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New data are presented on elastic and inelastic proton scattering by ' Ni at 333 and 498 MeV
and ' 'Pb at 318 MeV. We have analyzed these data using phenomenological distorting potentials
and potentials generated by folding neutron and proton densities with a free nucleon-nucleon t ma-

trix or with a medium modified nucleon-nucleon interaction. Making use of electromagnetic ma-

trix elements, or charge transition densities, we have calculated neutron-proton transition matrix
element ratios in the vibrating potential —vibrating density model ("collective form factors"), or
with a scaling model in which the neutron transition densities are taken as proportional to the
proton densities. In addition, we have calculated, neutron-proton matrix element ratios from ear-
lier (p,p') results at 25-800 MeV for Ca, 'Ni, and Pb. We conclude that, although there are
some irregularities, the derived neutron/proton matrix element ratios for natural parity states
show a tendency to decrease in magnitude with decreasing proton energy in the range 500-100
MeV. A quantitatively similar effect is seen in the ratio of experimental to theoretical cross sec-
tions, where the latter are calculated using transition densities adjusted to fit electron or 800 MeV
proton scattering. We attribute these results to a failure of the impulse approximation and the vi-

brating potential model in this energy region.

I. INTRODUCTION

In recent years, several models have been used to ob-
tain neutron inelastic transition densities, or neutron-
proton transition matrix element ratios from electron
and proton scattering data at intermediate energies
( =0. 1 —1 GeV).

The most naive approach is to take the (p, p') transi-
tion potential as proportional to the derivative of the
elastic optical potential [vibrating potential model
(VPM)]. Inelastic cross sections are then calculated in
the distorted wave Born approximation (DWBA) and
normalized to data to obtain a potential deformation
length, 5U ——PUR, where R is an appropriate potential
radius. A vibrating density model' (VDM) is then used
to extract a charge deformation length, 5 from 8(E1(,)
values obtained by electromagnetic methods. From 5U
and 5, separate neutron (5„)and proton (5 ) matter de-
formation lengths as well as neutron-proton transition
matrix element ratios, I„/M, can be obtained. The
method is expected to give meaningful results for collec-
tive states with surface-peaked transition densities.

A second, less model-dependent method is to use
charge transition densities, p (r), from electron scatter-
ing to calculate proton mass transition densities, pz(r).
The neutron densities are then taken either as propor-
tional to the proton densities [scaling model (SCM)], or

to some simple surface-peaked function, such as the
derivative of a two-parameter Fermi (2PF) or three pa-
rameter Gaussian (3PG) function ' [semi-model-
independent analysis (SMI)].

Finally, the most nearly model-independent approach
(MI) is to express the neutron density in terms of a gen-
eral expansion, such as the Fourier-Bessel, and to use
proton densities derived, ideally, from model indepen-
dent charge densities.

In the SMI and MI analyses, searches are made on the
neutron density parameters to best fit the data. The pro-
ton inelastic transition amplitude can be calculated in
the distorted wave impulse approximation (DWIA) using
the free nucleon nucleon (N-N) interaction, or in the dis-
torted wave Born approximation (DWBA) using phe-
nomenological effective forces or theoretical medium
modified forces.

In most of the VPM analyses, the elastic optical po-
tentials have been purely phenomenological (POP).
However, in the SMI and MI analysis the distorting po-
tential is usually calculated by folding the ground state
neutron and proton static densities with the same in-
teraction as is used in the inelastic calculation ("con-
sistent model" ).

In this paper, we present new data on Pb(p, p') at
318 MeV, and on Ni(p, p') at 333 and 498 MeV. We
will discuss the results of VPM-VDM and SCM analysis
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of this data and compare these with results derived from
other work in the 100-800 MeV region on these nuclei
and on Ca. Some results from the analysis of low ener-

gy ( & 100 MeV) data are also included for comparison.
In presenting the final results, we choose to display

the reduced neutron-proton matrix element ratios,
M„/M, where we define

M;(A, ) = f p; (r)r "+ dr .Norz 0
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The quantity p, (r) is either the point proton (p}, point
neutron (n), or charge (q) transition density. The
B(EA.)T from a spin zero ground state is given in our
convention by

B(EA,)t=
i
ZM (1,)

i
(2)

II. EXPERIMENT

The Pb(p, p'} data at 318 MeV were taken with the
High Resolution Spectrometer Facility (HRS) at the Los
Alamos Clinton P. Anderson Meson Physics Facility
(I.AMPF). Enriched ( & 98% ) Pb targets of
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FIG. 1. Spectrum of Pb(p, p') at T~ =318 MeV, 0&,& ——28 .

In these analyses we are neglecting contributions from
spin and current densities which are known to be small
for the low lying collective states discussed here. Also,
although the (p, p') transition amplitudes cannot be ex-
pressed in terms of the matrix elements M, (A, ), once the
transition densities p, (r) have been determined (in some
model), the M, (A, ) can be calculated. The fact that
different probes will sample different regions of p;(r) will

of course lead to errors in the derived M, (A, ) if the true

p, (r) have no. t been determined.
The main conclusion of this paper is that, despite

sortie irregularities, a significant bombarding energy
dependence appears below about 500 MeV in the
M„/M ratios derived by most of the methods above.
Thus, we believe that this is not a property of the model
used for p, (r), but a deficiency in the transition potential
in this region, derived either from phenomenological op-
tical potentials (VPM} or from folding models in which
free or effective N-N interactions are used (SCM, SMI,
and MI analyses).
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FIG. 2. Spectrum of Pb(p, p') at T~ =318 MeV 8] b=16
showing peak fitting by program LOAF. (Quadratic ordinate. )

px-20 —25 mg/cm were used. Experimental details
can be found in a number of earlier papers. ' The
overall energy resolution full width at half maximum
(FWHM) was generally in the vicinity of b,E =40 KeV.
Absolute cross sections were obtained by normalizing to
known p + p elastic cross sections. This method is be-
lieved to produce absolute norma1izations to 10% or
better. An independent measurement of the Pb+p
elastic cross section at 334 MeV by Bertrand, et al. is
in agreement with our normalization to better than 5%.
The spectra were stripped using the program LQAF.
The 3, ( 2.61 MeV}, 5, (3.20}, and 52 (3.71) states were
clearly resolved. However the 53 (3.96), 7 (4.04), 2i+

(4.09), 4i+ (4.32), 6i+ (4.42) and 8 i+ (4.61) states are
known to have weakly excited neighbors within our line
width. ' No evidence was seen for the excitation of
these neighboring states in peak centroid shifts with an-

gle, or in the angular distributions. A spectrum at
6IL ——28' and a sample of peak fitting are shown in Figs.
1 and 2. Data were also obtained on high spin states
(J=10—14) in the 5 —7 MeV region but these have been
discussed in an earlier paper.

Elastic and inelastic proton cross sections were also
measured for Ni at T =333 and 498 MeV in earlier
experiments. Details of the experiments and their re-
sults for the 6i+ (5.13 MeV) state have been published.

The cross sections for the ground and low-lying states
of Pb and Ni are shown in Figs. 3—14.

III. ANALYSIS

A. Vibrating potential model (VPM)

g. &~Pb

The low lying states of Pb were first analyzed with
the simple VPM to obtain potential deformation lengths,
5U ——PUR. The elastic cross section data from this ex-
periinent at 318 MeV, and analyzing power ( A» ) data at
300 MeV, were fit using the search program RELGM
(Ref. 12) with a 2PF optical potential which included
spin-orbit terms. The 300 MeV data were "converted"
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TABLE I. Phenomenological optical potential' parameters for ' 'Pb at 318 MeV.

Central

POP-I
POP-II

—5.88
—9.80

rv

1.306
1.33

0.552
0.63

V,

0
11.95 0.87

a,

0.95

—27.04
—26.23

1.156
1.13

0.664
0.71

Spin-orbit

POP-I
POP-II

V„
—1.75
—2.41

rso

1.07
1.10

0.640
0,70

2.73
0.97

1.05
1.05

'The potentials were of the form

U(r)= Vf(r r„,a„)—4a, V, —f(r, r„a, )+iWf(r, r, a ) —(V„+iW„)——f(r, r„,a„)l a,d ~ 2d
dr

where f(r, r„,a„)=[1+exp(r R„)—l a]

Potentials are in MeV, lengths in fm.

to 318 MeV using momentum transfer as the common
variable. The resulting phenomenological optical poten-
tial parameters (POP-I) are given in Table I. The pre-
dicted elastic cross section, shown as a solid line in Fig.
3, is not completely satisfactory, with a X2/N=40 in
contrast to the situation at 800 MeV (Ref. 2) where an
excellent fit was obtained with a 2PF potential. An at-
tempt was made to obtain a better fit to the cross section
and analyzing power data by using the sum of a 2PF and
the derivative of a 2PF function whose parameters are
given in Table I. This potential (POP-II) gave a shape
having a surface oscillation in the real central potential,
similar to that obtained from folding the Geramb medi-
um corrected interaction ' with the best available neu-
tron and proton ground state densities. The resulting
improved X per point was X /N =15 for the fit shown
as a dashed line in Fig. 3.
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i
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Inelastic cross sections were then calculated by "de-
forming" the optical potentials, including the spin-orbit
terms. Generally the three deformation parameters, 8„8, B~ were set equal (then 8, =8„=8 ). For the low
spin states (J & 5) the best fits were obtained with

P, =Pso, but for J & 6, P„&P, was favored as was noted
also at 135 MeV. ' The resulting angular distributions
for Pb normalized to the data at forward angles to ob-
tain PU are shown in Figs. 4 and 5 for the 2PF potential
(POP-I). The simple VPM predictions do not agree with
the data as well as they did at 800 MeV.

When the POP-II potential was deformed, according
to the VPM prescription, the shape of the inelastic cross
sections was poorly reproduced. However, the deforma-
tion lengths, obtained by normalizing to the data at the
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FIG. 3. Differential elastic cross section for Pb(p,'p) at
Tp =318 MeV. Solid (dashed) line shows optical model predic-
tions for POP-I (POP-II) of Table I.

FIG. 4. Inelastic cross sections for ' Pb(p, p') at Tp=318
MeV for 3I, 5l, 52, and 53 states. Energies are shown in
MeV. Solid curves show predictions of VPM ("collective form
factors") with POP-I and P„=P,. Dashed curve is for
P„=1. 1P, .
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FIG. 5. Same as Fig. 4 but for 2,+, 4&+, 6&+, and 8&+ states.
Dashed curve is for P„=1.5P, .

first maximum, are very close to those obtained with the
POP-I.

Since the real and imaginary radii (R„,R ) are not, in
general, equal, some weighted average radius, R, must be
chosen to calculate deformation lengths, 5U =pUR. If it
is assumed that the real and imaginary cross sections at
small angles are proportional to the volume integrals of
the corresponding potentials, the appropriate R is given
by (see Appendix),

(VR')'+( WR')'
R=

( VR')'+( WR')' (3)

0
I I I I I I I I I I I I I I I I I I I I I I I I I I

1 2
q(fm')

FIG. 7. Inelastic scattering cross sections for "Ni(p, p') at
Tp =333 MeV for 2 &+ ( 1.45) 23+ (3.04) 24 (3.26) and 3

&
(4.47

MeV) states. Solid (dashed) curves are VPM predictions with
P2(SN) potentials of Table III, and P„=P,.

The values of 5U so calculated are displayed in Table
II along with those at other energies calculated using the
R of Eq. (3), with the parameters given by the various
authors. It should be mentioned that in the analysis of
the low energy (T &100 MeV) data the authors have
used surface absorption terms in the optical potential,
and so to the extent that these contribute to the inelastic
cross sections the results are not strictly comparable to
the analyses above 100 MeV where only volume absorp-
tion terms were used. It can be seen that, despite some
fluctuations, there seems to be a systematic increase in
5U with increasing proton energy above about 100 MeV.

10

I I I I I I I I
t

I I I I I I I I I
i

I I I I I I I I

Ni ( p,p' ) T =333MeV

c:10
-s

~10
10

~~10

I I I I I I I 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0 1 2 3
q(fm ')

FIG. 6. Elastic cross sections for Ni(p, p) at Tp =333, 500,
and 800 MeV. Solid curves are optical model predictions with
parameter sets P2(333), P3(500), and MK(800) given in Table
III.
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FIG. 8. Same as Fig. 7 for 4+ states at E„=2.46, 3.62, 4.40,
and 4.76 MeV.
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FIG. 9. Inelastic scattering cross sections for "Ni(p, p') at
TP=498 MeV for 2+ states at 1.45, 3.04, 3.26 MeV and 3
state at 4.47 MeV. Solid (dashed) curves are VPM predictions
with P3(SN) potentials of Table III and p =p, .

0 1 2 3 4
q(fm')

FIG. 11. Inelastic cross sections for ' Ni(p, p') at Tp =800
MeV for 2+ states at 1.45, 3.04, 3.26 MeV and 3 state at 4.47
MeV. Solid curves are VPM predictions with ME potential of
Table III, and P =P, . The data are from Ref. 15.

In Sec. IV we will show that this is rejected in a sys-

tematic increase in the derived values of M„/M~ with

increasing bombarding energy.

$8N.

The VPM was also used, as described above, to obtain
potential deformation lengths, 5U, from the Ni(p, p')
data at T =333 and 498 MeV. Data from an earlier ex-
periment at 800 MeV (Ref. 15) were reanalyzed with the
inclusion of the spin-orbit terms in the transition poten-
tial. New optical potential searches were made at all
three energies using elastic cross section and, if available,
A data. (None of the latter exists at 333 MeV. ) The

resulting new potentials (P 1, P2, P3 and MK) are given
in Table III, along with earlier sets (SN and Kl) from
Refs. 5 and 15. At 333 MeV the P1 and P2 potentials
are not significantly better than the original SN poten-
tial, none being completely satisfactory. The P1 and P2
potentials give similar deformation lengths, both slightly
lower than the SN potential. At 500 and 800 MeV, the
new potentials (P3 and MK) are somewhat better than
the older SN and E1 sets. All sets, given in Table III,
give comparable fits to the inelastic cross sections. The
elastic cross sections are shown in Fig. 6 and the inelas-
tic in Figs. 7-12, along with the theoretical predictions.
The deformation lengths, 5U, obtained by normalizing
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FIG. 10. Same as Fig. 9 except for 4+ states at 2.46, 3.62,

4.40, and 4.76 MeV.
FIG. 12. Same at Fig. 11 except for 4+ states at 2.46, 3.62,

4.40, and 4.76 MeV.
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T„(MeV)
Potential

set

TABLE III. Optical model parameters' for ' Ni+p at various energies.

~SO aso C

333 SXb
Pl
P2

—10.3
—9.53

—39.0

1.307 0.572
1.139 0.584
0.926 0.604

—42.5 1.016 0.554
—85.5 0.847 0.656
—50.4 0.880 0.780

—0.700
—1.22
—1.21

1.21
0.905
1.53

1.093 0.444
1.149 0.608
1.099 0.675

1.20
1.20
1.20

498 SXb
P3

—9.27
—6.85

1.227 0.582
1.321 0.492

—60.5
—49.0

0.984 0.598
1.034 0.628

—0.349
—0.981

2.59
4.39

1.022,

0.981
0.657
0.681

1.05
1.20

MK
K1'

24. 1

6.3
Q.934 0.518
0.977 0.689

—79.0
—64.2

1.005 0.598
1.047 0.580

—1.137
—1.16

—0.180 0.970 0.805
—2.52 0.955 0.767

1.05
1.17

Potentials are of the form given in Table I footnote: Energies are in MeV, lengths in fermis.
Potential from Ref. 5.

'Potential 1 from Ref. 15.

TABLE IV. Deformation lengths, 5U ——PUR from VPM analysis of ' Ni(p, p') at various proton en-

ergies and for several potential sets. ' Shown also are proton deformation lengths.

J (E„MeV) g b

333 MeV
SN P2

498 MeV
SN P3

800 MeV'
MK K1'

2+ (145)
2+ (3.04)
2+ (3.26)
3 (4.48)
4+ (2.46)
4+ (3.62)
4+ (4.40)
4+ (4.76)
R
Gc

0.821
0.280
0.354
0.828
0.396
0.441
0.378
0.441

0.832
0.206
0.351
0.606
0.386
0.323
0.323
0.418
4.108
1.39

0.804
0.199
0.339
0.573
0.356
0.299
0.298
0.386
3.483
0.381

0.812
0.264
0.354
0.730
0.374
0.296
0.308
0.410
3.866
0.416

0.806
0.261
0.350
0.704
0.351
0.277
0.288
0.384
4.066
0.506

0.878
0.278
0.361
0.728
Q 4Q4

0.354
0.471
0.436
3.874
0.0627

0.902
0.270
0.37
0.778
0.403
0.36
0.47
0.42
4.053

'pptical potentials given in Table III, R from Eq. (3).
~Calculated, from weighted average of B (EA)values giv,en in Refs. 2 and 40, using Eqs. (7) and (g).
'Data from Ref. 15.
Analysis of Ref. 15, spin orbit coupling in elastic channel only, R =R

'Value of 6 used in Eqs. (A16).

TABLE V. Scaling model (SCM) parameters, a', for various optical potentials and N-N interactions for Pb(p, p') at 318 and
800 MeV.

Optical potential
ground state density

N-N interaction
state, J (E„, MeV)

POP-I

LF

POP-II

LF

T~=318 MeV
Folded

Refs. 19 and 20
+p term

LF

Folded
Refs.

19 and 20
von Geramb

Folded
p: Ref. 19
n: varied

von Geramb LF LF

T~ =800 MeV
PQPC PQPd

3, (2.61)
5i (3.20)
5; (3.71)
2+ (4 09)
4+ (4.32)
6)+ (4.42)
8+ (4.61)

0.86
1.02
0.85
0.80
0.83
0.82
0.95

0.84
0.98
0.81
0.78
0.79
0.76
0.89

0.80
0.94
0.78
0.77
0.76
0.72
0.81

1.02
1.16
0.98
1.02
1.01
0.96
1.07

0.91
1.04
0.87
0.91
0.89
0.84
0.92

1.09
1.28
1.11
1.31
1.15
1.06
1.33

1.14
1.32
1.14
1.37
1.18
1.09
1.37

'p„"=aN/Zp„", p~' derived from Ref. 16 data.
Nucleon-nucleon interaction used in generating transition potential and optical potential if derived from folding. LF force is from

Ref. 17, von Geramb force from Ref. 13.
'Phenomenological potential from Ref. 2. Spin orbit potential omitted.
Phenomenological optical potential including spin-orbit terms, given in footnote k, Table II.
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theory to experiment at the first maxima are given in
Table IV. The pattern shown by the 5U as a function of
energy is somewhat irregular, but the averages of the
333 and 500 MeV values are significantly lower than
those at 800 MeV.

10
1Q

10

I I I I I I I I
i

I I I I I I I I I
[

I I I I I I I I

Pb ( p,p ) T~=318MeV

B. Scaling model (SCM) analysis.

We have also analyzed the 318 MeV and 800 MeV
Pb(p, p') data with the scaling model (SCM), assuming

for the neutron transition density,

p„(r)=ap (r)N/Z . (4)

Thus for the scaling model, M„/M =a.
The proton transition densities, p (r), were obtained

by unfolding nucleon charge distributions from the
charge densities of Heisenberg, et al. ' . Cross sections
were calculated in the DWIA using the Love-Franey'
(LF) interaction. The scaling parameter, a, was adjusted
to give the best normalization of theory to the data. The
results for T =318 MeV, using the phenomenological
optical potentials of Table I to model the distortion, are
shown in Figs. 13 and 14. The values of a obtained are
given in Table V.

In the original SCM analysis of the Pb(p, p') data at
800 MeV, a phenomenological optical potential (POP)
without a spin-orbit term was used. In addition, an ear-
lier version of the LF force was used. We repeated the
800 MeV analysis with a new POP, including a spin-
orbit term, and using the most recent LF force. ' The
predicted elastic and inelastic cross sections are shown in
Figs. 15-17. The results for a, shown in the last column
of Table V, are very close to the original values shown in
the next to last column.

It can be seen that the derived values of a at 318 MeV

10
10
10

0 1 2 3
q(fm ')

FIG. 14. Same as for Fig. 13 except for 2&+, 4+&, 6+&, and 8&+

states.

are all lower than those at 800 Mev. This effect is the
same qualitatively (and quantitatively as we shall show
later} as the energy dependence of the deformation
lengths shown in Table II.

Several additional optical potential and N-N force op-
tions were tried for Pb at 318 MeV in the scaling
model. These included the following.

(1) The use of the von Geramb' or GBJ (Ref. 18)
medium corrected interactions ("6-matrix "}rather than
the free LF "t matrix" to calculate the transition ampli-
tudes and/or to derive the optical potential by folding.

I I I I I I I I
i

I I I I I I I I I
l

I I I I I I I I
~l I I I I I I I

[
I I I I I I I I I

i
I I I I I I I I I

i
I I I I I I I I I

i
I I I I I I I

]Q = 'osPb ( p,p ) T~=318MeV
1

-„10

I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0 1 2 3
q(fm')

FIG. 13. Inelastic cross sections for Pb(p, p') at T~ =318
MeV for 3&, 5&, and 52 states. Solid (dashed) curves show
scaling model (SCM) predictions with LF interaction using
POP-I (POP-II) potentials of Table I as described in text, Sec.
III B. Excitation energies are shown in MeV.

—5
I I I I I I I « I I I I I I I I I I I » I I I I I I I I I I I I I I I I I I » I I I » I I

0 1 2 3
q (fm ') 4 5

FIG. 15. Differential elastic cross sections for Pb(p, p) at
T~=800 MeV. The solid curve shows prediction based on
phenomenological optical potential including spin-orbit terms.
The potential parameters are given in the Table II footnote k.
The data are from Ref. 2.
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FIG. 16. Inelastic cross sections for Pb(p, p') at Tp =800
MeV for 3~, 5&, and 5& states (energies in MeV). Solid and
dashed curves show SCM predictions with the LF interaction.
The dashed curve was calculated using the distorting potential
of Ref. 2 (Set II), without spin-orbit terms. The solid curve is
based on an optical potential which includes a spin orbit term.
The potential parameters for the later are given in the Table II
footnote. The data are from Ref. 2.

(2) The addition of phenomenological p terms to the
ground state isoscalar densities to improve the elastic fits
obtained with optical potentials generated by folding
(first order KM'1). The p terms simulate quadratic
terms which arise in second order KMT and in Dirac
relativistic theories.

(3) The use of alternate ground state neutron densi-
ties. In most of the folding calculations (to generate the
optical potential) the ground state proton point density

0 1 2 3
q( fm ')

FIG. 18. Differential elastic cross section for ' 'Pb(p, p) at
T~=318 MeV. The curves show predictions based on poten-
tials generated by folding the von Geramb force (Ref. 13) with
neutron and proton densities. For the solid curve the densities
were taken from experiment (Refs. 19 and 20); for the dashed
curve the proton density was from Ref. 19, but the neutron
density was adjusted to fit the data.
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10
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I
I I I I I I I I I

I
I I I I I I I

Pb ( p,p') T~=31BMeV

was derived from the electron scattering charge density'
and the neutron density was taken from an 800 MeV
(p, p') second order KMT analysis. However, in some
of the calculations the ground state neutron density was
parameterized (2PG or 3PG) and allowed to vary to ob-
tain the best agreement with the elastic data. Although
a fairly good fit was obtained in this last procedure, the

10

I
I

I I I I I I I I I
I

I I I I I I I I

"'Pb ( p,p' ) Tp——BOOMeV

—8
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

1 2
q(fm ')

FIG. 17. Same as Fig. 15 except fOr 21+, 4l+, 6&+, and 8l+

states.

q (fm ')
FIG. 19. Inelastic cross sections for Pb(p, p') at Tp =318

MeV to 3, , 5, , and 5~ states. Energies are given in MeV.
The solid (dashed) curve shows SCM predictions based on the
von Geramb force and experimental (neutron adjusted) densi-
ties to obtain the distorting potential as described in the Fig.
18 caption.
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]Q ~ 2oapb
p

1

~1Q
1Q

~1Q

I
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i
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( p,p' ) T~=31BMeV

the most nearly correct, is the one using a folded optical
potential, with the von Geramb force' used to generate
both the optical and transition potentials. However this
set (option 1 above), and the option 3 procedure gave the
poorest representations of the inelastic data. A more
complete discussion of the VPM and SCM analyses of
the 318 MeV, Pb(p, p') data are given elsewhere. '

Scaling Model (SCM) calculations were also done for
the 2&+ (1.45 MeV) state of Ni at T~=333, 500, and
800 MeV. (The 800 MeV data are from Ref. 15). The
proton transition density was obtained from Ref. 16.
The predicted cross sections are shown, with the data, in
Fig. 21 for several optical potentials. The values of a
obtained are given in Table VII (a=M„/M~ in the
SCM).

FIG. 20. Same as Fig.
states.

I I I I I I I I I I I

2
q(fm I)

19 except for 2~+ 4+&, 6+ and 8&+

1Q

I I I I I I I
[

I I I I I I I I I
)

I I I I I I I I I
i

I I I I I I I I

Ni ( p,p' ) Z' 1.45MeV

-1Q

g1Q
b 4'a

0 1 2 3 4
q(fm ')

FIG. 21. Inelastic cross sections for Ni(p, p') for 2+, (1.45
MeV) state at T =333, 498, and 800 MeV. The 800 MeV data
are from Ref. 15. The curves show SCM predictions based on
the proton transition density from Ref. 16. The phenomeno-
logical optical potentials for the solid (dashed) curves are
P2(SN) at 333 MeV, P3(SN) at 498 MeV, and MK at 800
MeV. The potential parameters are given in Table III.

value of hr„=(r„)'~ —(r )'~ resulting was found to
be Ar„p= —0.20, in disagreement with the accepted
value of hr„~ =+(0.1 to 0.2).

Not all combinations of the above models were tried,
but the resulting scaling parameters for some representa-
tive sets are shown in Table V and the cross sections in
Figs. 18-20. Again, it is seen that although there is
some variation in the a values derived with the various
models at 318 MeV, they are all systematically lower by
=301o than those at 800 MeV. The set giving values
closest to the 800 MeV values, which we believe to be

C. Model independent (MI)
and semi-model-independent (SMI) analyses

To date only one model independent analysis, to ob-
tain neutron transition densities from inelastic proton
(and electron) scattering data at intermediate energies,
has been published. Kelly, et al. have derived a neu-
tron transition density for the 2&+ state of ' 0 using a
proton density derived from electron scattering and a
polynomial times Gaussian expansion for the neutron
density. The Geramb medium modified force, ' based
on the Paris potential, was used to calculate the distort-
ed waves and inelastic transition amplitude to compare
with the data at T =135 MeV. It is interesting to note
that it was necessary to multiply the resultant calcula-
tions by 0.74 to fit the 2&+ state of ' 0, which was used
for calibration (since here p„=p ). The same factor was
then applied to the ' 0 (2~+) calculation. This factor is
similar to the renormalization factors we find at 318
MeV to give agreement with M„/M ratios determined
at 800 MeV (Table V).

Semi-model-independent (SMI) analyses have been
done of 800 and 500 MeV (p, p') data on Pb(3, 5 )

and Ca(2+, 3 ) by Ray and Hoffman and by Barlett,
Hoffman, and Ray in which proton densities were ob-
tained from (e, e') (Ref. 16) and neutron densities were
represented by surface peaked two parameter Fermi
(2PF) or three parameter Gaussian (3PG) functions. In
the 800 MeV analysis the distorting optical potential
was generated in second order KMT and the inelastic
cross sections then calculated in the DWIA. For both,
the free N-N amplitudes of Amdt (solution SM 80)
were used. The parameters of the neutron transition
density were then adjusted to best reproduce experiment.
No significant differences in the quality of fit were found
for the 2PF and 3PG neutron densities.

In the 500 MeV analysis, the same procedures were
used except that a phenomenological effective N-N force
was employed in both the elastic and inelastic channels.
The isoscalar effective force was obtained by fitting the
500 MeV elastic cross section, analyzing power and spin
rotation (Q) data on Ca in a first order KMT ("tp")
approximation. Densities for Ca were derived from
charge densities with a small theoretical correction for
the neutron-proton difference. The small isovector part
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TABLE VI. Reduced neutron-proton matrix element ratios, M„/M, for Pb derived by various methods.

Method' T (MeV) 3l 5l 52

State, J
2+ 4+ 6+ 8+ References, comments

VPM-VDM
VPM-VDM

SCM

SMI
SMI

VPM-VDM
VPM-VDM
VPM-VDM

SCM
SCM

VPM-VDM
VPM-VDM
VPM-VDM
VPM-VDM
VPM-VDM
VPM-VDM
VPM-VDM
VPM-VDM
VPM-VDM
(a,a') MI

Theory

400
334
318

200
155
135
120
98
80
65
61
35

104(T )

1.12
1.07
1.09
1.14
1.12
1.14
1.23
1.06
1.12
0.98

0.86
1.02
0.96
0.95
0.91
0.75
0.92
0.82
1.12
0.96
1.12

1.19(3)
0.92
1.06
1.00

1.18
1.12
1.28
1.32

1.26
0.94

0.91

1.02
1.16
0.95

0.77

0.84
1.18

1.23

1.10
1.07
1.11
1.14

1.28
1.25
1.31
1.37

0.77

0.83

1.07
1.07
0.96

0.85
0.98
0.73

0.70

0.80
1.02
0.95
0.87
0.99

0.78

0.83
0.86

0.89
0.99
1.00

0.69 0.93

1.10
1.07
1.15
1.18

1.14
0.89
0.94

0.83
1.01
0.90

0.84

0.87
0.88

0.91

0.79
0.79
1.06
1.09

0.64
0.50
0.82
0.96

043

0.62
0.68

0.85

1.87
1.70
1.33
1.37

1.24
0.93
0.95
1.07

0.20'

1.31
1.24

Ref. 2, no s-o
This, with s-o'
Table V, Next to last column
Table V, last column
Ref. 3, IA, 2nd order KMT
Ref. 4, IA
Ref. 4, effective force
Ref. 32, POP
Refs. 8 and 32 POP
Table II, P„=P,
Table II, P„=1.5P,
Table V, POP-I
Table V, fifth column
Ref. 32, POP
Refs. 30, 31, POP
Ref. 14, POP
Ref. 29, POP
Ref. 29, POP
Ref. 29, POP
Ref. 28 POPg
Ref. 27, POPI
Ref. 26, POP~
Ref. 25, folded
RPA, Ref. 37
Particle-vib. coupling, Ref. 38
RPA, Ref. 39

'(p, p') —(e,e') comparison unless noted. Values of 5„given in Table II for VPM analyses. Error estimates shown in Figs. 22-26.
This work unless noted.

'Potential given in footnote k, Table II.
'P,.= I.5P, .
'p„=2.5p, .
Using 8(EA, ) =0.621e b .
'Both volume and surface imaginary central terms used.

of the optical potential was calculated using free N-N
amplitudes. Calculations were also done at 500 MeV us-
ing free N-N amplitudes throughout (IA) for compar-
ison.

In both the 800 and 500 MeV SMI analyses, the pa-
rameters of the point neutron density functions were
determined and then used to calculate M„/Mp. These
are shown in Tables VI and VII along with values ob-
tained by other methods.

A Fourier-Bessel model independent (MI) analysis has
been done by Corcalciuc, et al. of 104 MeV (a,a')
data on the 3 state of Pb. The validity of the folding
model was assumed for the elastic and transition poten-
tials. From their results we have calculated a value of
M /Mp which is also shown in Table VI.

IU. UPM-UDM ANALYSIS

In this section we present the values of M„/M de-
rived from proton potential deformation lengths, 5U
from these and other experiments ' ' in the
T =35—800 MeV energy range using the VDM. The
data from other experiments were reanalyzed using a

common scheme, set of 8(EA, ) values, and R from Eq.
(3). The 8(EA, )'s used are the adopted values from Ref.
2, unless otherwise noted. The method of obtaining
M„/M is similar to that of an earlier paper, but the
equations have been generalized to appropriately weight
the real and imaginary parts of the nucleon-nucleon in-
teraction, and the optical potentials, since at the lower
energies they are comparable in magnitude.

A summary of the basic equations used is given here.
They are derived in the Appendix. The radial part of
the inelastic transition potential, V&, is assumed to be

5U
~~ =~U

5r

where 5 U =PR is the average potential deformation
length, R being defined by Eq. (3), and U is the central
part of the POP,

U=(V, + V„)+i(W,+ W„),

decomposed into neutron and proton parts. In this
scheme, the contribution to the cross sections of the de-
forrned spin-orbit term is neglected since it is generally
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less than =5% (except for high spin states at the lowest
energies) at forward angles where theory is normalized
to data. Since the deformation lengths represent dis-
placements of the nuclear surface, we assume

5, =6 =6 and 5 =5 =6 and 6 =6
V W P U W n p

where 5, 6„, and 6q are the proton, neutron, and charge
deformation lengths and 5„6 are the potential defor-
mation lengths. We then show

5„=—,
'

(
—(a5p)+[(a5 ) —4C]' '),

and

C=(r5p) —5U(l+r +a) .

Expressions for calculating z and a are given in the Ap-
pendix. They involve volume integrals of the N-N t ma-
trix (taken from Ref. 17) and geometry parameters (Ref.
2). The equations reduce to the linear equations of Ref.
2 if one part (real or imaginary) of the optical potential

M„/Mp

1.2—

1.0—
I I

I )0.8 "

0.6-

04-

1.4—

1 2--

0.6—

I I I I

"'Pb(p. p')

~ VPM-VDM

X SChJI

2i+ (4.09)

Tp(MeV)
I I

200 400 600 800

Mn/Mp

1.2—

1.0—
II

I I I

Pb(p, p')

3, (2.61)
a7~

jr

FIG. 23. Same as Fig. 22 except for 52 (3.71 MeV) and 2&+

(4.09 MeV) states of ' 'Pb.

dominates. The proton deformation lengths, 5 =5, and
the reduced matrix element ratios are calculated using

08
Il

0.6—

~ VPM-VDM
x SCM
Q SMl-eff.
D SMI-IA
V (&,+') and

M = k+ 2 (r ),5, i=n, p or q,

1.4—
B(EA, )f =

i ZMq i

1.2 -I&

1.0—

Ii0.8—

0.6—

200

(x)

400

Tp(MeV)
I I

600 800

51 (3.20) ~
1 4

Mn/Mp

1.2—

1.0-
I II [

0.8 --.

0.6—

I I I I

208Pb(p pi)-
41+(4.32)

~ VPM-VDM

x SCM

FIG. 22. Reduced neutron-proton matrix element ratios,
M„/M for 3, (2.61 MeV) and 5& (3.20 MeV) states of Pb
derived by various methods (from proton and electron scatter-
ing data, unless noted) vs proton energy. Values shown by
solid circles are from the VPM-VDM ("collective form fac-
tors"), crosses are from the scaling model (SCM), open squares
are from semi-model-independent analyses (SMI) using effective
forces, and erect triangles from SMI analyses using the free t-
matrix (IA). The inverted triangle is from a model indepen-
dent (MI) analysis of (a,a') data (Ref. 25) at T =104 MeV
and is arbitrarily plotted at T~=700 MeV. The error bars
shown are estimates based on uncertainties in normalizing
theory to the (p, p') data and do not reflect statistical or sys-
tematic cross section errors, or errors in the (common) 8(EA. )

values adopted to obtain the proton matrix elements.
Parentheses indicate poor fits to the data. Numerical values
are given in Table VI. The lines are drawn by eye to indicate
the average energy dependence suggested by the data above
100 MeV.
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FIG. 24. The same as Fig. 22 except for the 4&+ (4.32 MeV)
and 6&+ (4.42 MeV) states of Pb. The approximate energy
dependence of the SCM results (crosses) is shown separately
from that of the VPM-VDM.
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FIG. 25. The same as Fig. 22 (and 24) except for the 8+
(4.61 MeV) state of Pb.

then

( k —1)
n P ( A 1) (9)

The radial moments of the ground state densities are
taken from the best available electron and proton
scattering analyses and are tabulated in Ref. 2.

The results for M„/M for the 3, , 5, , 52, 21+, 4&+,

61+, 8~+ states of Pb, the 21+, (3.90), 2+ (5.63), 2+

(6.91), 3, , 5 states of Ca, and eight of the low lying
states of Ni are given in Tables VI and VII, and plot-
ted versus proton energy in Figs. 22-29. In the figures
we have shown error estimates based mainly on the un-

certainty in normalizing theory to experiment to obtain
deformation lengths (VPM) or scaling factors (SCM).

1.0

0.8 =

1.2—
II

10-

This source of error usually dominates over statistical
and absolute normalization errors unless the theoretical
fits to data are very good. In the VPM and SCM analy-
ses with phenomenological potentials (POP), the extract-
ed deformation lengths (5U) or scaling factors (a) are
somewhat insensitive to absolute data normalization un-
certainties since these quantities are determined mainly
by the ratio of inelastic to elastic cross sections. Howev-

I I

Mp Mp
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FIG. 27. The same as Fig. 22 except for the 3 (3.74 MeV)
and 5 (4.49 MeV) states of Ca. Numerical values and refer-
ences are given in Table VII.
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FIG. 26. The same as Fig. 22 except for the 2+ states of
Ca at 3.90, 5.63, and 6.91 MeV. Numerical values and refer-

ences are given in Table VII. The VPM-VDM point for the 2&+

state at 500 MeV is derived from Ref. 48.

FIG. 28. Reduced neutron-proton matrix elements ratios,
M„/Mp for the 2+ (1.45, 3.04, 3.26 MeV) and the 3 (4.48
MeV) states of Ni derived from this analysis of proton and
electron scattering data. The solid and open circles are from
the VPM-VDM model, the crosses, for the 2&+, (1.45 MeV)
state, are from the scaling model (SCM). The individual
VPM-VDM points at 333, 498, and 800 MeV are derived using
the various potentials given in Table III. The errors shown are
discussed in the text (Sec. IV) and the caption for Fig. 22. The
lines are drawn by eye to indicate the average energy depen-
dence suggested by the data above 100 MeV. Numerical values
and references are given in Table VII.
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FIG. 29. The same as Fig. 28 except for the 4+ states in' Ni at 2.46, 3.62, 4.40, and 4.76 MeV. The 4+ (4.40 MeV) is

not completely resolved at 800 MeV.

V. DISCUSSION AND CONCLUSIONS

We have shown that the reduced neutron to proton
matrix element ratios, M„/M derived from intermedi-
ate energy proton inelastic scattering and electromagnet-
ic 8 (EX) values, or change transition densities, show a
tendency to decrease with decreasing proton energy, in
the range 500—100 Mev. We believe this is not due to
inadequacies in the transition potentials, or densities,
since the VPM-VDM, the SCM, and to some extent the
SMI analyses for Ca, using the DWIA, show quantita-
tively similar behavior.

The effect being seen is the over prediction of (p, p')
cross sections for a given transition potential, or density,
at energies below 500 MeV by an amount which seems
independent of the angular momentum transfer
(L =2—8) involved. This effect was also noted in the
analysis of natural parity high spin stretched or nearly
stretched particle hole states in Si (5, ) and 5sNi (6~+ ). '

To illustrate that the effect shown here is quantitative-
ly the same as that noted in the Si-Ni analysis we have
calculated the quantity N~ =cr,„~/a,„„for the (p, p')

er, our error estimates tend to overestimate somewhat
the relative uncertainties in M„/M values obtained for
the same nuclear state at different energies, since theory
is usually normalized to experiment at the first max-
imum where the 6t is generally good. We have not in-
cluded errors due to the uncertainty in the measured
8 (EA, ) or proton transition density since a commom set
of values was used, for a given state, at all energies in
our analysis. The most important general feature of the
derived M„/M ratios, despite some fluctuations, espe-
cially for Ni, is their tendency to decrease with de-
creasing proton energy in the range 100-500 Mev. It is
interesting to note however that the low energy (T~ &65
MeV) values obtained from the VPM-VDM analyses are,
in general, higher than those found in the 100-400 MeV
region, and are frequently close to the 800 MeV values.
However, as mentioned above, the calculations at 65
MeV and below include surface absorption terms in the
distorting potential which then contribute to the inelas-
tic transition potential, while those above 100 MeV do
not. The values of M„/M obtained at 500 MeV in the
SMI analysis, using effective forces, are generally close
to or a bit higher than the 800 MeV values from the
VPM-VDM or SCM.

The true values of M„/M are expected to be close to
unity for Ca (and for the 3& state of Pb). We find
this at 800 MeV for the experimental 3& ( Ca and Pb)
and 5& ( Ca) values from the VPM-VDM analysis, but
those for the three 2+ ( Ca) states are somewhat
higher. We believe this reflects the large uncertainties in
the experimental 8 (EA, )'s for these states (see Table VII
footnotes a —e), which produces approximately the same
percentage uncertainty in the derived M„/M values.
The data thus indicate a quantitative failure of the usual
DWBA or DWIA approximations in the range
= 100—500 MeV.
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FIG. 30. Values of normalization, or "quenching" factors

1Vp (X X ) Nz)tp /N Ipep for proton (electron, pion) inelastic ex-

citation of natural and unnatural parity states at various ener-

gies. Points are shown for "Si (5, ; 6, T=0, 1), "Ni (2i+, 6~+)

and Pb (Nat. , 12i 2, 14 ) states. Pion and electron scattering
values are circled and shown at the edges of the figure. The
lines are drawn to connect the data points. The points (solid
squares) labelled "Pb-Nat. " are an average for the low-lying
natural parity states of Pb given in Table V. For the Ni
(2l+) and Pb-Nat. values we have used the scaling model (SCM)
with the scaling factor taken from the 800 MeV analysis. For
the remaining states, transition densities adjusted to fit electron
scattering data have been used as described in the text (Sec. V)
and in Refs. 5 and 6.
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TABLE VIII. Ratio of experimental to theoretical cross sections, N~, for (p, p') to natural parity states in 'Si, Ni and Pb at
several energies.

Nucleus J (E„, MeV) 135 178
T (MeV)

333/318
N,

(e,e') Comments

28S

'Ni

208Pb

5 (9.70)
2+ (1.45)

6+ (5.13)

3 (2.61)

5 (3.20)
5 (3.71)
2+ (409)
4+ (4.32)
6+ (4.42)
8+ (4.61)

0.59

0.66

0.68-0.76
1.06
0.99
0.74

0.71
0.73
0.91
0.71
0.70
0.51
0.65
0.72
0.64

0.85
0.82
1.06

0.88/1. 03

1.10
[1.0)
[1 o]
0.94

[1.0]
[1.0]
[1 o1

[1.0]
[1.0]
[1 ol
[1 ol
[1.0]

1.10
[1.0]
[1 0]
0.94

[1.0]
[1.0]
[1.0]
[1.0]
[1.0]
[1.0]
[1.0]
[1.0]
[1.0]

Ref. 5 analysis
P2, P3 potential Table III
SN potentials Table III
Ref. 5 analysis P3/SN
potential Table III at
498 MeV
POP-I, Table I, IA
POP, GBJ force, Ref. 21
Folded pot, GBJ force, Ref. 21
POP-I, Table I, IA
POP-I, Table I, IA
POP-I, Table I, IA
POP-I, Table I, IA
POP-I, Table I, IA
POP-I, Table I, IA

data on Pb at 318 MeV, and the Ni (2~+ ) data at 333
and 500 MeV, using the SCM, with the scaling parame-
ter ct taken from the 800 MeV analyses (Tables V and
VII). The results for natural parity states in 'Pb, and
in Si and Ni from our earlier work are shown in
Table VIII and Fig. 30.

Values of N„at various energies for unnatural parity
stretched states in Si and Pb (Refs. 5 and 6) are also
plotted in Fig. 30. These have been obtained from com-
mon transition densities adjusted to fit the q dependence
of both the electron and proton scattering data. It is
seen that these do not show the strong energy depen-
dence exhibited by the natural parity states, and, furth-
ermore, the quenching factors (Nz for protons) obtained
at various proton energies are reasonably consistent with
the electron (and pion) values. The excitation of the un-
natural parity states does not involve the central, spin-
independent parts of the N-N force which dominates in
the excitation of the natural parity states. It should also
be noted that the proton N values obtained at T =800
MeV for the natural parity states are in good agreement
with the quenching factors found in electron excitation.

Since the inelastic cross sections, for the low lying nat-
ural parity states, calculated in the DWBA (VPM) or
DWIA (SCM or SMI analyses) are dominated by the
central, spin-independent parts of the N-N interaction,
we believe that these results indicate a progressive (with
decreasing energy) deficiency in this part of the assumed
inelastic interaction. In general, the elastic cross sec-
tions have been reproduced with an optical potential
whose magnitude is determined (in a microscopic model)
by the very low-q (q &0.2fm ') part of the above N-N
interaction, since the ground state density, in momentum
space, decreases rapidly with q. However, the inelastic
cross sections, even at the first maxima for low spin
states, are sensitive to the higher q( &0.5fm ') behavior
of the N-N interaction. Thus, potentials or effective in-
teractions adjusted to fit elastic data appear to be inade-
quate when used to calculate inelastic transition poten-

tials in the 100-400 MeV region. This is the main con-
clusion of our work.

APPENDIX

At 800 MeV the imaginary central potential ( W} dom-
inates in the VPM-VDM analysis. Thus, in the equa-
tions of Ref. 2, the various quantities are evaluated for
the imaginary central part of the optical potential, or the
imaginary part of the nucleon-nucleon interaction. At
lower energy, the real and imaginary parts are compara-
ble and so the equations for obtaining the neutron defor-
mation lengths, 5„, from the potential and proton defor-
mation lengths, 5U and 5~, must be generalized.

As before, we decompose the optical potential U(r)
into target neutron and proton parts (neglecting the
spin-orbit terms),

U=V+iW=(V, +V„)+i(W,+W„) .

The transition potential, Vz(r ) is then

V, =5,[V,'+ V„'+i( W,'+ W„')],

(A 1)

(A2}

V&(r)=P[R„V'(r)+iR W'(r)] . (A3)

If we assume the scattering amplitude scales approxi-
mately as the volume integral of the interaction poten-
tial, Jo( Vz), then

craP [R„JO(V')+R Jo(W')] . (A4)

If the potential form factors are Fermi functions eg. ,

where the primes denote radial derivatives.
In most analyses the deformation parameter, p, is the

same for all parts of the potential, resulting in different
deformation lengths 5, =pR„and 5 =pR for the real
and imaginary parts of the transition potential, i.e., most
DWBA calculations assume
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V(r) = V 1+ exp
tentials (POP) do not, in general, satisfy the folding Eqs.
(A10) we modify Eq. (A12) by introducing normalization
factors, N„and N„where, eg. ,

then the volume integrals of the potential derivatives
scale approximately as VR, and 8'R thus

Jo( V)pop

Jo( V)poLD
(A13)

oaP [(VR„) +(WR ) ] (A5)
thus we use

we can then define the average potential deformation in
length, S„=PR to be used in Eq. (A2) as,

( VR,')'+( WR ' )'
R=

( VR')' +( WR')'
1

3ZN, Jo(gpR )
Jo( Vp }=-

0

We then assume

(A14)

We now assume Eq. (A2) to be the usual VPM-VDM
approximation to an interaction potential in which the
neutron and proton deformation lengths, 5„and 5p ap-
pear separately, i.e.,

and

R„ /R„=R /R =R „/R p,"n p n p

R„ /R =R„ /R =R„/R~,0 N 0 Np

(A15)

V&
——5p( Vp+i W

p )+5„(V„'+i W„' ) . (A7)

Again using volume integrals to approximate the scal-
ing of the scattering amplitudes and equating the cross
sections from Eqs. (A2} and (A7} we obtain

where R „and R „are the neutron and proton matter ra-
dii and R„R are the POP radii.

With these assumptions, the equations for a and r be-
come

5pP p+5„P„+2Qp„5p5„=5'U[P„+P'„+2Q„],
where P2 =J~~( V' )+Jo2 ( W' ),

P„=Jo( V„' )+Jo( W„' },
Qp„——Jo( Vp )Jo( V„' )+Jo( W' )Jo( W„' ),

then 5„=—,
'

[ —(a5 )2 [(a5„)~—4C ]'r2],

(A8)

(A9}

ZRn Jo(gpR }+GJo(gpr }

NR
p Jo(g„R )+GJo(g~ )

where G = NNR„

N„R

JO(g pR )JO(gnR )+GJO(gpl )J(gnr )
and a=2

Jo(g~ )+GJo(g~ }

(A16)

where a= 2, r =Pp/P„,2 2

p2

and C=(r5 ) —5U(1+v +a) .

Jo( V) =Jo(p)Jo(g) =(N or Z )Jo(g} . (A10)

If the density and potential shapes are given by Fermi
functions, then for example, to a suScient approxima-
tion,

To evaluate the quantities P, P„and Q „we use fold-
ing theorems to relate the potential volume integrals to
the nucleon-nucleon force and the matter densities. For
a potential, V(r), obtained by folding a matter density,
p(r') with a t matrix, g(

~
r —r'

~
), we have

The volume integrals of the t matrix, Jo(g) were taken
from Ref. 17. The radii R„and R, and the normalizing
factors, N„and N were obtained from the POP's used
by each author and Eq. (A13). For R„and R we used
the rms radii tabulated in Ref. 2.

Thus we have incorporated the differing potential (V
and W) and matter (n and p) geometries in the model.
The t-matrix volume integrals have been used only to ob-
tain the ratio of the neutron and proton parts of the in-
teraction potential.

If one part of the potential (say, W) dominates, i.e.,

GJo(gr )»Jo(gR»

Jo( Vp )/Jo( Vp )=— 3

P

and thus

(Al 1)
ZR„Jo(g r)

then a =2r=2
p 0gnl

and 5„=5U(1+r ) r5— (A17)

Jo(Vp)= — Jo(g „),3Z

P

(A12)

where Jo(gpR ) is the volume integral of the real part of
the projectile-proton interaction.

Finally, since the phenomenological Foods-Saxon po-

which is equivalent to Eq. (11)of Ref. 2.
In this approximation, r=Z/N(v), where (v) is

defined in Ref. 2. It should be noted that the value of 5„
extracted from Eqs. (A9) or (A17} is fairly insensitive to
the values of v. and a unless 5U and 6 are very different.
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