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We establish the formal connection between the spin difference function and the loss of symme-
try of the correlation function in (p,p y) experiments. The same sensitivity to relativistic effects
present in (p, p ') spin observable differences is also found in (p,p'y) reactions. We performed a rel-
ativistic distorted wave calculation of the asymmetry and found sizable effects.

I. INTRODUCTION

Spin observables have been to date the biggest success
of relativistic approaches to proton-nucleus scattering.
Excellent description of elastic scattering data was ob-
tained by fitting scalar and vector potentials in a Dirac
optical model. ' Subsequently, the formalism was put on
much firmer ground when McNeil, Shepard, and Wal-
lace showed how these potentials could be abtained fram
a relativistic-impulse approximation treatment.

Although the successes of the relativistic approach are
unquestionable, many objections have been raised.
Among these, the absence of a first-principles theory
that would lead, by a set of well-defined approximations,
to the relativistic impulse approximation formalism.
While an extensive effort should be devoted to the for-
mal aspects of the theory, it is essential to keep testing
the relativistic formalism by studying many different and
diverse processes.

Among the processes studied to date are inelastic
proton-nucleus reactions. These inelastic transitions can
uncover the full richness contained in spin observables
and go beyond the highly constrained elastic phenome-
na. In fact, the spin difference function b,, —= (Q —8)
+i (P —Ar ), defined in terms of spin observables
differences, vanishes in the elastic case but has neverthe-
less proven to be extremely sensitive to differences be-
tween equivalent relativistic and nonrelativistic theories.
In particular, the spin difference function vanishes in a
nonrelativistic impulse approximation approach and
nonzero values are obtained only after the inclusion of
nonlocal terms. In contrast, a local relativistic treat-
ment contains enough structure to give, in accordance
with experiment, a nonzero value to the spin difference
function. ' It is then natural to ask if those parts of the
amplitude responsible for the nonzero value of the spin

difference function are driving other physical observ-
ables. If so, these observables would give as much and
as valuable information as the spin difference function
does.

Recently, Mobed and Wong have shown that a relativ-
istic treatment of (p,p'y) reactions breaks a particular
symmetry of the correlation function that is otherwise
preserved in the nonrelativistic case. In this work we
will establish the formal connection between the spin
difference function and the symmetry breaking of the
correlation function. We will show how the same parts
of the amplitude driving the spin difference function are
also responsible for the loss of symmetry in the correla-
tion function.

This work will be organized as follows: Section II will
contain the formal part of the paper. In it, we will
derive model independent results for the correlation
function and will establish its connection to the spin
difference function. In Sec. III we will show results from
a relativistic plane wave impulse approximation
(RPWIA) calculation, as well as from a distorted wave
calculation (RDWIA) that uses eikonal distorted waves.
Our conclusions will then follow in Sec. IV.

II. FORMALISM

In this section we will establish the connection be-
tween the spin difference function and the p-y correla-
tion function. Although the whole formalism can be
carried out without any reference to the angular momen-
tum and parity of the excited nuclear state, we will con-
centrate on the unnatural parity 1+ states. In Ref. 7, it
was proven that the most general amplitude that one can
write for the 0+~1+ transition consistent with rotation-
al and parity invariance is given by

3,+(p, p')= A„(X n)+ A„„(Xn)(o"n)+ Ax+(X K)(tr.K)+ A (X.q)(tr. q)+ A tt(X q)(o"K)+ Ax (X K)(o"q),

where q and K are unit vectors along the direction of
momentum transfer q=(p —p') and average momentum
K=(p+p')/2, respectively; n:—qXK; tr is the spin
operator of the projectile; and X is the polarization (axi-

al) vector operator of the target defined by

X~—=
~

1+,M)(0+
~

The individual amplitudes are scalar functions of the en-
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ergy and momentum transfer and can be used to write
all physical observables in a model independent way.
Subsequently, one may calculate these amplitudes using
relativistic and nonrelativistic models, and then concen-
trate on those observables that isolate those amplitudes
sensitive to relativistic effects.

In fact, this is precisely the way we proceeded in our
study of proton spin observables. ' We calculated the
above amplitudes using equivalent relativistic and non-
relativistic formalisms and found large differences in the
predicted values for the cross term amplitudes A K and

AK . In the nonrelativistic calculation these amplitudes
were identically zero, while in the relativistic case
nonzero values appeared due to the presence of lower
components in the wave function. This fact naturally
signaled out the spin difference function

The formal evaluation of the correlation function is
straightforward. The numerator in Eq. (4) is simply
given by

Tr[P~(k)p(E, q)P~(k) ]= g FMg(k)p~M F~ g(k)
MM'

where

=g Bx(k)pxg Yxg (k),
KQ

(&a)

contains all information related to the electromagnetic
decay, and is written in terms of Wigner D functions and
the Ml reduced matrix element ( 1+~~1'I '~~0+ ). Final-

ly, I (k) is the total width of the decay,

1(k)=g —,
' f dkTr[P&(k)P&(k) ] . (7)

6, —:(Q B)+i(P——A )
T

4/dfI (Axx Axq+ Aqx Aq'q)

Bx(k}=
2m 2E +1

' 1/2

4~ Tr[F~(k)p(E, q)F&(k) ]
Wg(E, q;k) =

Trp(E, q)
(4)

where E and q are the energy and momentum transfer in
the collision, and k and A, are the momentum and polar-
ization of the emerging photon, respectively. The densi-
ty operator p(E, q) describes the polarization of the 1+
state after the collision has occurred. For an initially
unpolarized beam it is given by

p(E, q) = —,
' Tr [A (1+ ) A (1+ ) ],

where A(1+) is the 0+~1+ amplitude (1), and Tr
denotes a trace over the proton spin degrees of freedom.
The electromagnetic operator Pz(k),

F~«}=XF~~«)&M
M

' 1/2 (6)

as the most useful observable in the study of relativistic
effects in proton-nucleus scattering.

Unfortunately, measurement of the spin difference
function is not an easy task. Extremely good energy
resolution is needed to properly identify the excited nu-
clear state. Adding to that, one is faced with the chal-
lenge of polarizing the incident proton beam, as well as
detecting their final polarization by means of a second
scattering experiment. Alternative physical processes,
addressing these same issues, are clearly welcome.

An extremely good alternative is provided by (p,p'y}
reactions. In these experiments one is spared from hav-

ing to prepare and detect proton polarizations, in ex-
change, of course, for a coincidence measurement. We
now show how the A K and AK amplitudes can be iso-
lated by performing coincidence measurements in some
carefully chosen kinematic region.

The correlation function for 0+(p, p'}I+(y)0+ reac-
tions is defined by'

X(1A,;1—A,
f

KO)
[
(1+[/f'I '[/0+ )

/

(&b)

and pK& is the statistical tensor defined by

pKg =—g ( —1)' ( 1M, 1 —M
I
&Q )PMM

MM'
(Sc)

1+v'4n g (1A,;EO
~

1A, ) Yxg(k) . (9)
K)O, Q PM

Our task now becomes clear. Evaluate the density
matrix in terms of the scalar amplitudes defined in Eq.
(1). Identify those matrix elements dependent on the
cross term amplitudes AqK and AKq and therefore sensi-
tive to relativistic effects. Finally, choose appropriate ki-
nematic conditions (e.g. , photon direction) in the evalua-
tion of the correlation function to highlight those matrix
elements of interest.

In the evaluation of the density matrix we will choose
our coordinate system with the z axis defined in the
direction of the average momentum K. This represents
the natural choice of coordinate system whenever dis-
torted waves are calculated in the eikonal approxima-
tion. If we also neglect the Q value of the reaction, then
n, q, and K form a right-handed orthonormal system.
We expect this to be an excellent approximation for the
physical observables of interest. Keeping the Q value of
the reaction introduces a correction term, proportional
to q.K, capable of breaking the symmetry of the correla-
tion function, as well as generating a nonzero value for
the spin difference function, even in a nonrelativistic

The expression for the correlation function is even
simpler. Dynamical quantities related to the electromag-
netic decay (e.g., the Ml reduced matrix element) factor
out from the ratio in Eq. (4), and the correlation func-
tion depends exclusively on the collision part of the pro-
cess,

W&(E,q;k)
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treatment. For small q, however, both of these observ-
ables are proportional to q and therefore vanish at for-
ward angles. Furthermore, in the medium energy region

q K becomes negligible beyond q =0.5 fm '. Correc-
tions due to a finite Q value are therefore expected to be
small and will be neglected throughout this work.

The hermiticity of the density matrix, p~~. =p~~, as
well as the frame-dependent relation p~~ ——p
limit to four the number of independent matrix elements.
These can be written in terms of the scalar amplitudes as

+IA I +IA I +IA,KI ]

b, W(8, $}—=

W 8$———W 8$+—
2

'
2

W 8,$——+W 8,$+—
2 2

(14)

breaking of the correlation function has the same origin
as the nonzero value for the spin difference function,
namely, the nonzero values of the cross term amplitudes
A q& and A&q predicted in a relativistic treatment.
Mobed and Wong have introduced a physical observable
to quantify this loss of symmetry,

l
Plo= ~ [ Aqq AKq + AqK AKK ]~2

Evaluation of this expression at its maximum value,
namely 8=qr/4 and {(}=0,yields

10
pi —&= [ I

A
I

+
I

A

Poo=[ I AKK I + I AKq I ]
2&2 Im(p, o)

b, W(8, $)=
3pii+poo —pi —i

(15)

Clearly, p&o is by far the most interesting matrix element.
It is linear in the cross term amplitudes Aqj- and Azq,
and therefore vanishes in a local nonrelativistic treat-
ment. All physical observables written exclusively in
terms of p, o will therefore enjoy the same special status
as the spin difference function does. Isolating this term
in the correlation function will be our next step.

In a polarization insensitive measurement the experi-
mentally determined quantity is the unpolarized correla-
tion function W(k) defined by

W(k)= W& &(E,q;k)+ Wz, (E,q;k), (11)

and given, according to Eq. (9), by

W(k) =1+ [—,'(p» —poo)(3 cos 8—1)
2 Tlp

—&21m(p&o) sin28sing

-+ A A. Re(p{o}
W(k)=W(k}+3v 2(e+ —e ) sin8cosp,

Trp
(16)

where e+ and e are the detection efficiencies for the
right- and left-handed polarized photons, respectively.

We want to conclude this section by stressing that,
aside from neglecting the Q value of the reaction, all re-
sults in this section are model independent and free from
approximations.

As expected, the photon asymmetry EW(8,$) is linear
in p]o and consequently linear in the cross term ampli-
tudes Aq& and A&q.

We note, however, that a polarization insensitive ex-
periment can only determine the imaginary part of p]o.
For a determination of the real part of p&o, one needs a
polarization sensitive (p,p'y) measurement. In this case
the correlation function is given by

+p, &
sin 8cos2$], (12)

Re[ Aqq AKq+ AqK AKK]
W(8o {t'o)

Trp
(13}

where 8 and P are the polar and azimuthal photon an-
gles, respectively, and we have suppressed the depen-
dence of the correlation function on the proton vari-
ables. By setting the photon detector at a polar angle
defined by cos 8o= —,', and azimuthal angle Po=qr/4, one
is able to isolate the p, o term. The correlation function
now becomes a linear function of the cross term ampli-
tudes, as desired, C)
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This fact places the correlation function on the same
footing as the spin difference function Eq. (3), another
physical observable extremely sensitive to relativistic
effects, and perhaps even more accessible to experiment.

A nonrelativistic treatment of (p,p'y) reactions pre-
dicts an invariance of the correlation function under ro-
tations of the photon wave vector by an angle m. around
the K direction. " Recently, Mobed and Wong have
shown that a relativistic treatment breaks this symmetry,
even in plane wave. Not surprisingly, the symmetry
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FIG. 1. Photon asymmetry 6W{8=m./4, / =0) as a function
of momentum transfer q at T~,b ——200 MeV. Photons are prod-
uct of the electromagnetic decay of the 12.71 Me V,
(J, )=( +,0) state in ' C.
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500 MeV
'

C(p, p'y)' C Figures 1 and 2 contain our predictions for the photon
asymmetry b W(8, $), at T~,b ——200 MeV and T~,b ——500
MeV proton energies, respectively. The plane wave re-
sults predict large asymmetries in the correlation func-
tion. Although distortions tend to reduce the effect, the
qualitative behavior is not changed. It is also interesting
to note that while the 500 MeV result predicts a smaller
photon asymmetry, this result might be more significant
(photon) since it will survive corrections coming from
exchange and Pauli blocking. Some of these corrections
essential for the prediction of nontrivial effects in nonre-
lativistic theories.
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FIG. 2. Same as Fig. 1, except for T~,b
——500 MeV incident

protons.

III. CALCULATIONS AND RESULTS

In the preceding section we have recognized the im-
portance of (p,p'y) reactions and have established its re-
lation to (p, p ) processes. In particular we have shown
that those amplitudes responsible for a nonzero value of
the spin difference function are also responsible for the
loss of symmetry in the correlation function. Having
previously calculated the 0+~1+ transition amplitude
to the isoscalar 12.71 MeV state in ' C, it has resulted
straightforward to extend our calculation to (p,p'y) reac-
tions.

We have calculated the correlation function by per-
forming both relativistic plane wave and relativistic dis-
torted wave impulse approximation calculations. Eikon-
al distorted waves' were calculated using optical poten-
tials with strengths and ranges chosen to reproduce elas-
tic scattering data. ' Transition densities were calculat-
ed by assuming a simple p ~p'~ single particle exci-
tation. The upper component of the Dirac bound states
was given by a nonrelativistic harmonic oscillator wave
function. Lower components were subsequently ob-
tained with the use of the Dirac equation. Finally, we
used a relativistic parametrization of the NN interac-
tion' with the Lorentz invariant amplitudes evaluated at
their optimal value. ' ' For a complete description of
the procedure, along with the numerical values used in
the calculation, we refer the reader to previous publica-
tions.

IV. CONCLUSIONS

The central point of the present work was to show
that (p,p'y) reactions offer a very attractive alternative
to (p, p ) experiments in the study of relativistic effects.
We showed that the same sensitivity to relativistic effects
present in (p, p ) reactions can be found in (p, p'y) exper-
iments, with the added bonus of never having to prepare,
nor detect, proton polarizations. We explicitly showed
how those amplitudes responsible for a nonzero value of
the spin difference function are also responsible for the
asymmetry in the correlation function.

The inability of nonrelativistic treatments to generate
nonzero values for these amplitudes will result in no loss
of symmetry in the correlation function in the same way
as it resulted in a null prediction for the spin difference
function. In contrast, relativistic calculations predict a
large asymmetry. We calculated photon asymmetries us-
ing local, relativistic plane wave, and distorted wave for-
malisms. Inclusion of distortions does not change the
shape of the photon asymmetry, although in some re-
gions it reduces the asymmetry by up to a factor of 2.

As we mentioned in the Introduction, it is essential to
subject the relativistic formalism to the most stringest
tests. In fact, it is our belief that only by testing the rel-
ativistic predictions for many different and diverse pro-
cesses, while at the same time working towards a formal
justification of the theory, that a clear and satisfactory
picture will ever emerge.
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