy electron scattering data from a number of experi-
ments. The inclusion of a k (Ref. 4) term in the He
form is necessary to fit the form factor in the 1(k(2
fm ' range.

The potential energy terms in the double commutator
expressions of Eqs. (13) and (14) were evaluated using
effective potentials and corresponding two component
Gaussian wave functions which are consistent with the
binding energies and rms radii of the A =3 and A =4
nuclei.

The reduced radiative capture rates ZA,"'(A, Z) as
defined in Eq. (5) were calculated as a function of k and
are plotted in Fig. 1 (A =3) and Fig. 2 (A =4). The
curves for 1s capture behave similarly to their counter-
parts for muon capture, ' but the 2p "closure +
correction" behaves quite differently. The procedure
adopted in the muon capture rate was to take
ZA„"(A,Z) equal to its value on the "closure plus
correction" curve where its derivative of with respect to
k equals zero. In the case of 1s capture in H and He
one sees from Fig. 1 and 2 that this value is essentially
the same as the value of ZA,"where the "closure" and
"closure plus correction" curves intersect, the point at
which the first order correction to closure vanishes. On
the other hand, with He the ZA„" value at the zero
derivative point and the intersection point differ by
about 8%. Fortunately, in the He case there exists the
detailed calculation of Phillips and Roig on the 1s radi-
ative capture rate with which to capture our calculation.
Their total radiative rates range from 4.49 to 4.65 eV, in
excellent agreement with our value of A "( He) =4.61 eV
listed in Table I of this paper. They give k =116 MeV
as the gamma energy at which their own closure calcula-
tion is equal to the total radiative rates which they cal-
culate, while from Fig. 1 of this paper one sees that
k =114 MeV is the gamma energy at which the max-
imum value of ZA," along the "closure plus correction"
curve equals the "closure" value. One can conclude that
for the s-shell nuclei under study the stationary value of
ZA„" along the "closure plus correction" curve is the
proper point at which to select ZA,".

No such stationary point exists for the corresponding
2p curve in Fig. 2, so the intersection point was chosen
as the point at which to select ZA„~ for He the closure
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FIG. 1. Dependence of the labeled reduced radiative cap-
ture rates on the gamma energy k. The closure approximation
equates ZA,"' to the first term on the rhs of Eq. (5) while the
closure plus correction curve includes both terms on the rhs of
the same equation. The 1s and 2p closure rates were calculated
from Eqs. (11) and (12), respectively, while the double commu-
tator corrections to the 1s capture rates were calculated per
Eqs. (13a) and (13b) for 'H and 'He, respectively. The relative
form factors on which the closure approximation depends were
calculated from F„,](k)=F,(r~]2k /r, )/Fp(r ]2k'/r, ) with

F,(k ) =(1+a k )exp( —k r, /6). The constant factor R„l(0)
is not included in the functions graphed above.

value for ZA, ~ at k =114 MeV appears in Table I.
The reduced capture rates and the corresponding radi-

ative capture widths A"' are displayed in Table I. Ex-
cluding H, the experimental total widths I,",', (contained

20 40 60 80 100 120 140

k (MeVI

within brackets) and capture probabilities w„i were used
to calculate a "theoretical" branching ratio from the re-
lation

Ra =Q Ar'/I to, u'„(
n, l

(21)

using w ( He)=0. 1+0.06 and w~ ( He)=0. 21+0.10.
The agreement between the calculated branching ratios
and the experimental ones, enclosed within brackets in

FIG. 2. Same as in Fig. 1 except that the double commuta-
tor corrections to the 1s and 2p rates were calculated according
to Eqs. (13c) and (14), respectively.

TABLE I. Total radiative capture rates and branching ratios. The theoretical radiative capture rates were calculated from
A"„'=K(k)N„'1(Z)ZA„"' [see Eq. (2) and following]. The branching ratios were calculated from the expression BR =w„A„"/
Pt t +w p Ay / I tot using theoretical radiative capture rates but experimental capture probabilities and total widths. The exception
is the nucleus 'H for which no measurements of I,",, exist. Experimental quantities are enclosed in square brackets.

Nucleus

He

4He

R 1s

1.05'

0 77"

ZA"

0.205

1.17

0.230

A ls
r

eV

0.100

4.61

0.927

ZA, P

2.09

0.593

APr
meV

0.026

0.015

]s

eV

2.2+0.4
(1.02)
[28+7]d
[36+7]f

[45+3]'
[51+9]'

2p

meV

[0.7+0.2]'

[2.1+0.3]'

Rz ratio
(%)

[4.5 +0.8]'

15.2 +4.5

11.9 +2.8

[14.0 +1]~
1.78+0. 18
1.59+0.24

[1.5 +0.3]'

'Reference 31.
"References 29 and 30, theoretical value.
'Fit to energy shift —32+3 eV using method of Reference 32.
Reference 6.

'Reference 9.

'Reference 7.
~Reference 33.
"Reference 34.
'Reference 8
'Reference 35.
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the last column, is satisfactory. The inclusion of the
weighted p-state rate in calculating the He branching
ratios is essential to obtaining agreement within errors.

There is no experimental I,",, ( H) so the calculated to-
tal radiative capture rate and the branching ratio were
combined to estimate this quantity. It is compared in
Table I with an earlier estimate (enclosed within
parenthesis) by Phillips and Roig. They used their cal-
culated partial capture rate to three nucleon final states
in He, the T = —,

' component of which is directly related
to the H capture rate, to calculate I,",, ( H). As the au-
thors themselves point out their theoretical values for
the sum of the n+ H and 2n+ p final states are much
below the measured rates for He and this circumstance
is the cause of the discrepancy between our total width
and theirs.

IV. ABSORPTION OF LOW KNERGY PIONS

From the total 1s width for H in Table I and the
95.5+0.8% branching ratio for absorption one obtains
an absorption width of

I,'b( H)=2. 12+0.38 eV . (22)

we find that

(2)3R 2 (3He) I ls (3H)

R f, ( H) I,"b( He)
(23)

I,"b(T =3/2) 0 94+0 44
2/3I,"(T=1/2)+1/3I,'b(T =3/2) 0 73+0 29

(24)

after deducing absorption widths from the two different
values of the total 1s widths listed in Table I.

The same ratio of absorption widths with reduced sta-
tistical error can be evaluated directly from the ratios of
branching ratios for radiative pion capture and absorp-
tion in the two nuclei and from our calculated reduced
total radiative capture rates:

I,"( T =3/2) R3ZA„'( H)

2/3I,'(T =1/2)+1/3I,"(T =3/2) R,ZA,'( He)

=0.81+0.20,
(25)

In an earlier work' it was pointed out that the 1s ab-
sorption widths for H and He, aside from renormaliza-
tion effects due to the differing scale lengths of the atom-
ic wave functions, would be the same if low energy pion
absorption occurred only on spin triplet (isospin singlet)
nucleon pairs. Since the total isospin of the m+(A =3)
system is conserved the ratio of the H and He widths
(with renormalization effects removed) can be rewritten
as I,'b(T =—', )/[ —,'I,'b(T= —,')+ —,'I,'b(T =—', )] where both
the T = —,', —', widths may be considered to refer to the
He pionic atom. Using the formula

I,"(T=3/2)
2/3I,"(T =1/2)+1/3I,"(T =3/2)

where R, 3 R——s(n, y)/Rs(nabs) in H and He, respec-
tively (see Refs. 28 and 31). From Eq. (25) we obtain

r.",(T =-', )/r.'P T =-,')=O. 74+O. 27 . (26)

V. DISCUSSION AND SUMMARY

Total rates for radiative pion capture from the 1s and
2p states in the A =3 and A =4 nuclei have been calcu-
lated using the method of Bernabeu which was used
originally to estimate total muon capture rates in light

While the value of 1 for the ratios of absorption
widths in Eqs. (24), (25), and (26) is included within the
limits of error of all three estimates, the central values
imply that there is some degree of low energy absorption
on singlet spin pairs. Phillips and Roig have calculated
the partial absorption rates of stopped m in He into
n+ H and n+ n+ p final states using a phenomeno-
logical two-nucleon model for s-wave pion absorption.
Two constants gp and g, appear in the effective absorp-
tion Hamiltonian which parametrize absorption on iso-
spin singlet ( H) and isospin triplet (nn and np) nucleon
pairs, respectively. From fitting low energy two-nucleon
pion production data they determined that
gl/go ——0.3+0.15. The T= —,

' and T= —', widths were
shown in Ref. 10 to differ by terms of the order g f /go in
the limit of SU4 invariance of the nucleon-nucleon po-
tential. In this limit the three-body ground state would
be completely space syrnrnetric and isospin singlet and
triplet final state nucleon pairs would have identical
wavefunctions. After adding (np) + n and (nn) + p final
states on the same footing as the n+ H a decomposi-
tion of the Phillips and Roig two-body and three-body
rates into isospin components was carried out. The ra-
tio 0.74 of the T= —,

' to T= —,
' width is found to be con-

sistent with the value 0.30 for the ratio of g f/go fit to
low energy two-nucleon production data.

However, precisely because the difference in the two
isospin widths differ by terms of the order of g f /go rath-
er than g, /go it is worthwhile to look for other quanti-
ties which are sensitive to the latter ratio. The partial
rate for absorption into the n+ H final state is such a
quantity. Recent measurements ' of the total He 1s
pionic atom width and the observation of a 11.5%
branching ratio for the post-absorption n+ H channel
were not available to the authors of Ref. 36. Knowledge
of the newer experimental data allows a more accurate
determination of the absolute value of the partial width
for the n+ H channel. Using the two experimental to-
tal absorption widths of 19.1 and 24.5 eV, respectively, it
can be deduced that (expressing the widths as rates per
Ref. 36)

3.3+1.4)& 10' s
ab&n+ H'=

4 3+1 8 ~ ]0]5 i7 .

These values when compared to the numerical predic-
tions in Table III of Ref. 36 and using the general for-
rnula for the partial absorption rate for the n+ H final
state yields 0&g&/gp &0 1, much lower than the ratio
from pion production on nucleon pairs.
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self-conjugate nuclei. In the present work isospin pro-
jection operators were introduced to limit sums over in-
termediate states to those physically coupled to the
ground state by the radiative capture operator Oz (k)
and the rates for both A =3 nuclei were obtained. The
calculated rates are consistent with the measured
branching ratios for radiative pion capture and the total
pionic atom widths in He and He. In the case of H
the calculated radiative capture rate and the measured
branching ratio were combined to obtain a reliable esti-
mate of the total 1s width of the pionic atom. The
width obtained implies that the T= —,

' and T= —,
' 1s pion

absorption widths of the A =3 ground state are related
by I,"b(T =—', )/I","~(T= —,

'
) =0.74+0.27.

The sum rule method applied to the 2p radiative cap-
ture was less satisfactory because the "closure plus
correction" approximation for the reduced total rate is
not stationary around some average gamma energy k;
the only unique value of k is the value where the first or-
der correction vanishes. Branching ratios for radiative
capture in atoms of higher Z in which 2p capture dom-
inates should be investigated in order to clarify the pro-
cedure for obtaining the optimal k.
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