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Four-body calculation of the 0+-1+ binding energy difference in the A =4 A hypernuclei
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The coupled, two-variable integral equations that determine the +He and 4„H ground and first

excited states, when the NN and AN-XN interactions are represented by separable potentials, are
solved numerically. We find the spin-isospin suppression of the A-X conversion due to the com-

posite nature of the 'He, 'H nuclear cores to be a significant factor in understanding the 0+-1+
binding energy difference.

I. INTRODUCTION

The binding energy systematics of the A =4 A hyper-
nuclei offer a unique opportunity for testing our under-
standing of the s-wave properties of the fundamental
hyperon-nucleon (YN) force. We have previously ex-
plored' the consequences of the small charge-
syrnmetry-breaking differences between the Ap and An
interactions for the ground-state (J =0+ ) A-
separation energies of +He and zH:

BA(AHe) =8(AHe) —8( He) =2.39+0 03 M.eV

and

BA(AH) =8(AH) —8( H) =2.04+0.04 MeV .

We concluded that the A-separation energy difference in
this hypernuclear isodoublet does appear to be consistent
with the charge-symmetry breaking reflected in the low-
energy AN scattering parameters of meson-theoretic YN
potentials (the scattering lengths and effective ranges)
when one utilizes a proper four-body theory in contrast
to an effective two-body approximation. In addition to
charge symmetry breaking, one may also investigate the
complications that can arise in calculations of the prop-
erties of bound systems in which one baryon (here the A)
with a given isospin (T =0) couples strongly to another
(the X) with a different isospin (T =1). 4 (The implica-
tions for NN-Nh coupling in nonstrange nuclei will be
apparent to the reader. ) In particular, the energies of
the (J =1+) spin-flip states are quite sensitive to the
strength of the AN-XN coupling in the YN interaction.

Exact equation calculations have played an important
role in the past in elucidating novel points of physics not
readily apparent from effective two-body formulations of
few-body problems. The binding energy of a two-body
system decreases as the two-body effective range be-
comes smaller, whereas those of the corresponding
three-body and four-body bound states increase. ' This
was the essence of the variational argument made by
Thomas to show that the nuclear force must be of finite
(nonzero) range or the triton would collapse to a

point. "' It is this same property of few-body equations
that allowed us to reconcile the charge symmetry break-
ing in the low-energy AN scattering parameters and the
A-separation energy difference observed in the A =4 iso-
doublet ground states. ' Understanding why one sees
almost as many deuterons emitted from the He(y, d)p
reaction as neutrons from the He(y, n)2p reaction at low
energy (E» &20 MeV), when the d+ p final state con-
tains only T= —,

' components while the n+ p+ p final
state contains both T= —,

' and T= —,
' components, was

not achieved until an analysis of the A =3 photodisin-
tegration reaction, in terms of exact equations, was pub-
lished. ' The intimate connection between the two
final states was not appreciated prior to the exact equa-
tion studies. The use of exact equation formulations can
be a necessity when one is interested in small quantities
such as binding energy differences or in the effects of
unitarity in the continuum.

Measurement of the M1 y-deexcitation energies in the
A =4 hypernuclei has yielded

E (AH)=BA(AH) —8(AH )=1.04+0.04 MeV,

E»(4AHe) =BA(4AHe) —8(4AHe') = }.15+0.04 Mev .

Bound-state transitions of this type provide invaluable
data on nuclear structure because our ability to treat
bound systems correctly is much more highly developed
than it is for the continuum. Furthermore, the experi-
mental precision possible in such measurements is nor-
mally ~uch higher than one can achieve in scattering
experiments. The approximately 1 MeV excitation ener-

gy for each member of the isodoublet implies that the
mechanism leading to this 0+-l+ splitting must be simi-
lar in each case. The question which we address is
whether E can be understood, at least qualitatively, in
terms of' the known properties of the free YN interac-
tion. As we shall see, if one represents the free AN in-
teraction in terms of one-channel AN central potentials,
assuming that the A-X conversion is unaffected by the
composite nature of the nuclear core to which the hype-
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ron binds, then the resulting 0+ (ground) state and 1+

(excited) state are inversely ordered with respect to bind-

ing energy compared with the experimental data. The
1+ state is more bound. ' It is the "X-suppression" that
results from the reduction in the strength of the AN-XN
off-diagonal coupling, when the YN interaction involves
a nucleon bound in a T= —,', J = —,

'+ trinucleon core,
that we investigate. We find this spin-isospin suppres-
sion of the A-X conversion due to the composite nature
of the nuclear cores of AHe and AH to be a significant
factor in understanding the 0+-1+ binding energy
difference.

In what follows, we discuss the hypernuclear four-
body problem in terms of (i) four-body equations which
are equivalent to those of Yakubovsky in their separable
potential formulation' ' and (ii) YN separable poten-
tials whose parameters are determined from the low-
energy scattering properties of the Nijmegen meson-
theoretic potential of Ref. 7. Our exact four-body equa-
tions are derived directly from the Schrodinger equation'
rather than making a reduction from the t-matrix formu-
lation of Yakubovsky as was done in Refs. 18 and 19.
The resulting two-variable, coupled, linear integral equa-
tions are solved directly without resort to separable ex-
pansion of the three-body kernels. In Sec. II we discuss
the two-body separable potential model that we employ
along with the low-energy scattering parameters which
define the potential model. Expressions for the scatter-
ing length and effective range of the AN-XN potential
are derived in an Appendix. In Sec. III we outline the
J =1+ (A =4) bound-state equations for spin-
dependent, rank-one separable potentials in the case in
which one baryon is distinguishable. We also recall the
J =0+ equations for comparison. Our numerical re-
sults for the A =4 0+-1+ binding energy difference are
compiled and discussed in Sec. IV. Our conclusions are
briefly summarized in Sec. V.

II. THE POTENTIAL MODEL

Lack of precision YN scattering data has severely lim-
ited our ability to characterize that sector of the
baryon-baryon interaction. Commendable efforts have
been made to parametrize potentials using a combined
analysis of all existing YN data plus the extensive NN
data base in conjunction with various symmetry assump-
tions about the meson coupling s in a one-boson-
exchange (OBE) model description of the YN and NN
interaction. ' ' A Julich group has also initiated a
program to extend their meson-exchange model of the
NN sector to provide a model of the YN interaction.
Such models allow one to attempt to circumvent the
large uncertainties in the low-energy scattering parame-
ters extracted directly from the sparse YN scattering
data. Because we use separable potentials for conve-
nience of calculation, we employ the AN-XN model of
Stepien-Rudza and Wycech in our four-body calcula-
tions. Their separable potential is based upon the main
features of the OBE model of Ref. 7. We have also in-
vestigated the six AN-XN separable potential models of
Toker, Gal, and Eisenberg, which were constructed for

the purpose of studying in detail the K d~YN~ reac-
tion. However, the XN interaction is so strong in these
potentials (in some cases supporting by design a XN
bound state in the absence of AN-XN coupling) that the
1+ state, which suffers from strong suppression of the
AN-XN coupling, was unbound in our A =4 model cal-
culations in which we retain only the spatially sym-
metric nuclear core states.

In order to make clear the role of A-X conversion in
understanding the qualitative features of the A =4 A
hypernuclei and in our model calculations, let us first
consider the model that results when one assumes that
the YN force is independent of explicit AN-XN coupling
effects. Restated, the assumption is that the YN force is
unmodified from its free form even when the nucleon in-
volved in the interaction is contained in a composite nu-
clear system. This model approach has been used exten-
sively for s-shell hypernuclear studies. Such an ansatz
leads to the following average spin-isospin combinations
of the effective AN spin-singlet and spin-triplet poten-
tials VAN and V'„N.

H: VYN ——,
' V AN+ —,

' V

4
VYN 6 V AN+ 6 V AN 's g t

(la)

(Ib)

VAN VXN
Vt

YN Vt Vt
XN XN

(2b)

can be represented by unique, average potentials VAN
and VAN independently of the spin and isospin of the
hypernuclear state in which the A is embedded. Such is
not necessarily the case. The free space AN-XN poten-
tials do have the form given in Eq. (2). However, for the
3 =4, J =0+ state built on a T =—,', J =—,

'+ trinucleon
core with spatial symmetry, the YN interactions are of
the form

Vv~(0+ ) =
VAN

3" XN

3 VXN

VXN
(3a)

VAN VXN
~vw(0+) =

XN XN
(3b)

In arriving at these average potentials in the ground and
excited states, it is assumed that the spin-singlet force is
stronger than the spin-triplet force so that the ground
state is 0+. (Any charge-symmetry-breaking differences
between the Ap and An interactions are neglected so
that ~H=&He. ) The YN subscript denotes the fact that
the potential describes the full effective AN-XN interac-
tion. The implicit assumption is that the AN-XN cou-
pling is identical in each spin state. That is, one has as-
sumed that the 2X2 matrix potentials

VAN VXN

VYN Vs Vs (2a)
XN XN

and
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whereas for the J = 1+ state the YN interactions are of
the form

V„(k,k') = — g„(k)g„(k'), n =s, t .

and

VAN VXN
VYN(1+)= Vs Vs

XN XN

VAN 5 VxN

VYN(1 ) | t Vt
—,VxN zN

(4a)

(4b)

The form factors are

g„(k)=(k +P2 )

if there is no tensor component, and

gi(k) =g.(k)+ —gT(k)v'8

g, (k) =(k'+P,')

(7a}

(7b)

(For the discussion of the spin-isospin coupling see, for
example, Refs. 29 and 30). The essence of the derivation
is that in coupling a (T =0}A to a composite T = —,

' core
(i.e., three T= —,

' nucleons coupled to T= —,') one can cou-

ple the A and any one nucleon only to T =—,', ~hereas in

coupling a (T = 1) X to a composite T= —,
' core one can

couple the X and a nucleon to T= —,
' or T= —,

' because
the other pair of nucleons can be coupled to T=O or
T=1. However, only the T= —,

' XXN component has a
nonzero overlap with the T= —,

' A)(N component, which

leads to a reduction in the strength of the AN~XN
transition from the free space situation.

In neither case is the coupling of the A-X hyperon sys-
tem to the nucleons in the composite isospin- —, trinu-
cleon core the same as the coupling to a free isospin- —,

'

nucleon. The singlet potential differs from the free in-
teraction in the 0+ ground state. The triplet potential
differs from the free interaction in the 1+ excited state.
In each case the magnitude of the AN-XN coupling is
reduced, weakening the YN interaction relative to its
free strength. Both 0+ and 1+ state binding energies
are smaller than those which would result from calcula-
tions based entirely upon free AN interaction parame-
ters. Furthermore, it is not possible to use the same
effective, average interactions (V~& and V'„~) in any
calculation of the 0+ and 1+ binding energies. The re-
sult of such an erroneous procedure would be to bind
the 1+ state more than the 0+ ground state in an exact
equation A =4 calculation, as we demonstrate in Sec.
IV.

In order to expedite our calculations within the con-
text of an exact four-body formalism, we represent both
the NN and YN interactions in terms of simple separ-
able potentials. %'e utilize the rank-one Yamaguchi
form '

gr(k)=(Tk (k +Pr)

S,"=3',-kcrj k —cr; nj,
(7c)

(7d)

when the triplet potential has a tensor force. The quan-
tity p is the appropriate two-body reduced mass:
m;rn /(m;+m ).

In our previous ground-state investigations, ' we re-
stricted our consideration to rank-one effective YN po-
tentials for which the potential parameters were chosen
to describe the low-energy free AN scattering data. For
the singlet potential this was justified on the basis that
the AN-XN coupling in that channel is very weak,
so that VxN ——0 was a good approximation; see also
Refs. 3-7. Although the singlet transition Ap~Xn is
suppressed, VxN is not necessarily small. Therefore, in
this investigation we (1) utilize for the free space YN in-
teractions the rank-two potentials of Ref. 20; (2) modify
the off-diagonal coupling terms as indicated in Eq. (3) for
the ground state (Vx~ is replaced by ——,

' Vx~) and in

Eq. (4} for the excited state (Vx~ is replaced by —,
' Vx~};

and (3) generate effective rank-one potentials which yield
the same scattering length (a) and effective range (r) as
the corresponding rank-two potentials (see the Appendix
for details). The result is a tractable model which pro-
vides a reasonable qualitative description of the spin-
isospin suppression (compared with the free space in-
teraction) that occurs in our model of the ground state
and the excited state of the A =4 A-hypernuclear iso-
doublet.

Our YN potential parameters, which come from the
model of Ref. 20, are listed in Table I. The first five
lines define the coupled-channel potentials which yield
the AN scattering lengths and effective ranges given.
The last two lines contain the strengths and ranges of
the equivalent rank-one potentials which yield the same

TABLE I. The YN potential parameters with corresponding scattering lengths and effective
ranges.

A.„(fm )

x (fm ')
X, (fm-')
P„(fm ')

P~ (fm ')

a (fm)
r (fm)
X (fm ')
P (fm ')

VYN

—0.7251
—1.0970

0.8916
1.18
1.44

—1.97
3.90
0.0952
1.2011

VYN

—0.5298
—0.6777
—0.9871

1.6
2.0

—1.95
2.43
0.3262
1.7251

~Yw(0+)

—0.7251
0.3657
0.8916
1.18
1.44

—1.33
4.68
0.0739
1.1828

VY~(1+)

—0.5298
—0.1355
—0.9871

1.6
2.0

—0.95
3.50
0.1814
1.6061
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values for a and r. The first two columns describe the
free space YN singlet and triplet interactions. The po-
tentials, as modified for the 0+ and 1+ state calculations
due to the coupling of the AN-XN system to the com-
posite trinucleon cores, are described in the last two
columns. Note that the strength definitions which we
use differ from those of Ref. 20 (see the Appendix for de-
tails). Also, our calculations of a and r for the free in-
teractions differ slightly from those reported in Ref. 20.

It is the rank-one effective potentials defined by the
last two rows of Table I which were utilized in generat-
ing our numerical estimates of the A =4 binding ener-
gies. From our previous investigations involving solu-
tions of exact four-body equations, ' ' the following can
be anticipated: the singlet potential (column 1) is
stronger than the triplet potential (column 2) in the
two-body sense:

~
a,

~
&

~
a,

~

and r, & r, . But since
a, -a„r, & r, implies that the reverse is true (the triplet
potential is stronger than the singlet potential) for a true
four-body calculation. In fact, the significant difference
in size between r, and r, ensures that the triplet-
potential dominated 1+ state will be more bound than
the 0+ state in a true four-body calculation in which one
uses average potentials fitted to the free AN low-energy
scattering parameters and spin-independent equations
such as those derived in Ref. 1. We will return to this
point in Sec. IV.

III. FOUR-BODY EQUATIONS

The Schrodinger equation formalism that we use has
been described in detail for the four-nucleon problem in
Ref. 10 and for the A =4 hypernuclear ground state in
Ref. 1. We employ the equations of Ref. 1 in this inves-
tigation for our 0+ calculation. We can do so because
we approximate the rank-two coupled channel AN-XN
potentials by rank-one potentials as described in the pre-
vious section. We summarize those equations here to es-
tablish our notation and to permit a detailed comparison
with the 1+ equations below.

The Schrodinger wave function + for a bound state of
the A plus three nucleons can be expressed in the spin-
independent limit as a sum of 18 amplitudes; 12 of these
are of the symmetry type %(ij,k;1) which are symmetric
under the interchange of i and j but have no special
symmetry under any other index permutation. The
remaining six amplitudes are of the type 'P(ij, kl), which
are symmetric under the interchange of i and j or of k
and I but which have no other special permutation sym-
metry. The former amplitudes are of [3,1] character and
describe asymptotically the separation of one baryon
from the subcluster defined by the other three; the latter
amplitudes are of [2,2] character and describe asymptoti-
cally the separation of two subclusters, each containing
two baryons. Because the three nucleons are indistin-
guishable, there are only three distinct (ij,k;l) ampli-
tudes and two distinct (ij, kl) amplitudes. The partial-
wave projected, spin-independent amplitudes are con-
veniently expressed in terms of the two-body potential
form factors, energy denominators having the form
Xk, /2m;+B, where B is the total binding energy of the

four-body system, and five functions of two variables
which describe the positions of the two spectator
baryons relative to the interacting pair:

+(12,3,4)=g (k) 3 (p, q)/b, „,
%(12,3,4)=g (k)B(p, q)/bs,
+(12,3,4) =g(k)C(p, q)/hc,
ql(12, 34) =g (k)D (a., s)/bD,

+( 12,34) =g (k )F(», s) /b F .

(8a)

(8b)

(Sc)

(8d)

(Se)

The caret ( ) over a particle index denotes the A; over a
form factor it indicates that for the AN interaction. The
momentum variables are the normal Jacobi relative
coordinates defined in terms of the mass difference
5=(m„/m —1):

k= —,'(k, —k~),

p= —,'(k, +k~ —2k3),

1+5 3q= (k, +k, +k, ) — k4,4+5 4+5
with

(9a)

0= k& +k2+ k3+ k4

or

k= —,'(k) —k2),

1+5
k

1

2+5 ' 2+5

s= (k, +k2) — (k3+k4) .2+5 2

4+5 4+5

(9b)

These momenta are depicted in Fig. 1. The energy
denominators, expressed in terms of these momenta, are

FIG. 1. Momentum coordinates as defined in Eq. {9)of the
text.
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b„=k +3p /4+ q +mB,6(1+5)
3+5 2 4+5

4(1+5) 2(3+ 5)
2+5 k2+ 3+5 2 4+5 2

2(1+5) 2(2+5) 2(3+5)

(loa)

(10b)

(10c)
I

=k2 2+5 p 4+5
2(1+5) 4(2+5)

+5 I 2 2 +5 @2+pyzB2(1+5) 4(2+5)

(lod)

(10e)

The unknown spectator functions A I' are deter-
mined by a system of five coupled, two-variable homo-
geneous integral equations: The equation for A (p, q) is

r

A(pq)=1A z —3p /4 — q d k X pk+q/3z — q p q+2 4+5 2 3 4+5 2 1+5
6 1+5 6(l+ ) 3+5

+X p, k —2q/3;z — q D q — k, k
4+5 2 1+5

6 1+5 2+5

where the propagator is

2k
[m1A(z)] '=A, '+ fd k

z —k
(12)

X(p, p';z ) = U(p, p', z )

+ p"U p, p";z

X1 A(z —3p" /4)X(p", p', z),
with a driving term defined in terms of the NN separable
potential form factor as

and z = —mB. The kernel of the integral equation is, it-
self, the solution of an inhomogeneous integral equation,
one which describes the underlying off-shell three-body
problem

U(p, p', z ) = —2m (13)
z —(p +p' +p p')

The equations for 8(p, q) and C(p, q) are directly cou-
pled:

3+5 , 4+5
4(1+5)P 2(3+5) q

d k XNN p, k+ q;z — q A(q+k/3, k)3 1+5 4+5

r

2 4+5 2 1

3+5 q' 2(3+5) q q 2

1 4+5 , 1+X A p'k+ 3+5 ' 2(3+5) q C q —
3 5

k, k
I

+XN~ p, k — q;z — q F(q —k/2, k)
2+5 4+5

(14)

C( )
3+5 2 4+5

2(2+5) 2(3+5)

X dk LAN p, k+ q;z—3 1+5 4+5
3+5 ' 2(3+5) q A (q+k/3, k)

+ 2 D 1

3+5 ' 2(3+5) 2+5

4+5
AA p 3 5

q'
2(3 5) q C q+

2+5 4+5
+XAA p k — qz—3+5 ' 2(3+5) q F(q —k/2, k)
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where the propagators are

g (k)
[mrs(z)] '=A. '+ f d k

z —k

and

(16)

P

[mme(z)] '=(P) '+ f d k
z —k

with g=(2+5)/2(1+5}. The kernels of this set of cou-
pled equations are solutions of the coupled set of inho-
mogeneous equations

X&(p, p', z)=W &(p, p';z)+ g f d'p "U r(p, p";z)r,(z a—@" )X,&(p",p';z), (18)

UNN(pip';z )=0, (19a)

where aNN
——(3+5)/4(1+5) and aA~ ——(3+5)/2(2+5).

The Born matrix has the components
U„A(p, p', z )

1 1
g P+2 5P g P+2+5P

UN~(p, p', z ) = —2m

1+5
g(P +P/2}g P+ P2+5

2+5 2,p)
2(1+5) 1+5

2+5
P +

2(1 5)P +PP

g P +
2 P g(P+P /2)+

U~N(p, p', z ) = —m

2+5
2(1+5)P +P +PP

(19b)

(19c)
I

(19d)

where g(p) is the form factor for the NN potential and
g(p) is the form factor for the AN potential. Thus the
channel coupling coefficient matrix is of the form

0 2
C p

—— (20)

for the NNA cluster three-body problem in the spin-
independent limit. The equations for the D( ,K)sand
F(K,s) functions are also coupled:

D(K, S)=TD Z — K — S
2+5 , 4+5

2 1+5 4(2+5)

X d k YNN K, —k+ s;z — s A ( —2k/3+s, k)
1+5 4+5
2+5 ' 4 2+5)

T

+ YNN K, k+ S;Z — S 8 — k+S, k
1 4+5 2 2

T

+2YN& K, —k —s/2;z— 4+5 2 2+5
s C — k —s, k4(2+5) 3+5

P r

F(K,S)=1F Z —K
4+5 2 3 1+5 4+5

4(2+5) s d k YAN x, —k — sz—
2+5 ' 4(2+5)

s A ( —2k/3 —s, k)

T

1 4+5 2 2+ Y~N ]ck+ sz—
2+5 ' 4(2+5) 3+5

s B — k —s, k

4+5 , 2+5+2Y~~ sc, —k+ —,'s;z- s C — k+s, k4(2+5) 3+5

(21)

(22)

where the propagators are

k
[mrD(z}] '=A, '+ f d k

z —k
and

(23)

The kernels of this set of coupled equations are the solu-
tions of

Y &(K,k;z)=IV &(K,k;z)+ g f d k'W (K, k';z)

P

[mr, (z)]-'=(P)-'+ f d'k g
z —gk

(24)
Xv~, (z —ar,k' )

X Y,p(k', k;z), (25)
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where we have defined aNN ——g and aAA=1. The matrix
of driving terms contains the elements

WNN(K, k;z ) =0,
—mg (k)g(K)

NA K, ;Z '7

2+5
2(1+5)

(26a)

(26b)

—mg(k)g(K)
AN K, ;Z

2+5
2(1+5)

(26c)

$VAA(K, k;z)=0 . (26d)

The channel coupling coeScient matrix here is of the
form

Xtf Xts B +D
Xst Xss (34)

with

to the substitution of a A with s =—,
' for a neutron or a

proton in He. Thus, it is not surprising that the num-
ber of spectator functions in our model doubles from five
to ten when the model is extended to include spin-
dependent interactions. Indeed, the structure of the
equations is identical to that of the spin-independent
equations above. A11 quantities develop spin indices
(i,j =s, t) which indicate whether the interacting pair is
in a spin-singlet or a spin-triplet state.

Schematically, the resulting set of equations can be
written as

0
C p

——
1

0 (27)
'1

2
3
2

X~'i= U~i+ y U+ "X"i U~i = —C~i
"g)g.

D
(35}

A =X(8+D) (28)

with

X = U + UrX, U = Cg /D;— (29}

that is, the driving mechanism is the off-diagonal ex-

change of a A between the two-body subclusters.
Schematically, we summarize these results in a form

that makes the extension to the spin-dependent 0+ and
1+ equations more transparent:

and

c'J=

C,

C,

3 I

2 2

XNN XNN

XNN XNN

XAN XAN

XAN XAN

XNA XNA A, +D,
'

XNA XNA As +Ds
C+F

XAA XAA C, +F,

(36)

(37)

and

C XAN XAA

'I

XNN XNA A +D
C+F (30)

with

X~p ——U~p+ g U~r r rp, U~p ———C~p
k, y ap

(38)

with 0 0 1 3
2 2

gagp
X p

——U~p+ g U~r rrXrp, U~p —C~p-
r ap

(31) C'Jp ——

0 0
3 1 3

4 4 4 4
(39)

and

YNN Y

F YAN YAA

A+B
2C (32)

and

D,
'

3
4

I 3 1

4 4 4

YNN 0 YNA 0 'A, +B, '

with D, 0 YNN 0 YNA As +Bs
gagp

Y p W p+ + W rsvp Yrp W p C p (33)

Before leaving the spin-independent equations, we
should point out that it is the A amplitude that corre-
sponds to constructing AH and AHe as a A bound to a
trinucleon core. The other four amplitudes correspond
to other means of building the A =4 A-hypernucleus.
For the naive A g N picture to be valid, the B.. .F am-
plitudes must be negligible compared to the A ampli-
tude.

with

F,
F,

YAN 0

0 YAN 0

0 0 1 0

0 2C,

2C,

(40)

(41)

A. 0+ state

The 0+ A-hypernuclear state has exactly the same
spin structure as the 0+ alpha particle. It corresponds

0 0 0 1
C $J

1 0 0 0
0 1 0 0

(42)
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1

4

3 1

4 4

3
'

4

The sign differences in the off-diagonal elements between
these matrices and those of Ref. 1 are due to the use
here of the more standard convention in defining the
spin-isospin coupling coeScients. However, there was
an error in the derivation of the C'& appearing in Ref. 1;
the form of C J& given here in Eq. (39) is the correct one.
Because the spin dependence of the AN interaction is
weak, the numerical significance of the error proved
small; both sets of equations reduce to the proper five in
the spin-independent limit. The C ~& is a direct product
of the channel coupling matrix C,& and the spin-isospin

coupling unit matrix. The spin-isospin coupling is diag-
onal because the spins of the two-body subclusters (s and
t) must combine to an overall spin 0 for the 0+ state.

I

The i,j are spin indices (s, t), so that there are ten specta-
tor functions and corresponding amplitudes instead of
five in the spin-independent limit. The coupling
coefBcient matrices contain the essential differences be-
tween these spin-dependent equations and the spin-
independent equations above. Both C' and C J& are
direct products of C =2 and C & of Eq. (20) with the
spin-isospin coupling matrix

One can anticipate that this coupling cannot be diagonal
for the 1+ state.

B. 1+ state

The spin structure of the 1+ A-hypernuclear state
differs from the familiar alphalike structure of the 0+
state in that S=—,

' three-baryon subclusters appear. Al-

though one might consider it tempting to neglect the
S=—,

' trinucleon excited states that are found in the A

type of spectator function, the S=—,
' hypertriton excited

state lies very close in energy to the barely bound S=—,
'

hypertriton and cannot be neglected in the B and C type
amplitudes. Thus, we retain these additional functions
throughout. The appearance of S=—', subclusters means

that we must distinguish these quartet functions with
spin-triplet interacting pairs from the doublet functions
with spin-triplet interacting pairs as exist in the 0+ state
equations. We denote the doublet functions with a sub-
script "d" and the quartet functions with a subscript
"q."Thus, there are 15 spectator functions A;. . .F; with
index i running over q, d, s compared with 10 (i =s, t) in
the 0+ case.

The full derivation of the 1+ equations is tedious and
will be presented elsewhere. However, the equations
readily follow using the procedures of Refs. 1 and 36. In
analogy with Eq. (8), the following 15 terms are needed
to construct the wave function 4 by means of standard
permutation operations:

g, (12)Aq(3, 4)/b, „[X'(123)X —,']('}ri'(Q, 3),

g, (12)Ad (3,4)/6 „[X"(12,3)X —,
' ]('}ri'(Q, 3),

g, (12)A, (3,4)/b, q [X'( Q, 3)X —,
' ](')ri"(12,3),

g~(12)Bq(4 3)/bs [X (124)X—,']( }ri (Q 3)

g, (12)&d(4, 3)/&s [X"(12,4) X —,
' ]('}ri'(12,3),

g, (12)&,(4, 3)/bs [X'( Q, 4) X —,']"'ri"(12,3),
$(34)[Cq(1,2)+Cq(2, 1)]/6c I&2/3[X'(34) XX (12)]('}ri"(12,3)+V 1/3[X'(34) XX'(12)]('}ri'(12,3) I

g, (34)[Cd(1,2)+ Cd(2, 1)]/hc I
—v I/3[X'(34) XX (12)] '}ri"(12,3)+v'2/3[X'(34) XX'(12)]('}ri'(12,3)),

g, (34)[C,(1,2)[X'(+,1)X-,']'"+C,(2, 1)[X'(A,2) X —,']('}j /hc g'( Q, 3),
g, (12)D (34,s)/hD [X'(12)XX'(34}]('}ri'(12,3),
g, (12)Dd(34, s)/bD [X'(12)XX (34)]('}ri'(12,3),
g, (12)D,(34,s)/bD [X (12)XX (34)l( }g (1»3) ~

g, (34)F (12, —s)/hF [X'(34}XX'(12)]('}ri'(12,3},
g, (34)Fd(12, —s)/b~ [X'(34)XX (12)]('}ri"(12,3),
g, (34)F,(12, —s)/hF [X (34) XX'(12)](')ri'(12 3)

(43)

In Eq. (43), X' and X" (g' and ri") are the doublet spin
(isospin) functions of three spin —,fermions having mixed
symmetry; in P', particles 1 and 2 are coupled to spin 0
[the caret ( ) denotes that they are antisymmetric under

the permutation operation] while in X", particles 1 and 2
are coupled to spin-1 (the overbar denotes that they are
symmetric under the permutation operation). Note the
isospin asymmetry between the D, and F, amplitudes for
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A'+'=(2A, +~2 A, )/3,

B~+~ (2Bd +~2Bq)/3

C'+'= (2Cd +~2Cq )/3,

(44)

and

i =q, d. The combinations of C; are those needed to pro-
vide correct permutation symmetries assuming even par-
tial waves, as we do. In our numerical solution of the
resulting equations, we truncate the partial wave expan-
sion at l =0, which is the reason for this choice.

We find it convenient to construct linear combinations
of the [3,1] spectator functions in writing the coupled in-

tegral equations. In particular, we define

'= —&1/3(Ad —&2A ),
'=+&1/3(Bd &—2B ),

C' '= —&1/3(Cd —V2C ) .

(45)

The B and C amplitudes will appear only in these com-
binations in the equations below. The orthogonality of
the S=—', and S=—,

' trinucleon states and the fact that
they are the core states of only the A amplitudes leads
to a separation of the (Ad, A, ) coupled equations from
the A equation. A similar decoupling of the D and F
equations from the (Dd, D, ) and (Fd, F, ) coupled equa-
tions also occurs. Thus, we are led to five sets of in-
tegral equations to be solved as compared with the three
sets in the 0+ case.

The coupled integral equations which determine the
four-body spectator functions A;. . .F; are, schematical-
ly,

2A X [(B + +&2/3Dq)+2&1/3(B +Dd ) j
Xn X'rs (B'+'+v'2/3D ) —Vl/3(B' '+Dd )

Xst Xss B,+D,

(46)

(47)

B(+)
B(—)

B,
C(+)

C( —)

C,

XNN XNN

XNN XNN

XNN NN

XAN XAN

XAN XAN

N XAN

XNN

XNN

X-+

XNA

XAN XA

XAN

XAN

XNN XNA XNA

XNA

XNA

XAA

XAA

A, +D,
C'+ '+ &2/3F,

C(-'+D„
C, +D,

XAA

XN+A A (+)+v'2/3Dq

A' '+D,
XNA

(48)

and

&2/3Dq

&2/3Fq YAN Y tt
AA

YNN YNA A (+)+B(+ )

2C(+ )
(49)

YNN

0

YAN

Dd
D,
Fd 0
F

0 0

YNN

YAN YAA

0 0

YNA

0
A '-'+B'-'

A, +B,
2C'-'
2C,

(50)

X tt Utt+ Utt tXtt Utt Ctt
D

(51)

These equations have the same generic structure as do
the analogous equations for the 0+ state. The integral
equations defining the kernels of Eqs. (46)—(50) are also
of the same form as those obtained for the 0+ state. The
kernel equations are

Y-"p = ~-"p+ X ~-".r'v Y"p

Y'
p
——W' p+ g W'" r"Yrp,

k, y

W' = —C'
aP aP DaP

(54)

(55)

XV Uv y U+ kXki Uv — CV
D

(52)

(53)X'Jp ——U'Jp+ g U'" HX"'p, U Jp —— C'Jp-
k, y aP

The spin indices (i,j) in Eq. (53) run over (+,—,s)
where (+,—) correspond to a spin-triplet form factor
and ~ propagator. The spin-isospin coupling matrices
for the 1+ state are
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Ctt (56)

C'J =

C'Jp ——

1

2

3
2

3

1

2

3
2

1/2&3

v 3/4

0 —1

&3/2 &3/2

3
4 4

—&1/3

&3/2

1/2&3

&3/4

(57)

(58)

—~3/4 1

4 &3/4 &3/4 &3/4 1

4

C tt —1 0
(59)

and

0 0 0 1

0 0 1 0
WVC~—oooo

1 0 0 0

(60)

There is no real analog of this A-hypernuclear 1+

state to be found in the four-nucleon system. Four nu-

cleons in an s state having spin of 1 is not allowed by the
Pauli principle. However, the 1+ equations do reduce to
the original set (that is, there exist in the spin-
independent limit, three decoupled sets of five equations
of which only one set has a nontrivial solution) as do the
0+ equations in the spin-independent limit. Thus, it is
the spin dependence of the AN interaction that leads to
the splitting of the states observed experimentally. How-

ever, we argue in the next section that this spin depen-
dence is much more subtle than heretofore has been un-

derstood.

IU. NUMERICAL RESULTS

%e solve the exact integral equations outlined in the
previous section without resort to expansion of the ker-
nels. The resulting solutions possess the characteristics
of true few-body calculations: ' for an attractive poten-
tial with a negative scattering length (no bound state),

~

a
~

&
~

a'
~

implies that V is more attractive than V' in

two-body, three-body, and four-body calculations; in

contrast r & r' implies that V is more attractive than V'

in a two-body calculation, but less attractive in both
three-body and four-body calculations. Even though
this is an oversimplified picture, it does help one to un-

derstand qualitatively the results described here for Ez,
the 0+ —1+ binding energy difference, in terms of the
scattering lengths and effective ranges of the various po-
tential models defined in Table I.

In order to make clear the magnitude of the effect of
suppression of the A-X conversion in our true four-body
calculations, we consider first the model based upon the

free YN interactions defined in columns one and two.
The singlet potential is more attractive than the triplet
potential in the two-body sense outlined above:

~
a,

~

&
~
a,

~

and r, &r, How. ever, the significant
difference in the size of r, compared to r, means that the
calculated values of Er =B(~H)—B(xH') is determined
principally by the effective range difference rather than
the difference in the scattering lengths. Because we have
r, & r, (which implies that the triplet interaction is
stronger than the singlet interaction in a true four-body
calculation) and because the triplet interaction dom-
inates the YN interaction for the 1+ state, the 1+ state
will be more bound than the 0+ state in this model.
These potentials which describe free space AN scattering
will bind the 1+ state more than the 0+ state in an exact
equation four-body calculation. Indeed, we find that
E = —1.0 MeV for this case, which has the wrong sign.

It is also of interest to note that had we attempted to
calculate Er in a zero-range type, mean field model (e.g. ,
a shell model calculation based only upon the a, and a,
scattering length information), we would have found a
value of less than 0.1 MeV for E~ because a, =at.
(However, the sign would be correct. ) Alternatively, if
we utilized the full potentials in a folding model ap-
proach of the Dalitz-Downs type, then a larger value
of Er would be obtained with the correct sign. (Recall
that

~
a,

~
&

~
a,

~

and r, & r, imply that V' is more at-
tractive than V' in any effective two-body calculation. )

However, even if such an approximate calculation were
to yield a correct value of E, the physics would be
wrong [This situation .is similar in spirit to that which
resulted when incorrect two-body model calculations
managed to reproduce the He(y, d)p cross section by
distorting the deuteron in the final state, when in fact
the cross section enhancement is due to the transfer of
strength from the T= —,

' three-body channel through the
off-shell n+d'~n+d rescattering, a process which is
entirely omitted from the approximate two-body formal-
ism. ' ' ] Furthermore, if such a model were extended
to the A =5 system and used to estimate the A-
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separation energy of „He, it would severely overbind
that hypernucleus.

To obtain a correct picture, one should take into ac-
count the spin-isospin suppression of the off-diagonal po-
tentials outlined in Sec. II. (X suppression in ~He has
been considered as a possible explanation of the anoma-
lously small A =5 A-separation energy for some
time. ' ) The modified singlet potential (corresponding
to ——,

'
VX& ) of column 3 in Table I is combined with the

free triplet potential of column 2 for the 0+ calculation.
Similarly, the modified triplet potential (corresponding
to —,

' Vx~) of the last column is combined with the free

singlet potential of the first column for the 1+ calcula-
tion. These are the potential combinations given in Eqs.
(3) and (4) in Sec. II. It should be clear that the
modified potentials of columns 3 and 4 are weaker than
the free space potentials from which they were generat-
ed. Thus, both the 0+ and 1+ A =4 bound-state ener-
gies are reduced compared to the values calculated using
the free AN scattering potentials. Because the off-
diagonal coupling is multiplied by a smaller factor in the
triplet case ( —,

'
) than in the singlet case ( —

—,
' ), the 1+ ei-

genvalue is reduced more than the 0+ eigenvalue. In the
model calculations that we report here (see Table II), we
find

E =B(0+)—B(1+)

=9.6—8.2

=1.4 MeV .

Hence, the 0+-1+ binding energy difference in this true
four-body model calculation is qualitatively correct. The
value of E~ has the correct sign and order of magnitude.
In addition, the 0+ ground-state binding energy yields
the approximate A-separation energy. The H binding
energy in our model ' is about 7.1 MeV, such that we
obtain

Bq( A =4)=B(0+) —B( H)

=2.5 MeV,

in reasonable agreement with the experimental values of
B~( He) and B~(„He) in view of our neglect of charge
symmetry breaking in the YN interactions and the ten-
sor nature of the spin-triplet force. '

It is well known that a tensor force is less effective in

TABLE II. A =4 A-hypernuclear binding energies calculat-
ed with the YN potentials of Table I as indicated by the
column numbers. The NN potential is the 7%%uo deuteron D-
state model of Ref. 32 in the truncated t-matrix approximation
as discussed in Ref. 41. Binding energies are in MeV.

binding few-body nuclei and hypernuclei than is a cen-
tral force (see, for example, Refs. 1, 9, 10, and 32).
Therefore, it is quite possible that tensor force effects
can also help lower the triplet potential dominated 1+
binding energy below that of the 0+ binding energy. [It
was shown in Ref. 1 that use of a YN tensor force will

lower the 0+ binding by several tenths of an MeV,
which would bring the value of B~(A =4) obtained
above into better agreement with the data. ] In such a
model, the assumption of complete suppression of AN-
XN coupling through the T= —,

' trinuclear core states
made here could be relaxed, and an approximation of
the suppression could be made by adding the large exci-
tation energy of the T = ,'trinu—cleon states (estimated

to be more that 70 MeV) to the A-X mass difference.
That and solving the full set of equations including T=—,

'
nuclear core states must be left to the future.

V. CONCLUSION

We have examined the A =4 0+-1+ binding energy
difference in terms of a YN potential model which ad-
mits explicit AN-XN coupling and exact four-body in-
tegral equations. Assuming that the free YN interaction
acts unmodified in the A =4 hypernuclear system leads
to an incorrect (inverse) ordering of the 0+ and 1+
states. Assuming that the AN-XN coupling to the T= —',
states of the trinucleon core states is completely
suppressed leads to a 0+-1+ binding energy difference
which is qualitatively correct for the potential model in-
vestigated. Ez has the correct sign and is of the correct
magnitude. The physics of the calculation is correct in
that the binding energies reflect properly the properties
of the YN force model resulting from true four-body cal-
culations.

An exact equation, four-body calculation utilizing the
full, coupled AN-XN potential including tensor com-
ponents is required to test our hypothesis that coupling
through the T= —,

' trinucleon core states is so strongly
suppressed. Nonetheless, the numerical results present-
ed here are indicative that X suppression through this
mechanism is a significant factor in understanding s-shell
A-hypernuclear binding energies.
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APPENDIX: THE AN-XN POTENTIAL

We assume that the coupled AN-XN potential is of
the form

Potential
combination

(1,2)
(2,3)
(1,4)

B(0+)

10.7
9.6

11.7

8.2
where

VJ =c;Jg;(p)gj(p) . (A2)
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The c; matrix is det(k) = (1 c—~NI& )(1 c—xNIx )+cxNIxI~ . (A5)

The Green's function integrals I„and I& are the usua1

c= (A3) I =2w
—Pw —p +~@

(A6)

2I g 2I

so that the interaction has identical o8'-diagonal
strengths A,&.

The AN scattering amplitude can be expressed as

f (k)= 2'—~(2n )t„N

[cAN —(cANcxN —cx~N )Ix(k)], (A4)
det(k)

where the denominator is the determinant

and

d'p gx(p)
Ix ——2@xI, k =k )Mx/)uz —2@x(mx —mz) .

2 p2

(We assume that one is only interested in the AN
scattering below the X threshold, so that there is no pole
in Ix in the region of interest. )

In the effective range limit (k ~0), we obtain

2

~x

2' Ap
2 +

2K
rAN

p
+ 2

r

where b, =2lsx(mx —m~).

tr Ax
1 —(1 —A.x/A. ~A, x)

2px(px+b, )' px(px+ &)'

2 2 —1'
px/pp A,» tr kx

+ 1 — 1—
~(px+ ~) ~d x px(px+ ~)'P„A,x

1 — 1—
px(px+ ~)' ~dx px(px+ ~)'

(A8)
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