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Coexistence in the even zinc isotopes
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A generalized two-state coexistence model developed to describe the 0+ to ground state cross-

section ratios in the (p,t) and (t,p) reactions on even-even nuclei is applied to the zinc isotopes. We

demonstrate that two-state mixing wave functions for the ground state and excited 0+' state in
"Zn can quantitatively account for all cr(0+ )/0 (g.s.) ratios in Zn(p, t) and Zn(t, p). Finally, we

couple these 0+ wave functions with a set of two-state mixing 2+ wave functions to describe the

E2 transition-rate data in Zn.

I. INTRODUCTION

It is well known that the direct-reaction process is not
restricted to single-particle transfer. Specifically, the
shapes of angular distributions resulting from the
transfer of two neutrons [i.e., (p, t) and (t,p)] are, in most
cases, accounted for by distorted-wave Born-
approximation (DWBA) calculations. If spin-orbit
forces are neglected, the cross section for two-nucleon
transfer can be written as'

o(8)= g f(S,T) gS'~ (pA, ;JT)B(LL,HEQ)
SJTLL pA,

where the kind of reaction [i.e., (p, t) or (t,p)] enters into
the function f (S, T). The kinematics of the reaction
(i.e., the scattering angle 8, the beam energy E, and the

Q value Q) enters through the transfer-amplitude func-
tion B(LL,BEQ). All nuclear structure information is
contained in the spectroscopic amplitudes S' (pA, ;JT).
Unlike the simplicity in single-particle transfer, the sum-
mation in Eq. (1) over the shell-model orbits p and A, of
the transferred pair makes it not possible to factor the
cross section into the nuclear structure part S'~ (pA, ;JT)
and the nuclear reaction part B(LL,HEQ). For this
reason, any comparison between experiment and theory
requires the existence of some nuclear model space and
interaction (i.e., a shell-model Hamiltonian and initial-
and final-state wave functions) to calculate the spectro-
scopic amplitudes and a set of optical-model parameters
and potentials to calculate the transfer amplitudes.
Moreover, the final calculated cross sections are very
sensitive to the details of the shell-model Hamiltonian
and thus very model dependent.

For nuclei beyond the sd shell, there exist very few
systematic shell-model calculations which fit the experi-
mental energy levels over an extensive range of nuclei.
Moreover, many of the existing calculations cannot ac-
count for the energy levels of the so-called "intruder"
states. These intruder states are not present in a typical
"reasonably sized" shell-model space. Of course, one
can always enlarge the model space to include these in-
truders, but then the calculation would become impracti-

cal. In this paper, we are concerned with the two-
neutron pickup and stripping reactions to the ground
state and low lying excited 0+ intruder state in the re-
sidual nucleus. Cross sections as described in Eq. (1)
cannot be calculated for these states since they are not
present in the shell-model space. In an attempt to study
these intruder states, we investigate the possibility of
quantitatively describing the 0+ /g. s. (p, t) and (t,p)
cross-section ratios using a two-state coexistence model
and assuming as little as possible about the initial- and
final-state model wave functions.

and

with u„and P„assumed real and a„+Pz ——1. Two-
neutron transfer amplitudes connecting the basis states
are as depicted in Fig. 1. The two-neutron transfer am-
plitude ratios r„,s„, and R „are assumed rea1, indepen-
dent of A and equal in pickup and stripping (i.e.,
r„=r =s„=s and R„=R). The basis states are not
otherwise specified. The calculated 0+ /g. s. cross-section
amplitude ratios, denoted by

~
T„~ for stripping and

~
P„~ for pickup (where A is the lighter of target and

residual nuclei) are then given by

and

x g +1 ( 1 —xgxg +p) —xg +2R

xgxg+2+r(xg jxg+2)+R

xg+2+r(1 —xgxg ~2) —xgR
x„xa+2+r(xx+x~+2)+R

(3a)

(3b)

II. THE MODEL

We report herein on a two-state coexistence model
analysis of (p, t) and (t,p) data on even zinc isotopes. The
model, hereinafter referred to as Rerg1, has been
developed in detail and applied successfu11y ' to even
germanium isotopes. Briefly, the physical ground state
and excited 0+ states are given in terms of basis states
P" and P," by the general relations
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result is consistent with the assumption that az, P„, r,
and R are real and it allows one to require also that P„
and T„are real.

For this model to be consistent with the o(0+ )/
o(g.s.) data, it is both necessary and sufilcient that the
data satisfy the conditions

FIG. 1. Basis state definitions of r&, s&, and R &.

where x„=a„/P„.
It is seen through DWBA calculations for two-

neutron transfer (assuming the same two-neutron
bound-state wave function for the ground state and 0+
state), that there is very little difference in phase between
[aDwBA(g. s. g.s.)]' and [0 DwBA(g. s.~0+ )]' . This

( T„+2 P„—}(T„2 P„—}(1+T„)
Lq= = 1 ( for all A ),

(P„+2—T„)(P„2—T„)(1+P„)
(4)

which leads to the constant equation

r =R +Ez(R +1) (5)

Here I( „ is determined completely by the data, is in-

dependent of A, is negative, and has the form

(P„2 T„)(T—q 2 P„)—
Eq ——

2 2(PAPA z
—TqTq 2) +(P~+Pq p

—Tq —Tq ~)

The mixing amplitudes a„and P„can then be deter-
mined in terms of the single parameter R, which is
mathematically restricted only by the bounds of the el-
lipse (since E„&0) of Eq. (5) when viewed on an R-r
plane. One notes from Eq. (6) that 1+4E„)0and so
R can always be chosen to lie near unity and solutions
for both r positive and r negative are allowed. We
choose a phase convention in which all the x„'s are
non-negative. Thus, for complete constructive interfer-
ence in the 0'"(g.s.)~%"+ (g.s.) two-neutron transfer
overlaps, one would expect r to be non-negative. Of
course, by assuming that r =s, one can always trans-
form, by a change of basis to the basis set that has r —=0.
However, this choice of basis may not always be con-
sistent with the above phase requirement. This phase
convention can further restrict the values of the parame-
ter R beyond those already required by the elliptic na-
ture of Eq. (5). We also define the mixing potential
U„= E„a„I3„(—E„ in nucleus A being the excitation
energy of the physical 0+ state relative to the physical
ground state and always positive). In terms of x„,
U„= E„x„l(1+x„—) and is well defined everywhere
and (under our phase convention) is aways non-positive.

The method for constructing the mixing probabilities
for the wave functions in Eq. (2) is then to start with the
data points and their uncertainties (denoted by
T„+bT„and P„+AP„), and deduce the "best-fit"

0 0 0 0
cross-section ratios (denoted by Tz and P„) by minimiz-
ing the least squared function

' —1

X2 3 =A'

+l(T~ —T~ )/~T~ ]'I

subject to the ( A "—A '+2) l2 conditions that L„=1

for A = A '+2, A '+4, . . . , A "—2. A "good" fit occurs
when g is small and the smallest g will determine the
best-fit values of Tz and P„and their signs. The values
of x„and, hence, a„(or P„=l—a„) are obtained in
terms of R by the equations provided in Ref. 2. In addi-
tion, it was shown in detail that not all solutions ob-
tained this way are independent. They are related
through reflections of the form r~ r, R~l/R—, and
(P~, Tz )~( Pz, —T„).—Through these symmetries,
the number of independent solutions is reduced by at
least a factor of 4.

The simple-model limit (SML), for which R =1 and
r =0, was explored by Vergnes and others. ' This limit
can be physically realized, for example, when
represents a two-phonon excited state in the vibrational
limit and P" represents a zero-phonon ground state, or,
for example, when ((),

" contains no two-neutron excita-
tions from P". In the former case, P," and P" are con-
tained in the same model space and so ((),

" is not an in-

truder state, while in the latter case, P,
" is an intruder

state since it is not contained in the same model space as
The SML was shown to approximate the Ge

data, but (as we shall see later} is not at all appropriate
for any of the zinc isotopes. The Rergl model allows
one to fit the o (0+ )/o(g. s.) data for an entire string of
isotopes in even-even nuclei. In practice, the value of
1+4K& in the Rergl model is very nearly zero leading
to R = 1 and r =0. We define as the approximate
simple-model limit (ASML), that set of signs for which r
is small and R is near unity, in which case (since
1+4K„=O) we must have T„+P„=O, or T„P„&0
for all A. That is, the signs taken from Eqs. (3a) and
(3b) should be opposite for pickup and stripping. This
limit can also be physically realized, for example, when

P," and P" represent small deviations from a two-phonon



558 M. CARCHIDI AND H. T. FORTUNE 37

and zero-phonon vibrational state, respectively, or for
example, when P," contains small two-neutron excitation
configurations from P ".

III. SELECTION OF THE ZINC DATA

In the above Rergl model, the physical ground state
and physical excited 0+ state result from mixing be-
tween the basis ground and excited states. It is not al-
ways transparent which excited 0+ state is mixed with
the ground state. Some guidance in choosing the mixed
excited 0+ state can be found in the A dependence of
the energy for the excited 0+ state. Specifically, the ex-
citation energy of the mixed excited 0+ state should, as
a function of mass number A, be high for the lighter iso-
topes, reach a minimum around midshell, and then in-
crease again for the heavier isotopes. As mentioned
earlier, since the mixed excited 0+ state is an intruder
state, it should not be reproduced in a simple shell-
model calculation. For the zinc isotopes, she11-model
calculations have been performed using the unrestricted

Ip3/g Of 5/g lp, /z model space (i.e., closed Ni core) and
an effective Hamiltonian obtained by Koops and
Glaudemans from a fit to low-lying nickel and copper
level energies. Their results show that the first excited
0+ states are correctly predicted in Zn and Zn, but
are calculated too high for the heavier-mass zinc iso-
topes. Therefore in Zn and Zn, there may exist an
ambiguity as to the correct excited 0+ state to be used in
the present Rergl model. Usually one chooses the first
excited 02+ state as the mixed state since it is the closest
in energy to the ground state and thus would require a
smaller potential for the mixing. However, in some
cases, the next excited 0+ state, 03+, is a better choice.
This ambiguity exists, for example, in the Ge nucleus,
where 03+ appears appropriate. Figure 2 gives a plot of
the low-lying positive parity states in the even zinc iso-
topes. Therefore, using the guidelines from Refs. 6 and
7, the choice of the 02+ state as the mixed state in

Zn is reasonable. However, in Zn it is not clear
which excited 0+ state to use (either the 02+ level at
1.910 MeV, the 03+ state at 2.609 MeV, or even the 04+

state at 3.240 MeV). Of course, the "V-shaped" excita-
tion energy dependence in the intruder 0+ level would
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FIG. 2. Low-lying positive-parity states of even-even zinc
isotopes.

favor using the 04+ as the excited 0+ state to be mixed
with the ground state in a two-state mixing model.
However, for completeness, we shall consider calcula-
tions using all three of these excited 0+ states in Zn.

As can be seen in Eq. (4), a complete description of
(t,p) and (t,p) data using the Rergl model requires the
knowledge (for a given Ao) of at least six data points of
the form P(„2),, P„, P(„+2),, T(„2),, Tq, , and2 2 2 2 2

T~„+2~ . If we assume that the mixed excited 0+ state
0

is the first excited 0+ state, then for the zinc isotopes
there exists in the literature' ' the measured values of
P~, P&s, T64, Ts&, and T6s. The Zn(p, t) Zn reaction
has been measured' at 17.5-MeV proton energy, but the
poor resolution of the data and the presence of Zn in
the Zn target did not allow a complete separation of
the 02+ level (at 1.656 MeV) in Zn from the ground
state of Zn and, therefore, the cr(02+)/cr(g. s.) ratio was
not determined. We have measured the Zn(p, t) Zn re-

TABLE I. Experimental cross-section ratios for 2n pickup and stripping on even zinc isotopes.

0 p(0/+ )/& p(g s )

62
64
66
68
70

Ep 35 MeV

0.0016+0.0002
0.006 +0.0012

0.1812+0.0091

(p, t)

Ep ——51.9 MeV'

0.0025+0.0006
0.0077+0.0019'
0.0490+0.0147'

(t,p)

E, =12 MeV

0.0114+0.0023
0.0123+0.0018
0.0374+0.0056
0.1145+0.0172

'A is the target nucleus for (t,p) and the residual nucleus for (p, t).
Reference 11 (0, =20 ).

'Reference 10.
Reference 12.

'Angle integrated cross sections taken from Ref. 10.
Reference 15.
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TABLE II. Optical-model parameters used in the DWBA analysis. '

V

(MeV)

50.5
168.0

l'0

(fm)

1.15
1.20

a
(fm)

0.65
0.65

W
(MeV)

13.5

W'=4WD
(MeV)

60.0

I
tp

(fm)

1.25
1.60

a'
(fm)

0.47
0.87

Tp

(fm)

1.30
1.30

'From J. F. Mateja et al. , Phys. Rev. C 17, 2047 (1978), except for the change rp ——1.15 for protons.

action' using a 35-MeV proton beam generated from
the Princeton Cyclotron and have determined a precise
value for P68, thus completing the six data points neces-
sary to do a Rergl analysis of zinc.

The resulting measured cross-section ratios, P„and
0

T„, to be considered in our analysis are summarized in
0

Table I. In that table the T~ data were all measured at
0

a forward angle (0, m =5. 1'). The P„results are from

data at 20' because data for all nuclei do not exist at for-
ward angles, and in most cases the cross section at 20' is
larger than that at forward angles which means that the
ratio P„ is better determined. In addition we found

0

Zn(p, t) data measured at E =35, 51.9, and 55.12 MeV.
For the case of the ' Zn(p, t) ' Zn reactions at 51.9
MeV, the 0 (02+)/o (g.s.) ratios are from angle-integrated
yields. The kinematic differences between the measure-
ments at E =35 MeV and E =51.9 MeV show why it
is important to remove kinematic A dependent in these
cross-section ratios before we can proceed with the
Rerg1 analysis. To correct the data for these "Q-value"
effects, DWBA calculations were performed with the
code DwUcK (Ref. 16) using the optical-model parame-
ters in Table II and a mixed configuration form factor'
containing the 2p, /2, lf5/z, and lg9/2 orbitals. The
optical-model parameters in Table II were chosen be-
cause they fit' the angular distributions in the

Zn(p, t) Zn reaction. Calculations were performed for
all beam energies (in accordance with the kinematic-
correction procedure described in Refs. 2 and 3) at
which the experimental numbers were measured. Ratios
of DWBA cross sections are summarized in Table III.

We note that these ratios are very nearly unity in all
cases. This results from the fact that the same mixed
configuration form factor is used in both the g.s.~g.s.
transfer and the g.s.~0+ transfer. In this way, we can
remove from the experimental cross-section ratios those
effects due only to Q-value differences. To investigate
configuration dependences in the DWBA calculations,
we also ran the code DwUcK for bound states of pure
(lg9/2)Q and of pure (2p, /p)o and we used these results
to estimate the uncertainties in the DWBA ratios. The
final Q-corrected ratios, along with their uncertainties to
be used in the Rergl analysis, are summarized in Table
IV and are plotted versus neutron number N in Fig. 3.
Also in this figure are the Q-corrected 0+/g. s. cross-
section ratios from the germanium data used in Ref. 3.
The similarity of the two sets of ratios may imply that
the "neutron" part of the wave functions for the ground
states and 0+ states in germanium and zinc are similar.

IV. THE Rerg1 ANALYSIS
ON THE ZINC ISOTOPES USING THE

Og+ STATES AS THE MIXED-EXCITED 0+ STATES

When a least-squared minimization of Eq. (7) is per-
formed on the zinc data, many possible signs in P„and
T„yield a small value for P . Of these, only two in-
dependent solutions satisfy the ASML. These corre-
spond to the following. (a) all P„negative and all T„
positive (denoted by calculation No. 1), yielding P =0.1

and 2) that where P64, Tss, and Tss are negative with

0.6
ZINC
GERMANIUM --—

~os

TABLE III. DWBA calculated cross-section ratios for 2n
pickup and stripping on even zinc isotopes using the same
mixed configuration 2n bound-state wave function for the
ground state and 0+ state.

+DlVBA( 2 ) / ~DWBA(g

(p,t)' (t,p)
Ep 35 MeV E~ =51.9 MeV E,= 12 MeV

O

b

04—

0.3—

b 02-

62
64
66
68
70

0.844
0.957

1.034

1.135
1.117
1.156

1.099
1.021
0.991
0.942

0.1—

I I I I I I I

32 34 36 38 40 42 44
N

'Ratio of the 20' points.
Ratio of the 0' points.

FIG. 3. Experimental
~
P„ I

and
~
T„ I

ratios vs neutron
0 0

number N, in zinc and germanium.
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TABLE IV. Cross-section ratios corrected for Q value (Expt. /DWBA).

p2 8
Ao TAO

62
64
66
68
70

E„=35 MeV

0.0019+0.0003
0.0063+0.0013

0.175 +0.0123

E„=51.9 MeV

0.0022+0.0006
0.0069+0.0019
0.0424+0.0140

E, =12 MeV

0.0104+0.0021
0.0121+0.0021
0.0377+0.0057
0.122 +0.020

'The P„' numbers to be used in the analysis are the averages of the 35-MeV and 51.9-MeV points,
0

whenever both exist.

the rest all positive (denoted by calculation No. 2) giving
g =0.4. In both cases, in order to fulfill the phase re-
quirement x„)0 (or —U„)0) for all A from 64 to 70,
it was necessary to require r negative. The plots of a„
and —Uz versus R for the various calculations are given
in Figs. 4—7. As mentioned earlier, a negative r value
indicates destructive interference in the physical g.s. to
g.s. 2n-transfer overlaps in the sense that the expression
for cr[ "X(t,p)" + X(g.s.)] does not contain all positive
terms. The germanium analysis of Ref. 3 had r positive
indicating constructive interference in the physical g.s.
to g.s. 2n-transfer overlaps. A look at Figs. 5 and 7
shows that for both calculations, the physical region for
R (that region where all x„'s are non-negative or,
equivalently, all —U„'s are non-negative) is almost the
entire mathematical region determined by the elliptic na-
ture of r and R [Eq. (5) with E„neg taive]. The plots of
az (Figs. 4 and 6) for each calculation show that the
mixture of the basis states for Zn (i.e., a7o) is different
from that of the lighter isotopes (i.e., a«6s). This re-
sult is consistent with the suggestion that there exists a
transition with A in the zinc isotopes with the "point of
transition" occurring at N =40 and with an earlier
analysis' of the " Zn( Li,d) "Ge reactions. A similar
transition exists in the Rergl study of the germanium
isotopes also at %=40.

The two-state Rergl analysis produces a continuous

family of solutions all expressible in terms of the single
parameter R. No one particular R value is preferred un-
less we rely on other information. A look at Fig. 7
shows that for calculation No. 2, we could "almost" re-
quire the mixing potentials for each isotope to be equal
(at about —0.49 MeV). With this requirement, calcula-
tion No. 2 would "prefer" an R value of 0.688. Calcula-
tion No. 1 (Fig. 5), on the other hand, would give three
mixing potentials almost equal to —0.485 Me V at
around R =1.416. The values of K~ in both calculations
are very nearly equal to the simple limit of ——,', but their
uncertainties do not overlap this simple-model limit.
Therefore a SML-type analysis here will not fit the data.
This fact is also especially evident from the observation
that none of the zinc data satisfies P„=T~, a necessary
requirement for the SML to work.

In the ASML discussed above, we required Pz and

T„ to have different signs in order for Pz+T„ to be
"small. " If, however

~ P„~ and
~
Tz

~

are both small,
their sum is small for any choice of sign. In the case of
zinc, both ~P« ~

and
~
T«

~

are small and if we drop
the restriction of P64 T64 negative, then there exists
another acceptable Rergl solution (72=1.5) to the 2n
transfer data (denoted by calculation No. 3). This corre-
sponds to having T«and T68 positive, and all the rest

1.0—

0.8-
Q

2

0.6—

0.4—

0.2—

0.0
0.6 1.0

I

Zn
Cf (r&o)

1.8

(f)—j 0.8-

m o.4—Z

0
CL 00-

I

-04
0.6 1.0

Zn
4 f (p(0)

4I6

14

FIG. 4. Plot of a„vs R for calculation No. 1 and r nega-
tive.

FIG. 5. Plot of —U& (in MeV) vs R for calculation No. 1

and r negative.
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Zn
402 (r (0

I I I I I I

Zn
+3 (r &0)

0.8—

a 2

0.6—

0.4—

1.0—

0.8
a2

0.6

0.2— Q.4

0.0
0.6 1.0

R

1.4 1.8
0,2—

00 I I l

0.8 09

043 1.230

l 1 I I l

1.0 1.1 1.2
FIG. 6. Plot of a& vs R for calculation No. 2 and r nega-

tive.
R

FIG. 8. Plot of a„vs R for calculation No. 3 and r positive
showing the physical region between the broad vertical lines.

negative. The plots of a„and —U„ for this case are
given in Figs. 8 and 9. Here, it is possible to allow all
xz's (or —U„'s) to be non-negative and leave r positive.
The results, however, lead to a narrow physical range of
1.14&R (1.23, as shown in Fig. 9 by the vertical bars.
The a„'s for this solution (Fig. 8) show a64=a66 for all
R and a70 again different from the other three. In addi-
tion, even here we could almost make all potentials agree
at around R =1.21.

The results of all three calculations in this section are
summarized in Tables V and VI. The Kz values for all
three calculations are very near their minimum value of
——,', especially the K„value in calculation No. 3 which
is given by —0.2473+0.0026. In this sense, calculation

No. 3 just misses the SML. One must be reminded (as
discussed in Ref. 2) that Ez is a very sensitive measure
of the SML of R—:l and r—:0 (i.e., P„=—T„). More
precisely, if the value of K4 does not overlap ——,', then
the SML of Vergnes will not fit all the (p, t) and (t,p) data
for the entire isotopic string. However, if the value of
Kz does overlap the simple limit of ——,', we are still not

guaranteed that the SML will work. In this case, one
must instead check to see if P„+T„=O for all A. In
other words, the SML will fit the data if and only if
P„+T„=O within the experimental uncertainties for all
A.

A. Wgve fgngtipns fpr 6zZn and Zn

1.2—

10—

0.8—
0
—0.6—
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Z I

UJ ll

02 — Io
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I I
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2 (r&0)

12
I I I I I I

'

I I I

Zn
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O
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I -08—
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The least-squares minimization procedure of Eq. (7)
allows one to determine sign choices of P~, P66, P68,

FIG. 7. Plot of —U„(in MeV) vs R for calculation No. 2
and r negative.

FIG. 9. Plot of —U„(in MeV) vs R for calculation No. 3

and r positive showing the physical region between the broad
vertical lines.
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TABLE V. Experimental and calculated cross-section ratios along with the K„values' for calcu-

lations 1 and 2.

Experimental values
I+~P l~ I+~~

Calculated values
Calc. No. 1 Calc. No. 2

~A TA

62
64
66
68
70

0.045+0.006
0.081+0.013
0.206+0.034
0.419+0.015

0.102%0.010
0.110+0.010
0.194+0.015
0.34920.029

+0.045
—0.083
—0.182
—0.420

0.101
0.112
0.192

+0.349

%0.045
—0.076

0.168
0.420

0.105
—0.118
—0.193
+0.349

'K~ = —0.2415+0.0037 for calculation No. 1.
bK„=—0.2397+0.0022 for calculation No. 2.

T64, T66, and T«. Knowledge of P62 (Refs. 10 and 11)

and T70 (Ref. 12) permits one to calculate wave func-
0

tions for 6 Zn and Zn via Eqs. (36) and (37) of Ref. 2.
There is, however, an ambiguity in the signs of P62 and

T7Q which is not determined by any of the Rerg1
analysis. We shall therefore consider only calculation
No. 1 and make the natural assumption that P6z is nega-
tive and T7Q is positive thus allowing for all P„negative
and all T~ positive. Also for this reason we calculate
only the a„'s and not the mixing potentials. The results
are shown in Fig. 10 and if one overlaps this figure with
Fig. 4, it becomes clear from the difference in shapes be-
tween a~ 66 68 and a7Q 72 that a transition in the mixing
probabilities is occurring at N=40. This result is in fur-
ther agreement with the belief that the light isotopes of
zinc behave one way and the heavier ones another, with
a transition occurring between Zn and Zn (i.e.,
N= 40)

B. The excited 0+ states in Zn

The germanium isotopes reveal a roughly V-shaped
trend in the excitation energy Ez of the excited 0+ state
which is mixed with the ground state as seen in Fig. 3 of
Ref. 2. The minimum of E„occurs at Ge or N=40,
about where the transition between the lighter and
heavier isotopes occurs. With zinc, a similar feature
emerges as seen in Fig. 2. Around N=40, the place
where the shape of the a z 's changes, there is a
minimum in E„, although not as dramatic here as in

germanium —i.e., the 02+ state in Zn is not its first ex-
cited state. As mentioned earlier, a reliable signature
for choosing the mixed excited 0+ state can be found
in the energy level spectrum in that the plot of Ez
versus A should be high for the lighter isotopes, reach a
minimum, and then increase for higher A. The 1.910-
MeV state in Zn violates this A-dependent trend in
that it is too low in excitation. This is one reason why
the plot of —U in Fig. 5 falls below the other three
curves at R =1.416. These results lead one to investigate
what changes, if any, would result if the 2.609-MeV or
the 3.240-MeV state in Zn were to be chosen as the ex-
cited 0+ mixed state. Both states are seen" in

Zn(p, t) Zn. The Q-corrected values for P~ are

0.0206+0.0018 for the 2.609-MeV state and
0.0149+0.0015 for the 3.240-MeV state. In both of
these cases, we shall require the ASML condition that
P~T64 is negative because

~
P64

~

can no longer be con-
sidered small.

A Rergl calculation was performed for both cases of
E ——2.609 and 3.240 MeV. In both calculations, only
that sign combination where T„&0 and P„&0 gives ac-
ceptable fits (X =0.06 for the 2.609-MeV calculation and
X =0.003 for the 3.240-MeV calculation). Table VII
summarizes the results of each calculation and Figs.
11-14give the plots of az and —U„versus R. In both
cases, we must still require r to be negative and the gen-
eral shapes of a„are not changed and are similar to the
results in Figs. 4 and 10. The plots of —U„versus R in
Figs. 12 and 14 show congestion around R=1.298 for

TABLE VI. Experimental and calculated cross-section ratios along with the K„value' for calcula-
tion No. 3.

Experimental values

I P~ I
+~P~

Calculated values
Calc. No. 3

62
64
66
68
70

0.045+0.006
0.081+0.013
0.206+0.034
0.419+0.015

0.102+0.010
0.110+0.010
0.194+0.015
0.349+0.029

+0.045
—0.079
—0.304
—0.416

—0.095
0.106
0.198

+0.349

'K„=—0.2473+0.0026 for calculation No. 3.
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FIG. 10. Plot of a6& and a» vs R, assuming all P„negative
and all TA positive and r negative.

FIG. 12. Plot of —U„(in MeV) vs R for PA &0 and T»0
and r negative (using the 2.609-MeV state in 64Zn).
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I
I

I
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TABLE VII. Summary of calculated cross-section ratios us-

ing E64 equal to 2.609 and 3.240 MeV. Q2

0.8

0.6
E64 ——2.609 MeV'

TA

E~ =3.240 MeVb

TA
Q.4

62
64
66
68
70

0.0021
0.0206
0.0506
0.1745

0.0106
0.0118
0.0383
0.1216

'E„=—0.2454+0.0040.
EC A

———0.2443+0.0040.

0.0021
0.0149
0.0441
0.1753

0.0104
0.0120
0.0370
0.1216

0.2

0.0
0.8 0.9 1.0 1.1

R

1.2

FIG. 13. Plot of a„vs R for PA ~0 and TA p0 and r nega-
tive (using the 3.240-MeV state in ~Zn).
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FIG. 11. Plot of aA vs R for PA &0 and T» 0 and r nega-
tive (using the 2.609-MeV state in Zn).

FIG. 14. Plot of —UA (in MeV) vs R for PA &0 and T»0
and r negative (using the 3.240-MeV state in Zn).
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the 2.609-MeV calculation and R=1.328 for the 3.240-
MeV calculation. The significant feature to notice is
that in the 3.240-MeV calculation, almost all the poten-
tials now intersect at R =1.328 giving a common value
of —0.54 MeV for Uz. However, the steepness of the
mixing potentials around this R value indicates that a
slight deviation in R could result in large changes in
—U„(R).

V. E2 TRANSITIONS

The Rerg 1 two-state model analysis as described
above is capable of accounting for the 0+/g. s. two-
neutron cross-section ratio data in the even zinc iso-
topes. The two-state model wave functions are all de-
scribed in terms of the one parameter R which is al-
lowed to vary over a finite range of values. Of course,
choosing a particular value of R is equivalent to making
a specific choice of definition of basis states. As noted
for the germanium analysis, one may be able to describe
other direct-reaction data, e.g., proton occupation num-
bers' and alpha-transfer cross-section ratio data, ' still
without having to specify a unique value of R. There-
fore, it is desirable to apply these Zn Rerg1 0+ wave
functions to data that are not governed by a direct
transfer mechanism, e.g., the electromagnetic transition
rates. In this section, therefore, we consider the E2 rates
in even zinc isotopes along with a set of assumed 2+
wave functions to investigate possible choices of R.

A. Experimental 8 (E2) data

Electromagnetic 8(E2) transition rates in the even
zinc isotopes have been measured by many different
groups and are summarized in Refs. 28-30. To
compare our zinc Rergl 0+ wave functions to these data
requires calculations of the reduced matrix element be-
tween the final and initial states. The experimental re-
duced matrix elements in the even zinc isotopes are ob-
tained from the measured 8 (E2) transition rates and the
standard expression ' [with M(E2) in units of e fm ],

[M(E2;J; ~Jf )]
(2J;+ I )

the results of which are sumtnarized in Table VIII.

B. The 2+ save functions and

the E2 reduced matrix elements

To calculate values for the reduced E2 matrix ele-
ments (and, hence, electrotnagnetic transition rates) re-
quires that we form overlaps between 0+ and 2+ wave
functions with the E2 operator sandwiched in between.
In the Rergl analysis above, we have determined forms
for the physical ground state and excited 0+ state wave
functions in "Zn.

In describing the two low-lying physical 2+ states in

TABLE VIII. Experimental 8(E2) transition rates with the E2 matrix elements ~M(E2)~. All
data are summarized in Ref. 28 unless otherwise speci6ed.

"Zn

62zna

~zn

66zn

Zn

"zn

'Reference 22.
Reference 20.

'Reference 27.
Reference 23.

J;~Jf
2& ~g s.
2p ~g.s.

2) ~g.s.
or+

2p ~g.s.
0~+ ~2~+
0+ 2+

2l ~g.s.
0+ 2+

2p ~g.s.

2) ~g.s.
0+-2+
2p ~g.s.
2+~0+
2~+ ~g.s.
2p ~g.s.

B(E2) (e fm")

241+14
4.8(+0.8, —0.6)

316%10
0.8620.05
3.50+0.30
935+120b

133+37
20&B(E2)(85

274+10
B(E2)& 2.0'

0.76+0. 12

272+12
125(+ 125, —45)b

8.9%1.6
150+30

330+28
10+2

( M(E2)) (e fm')

34.721.0
4.9(+0.4, —0.3)

39.75+0.63
0.93+0.03
4.18+0.18
30.6+2.0
11.6+1.6

4.5(
i
M(E2)

i
(9.2

37.0+0.7
i
M(E2)

i ) 1.41
1.95+0.15

36.88+0.81
11.2(+5.6, —2.0)

6.67+0.06
27,4+2.7

40.6%1.7
7.07+0.71
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zinc, we represent the 2+ wave functions in Zn also by
a two-state mixing model and write

M (2201} M(2202)

f(22)

f(02)
Ue Vg

2e

Oe

'p"(2r )=r g42"g+5~0~",

+"(2g+)=5g4'2g —r~4p", ,

M (2102)
y(z+, )

M (2101)

"e

with y„and 5„real, y„+5„=1 and $2s and Pz,
representing the 2+ basis states.

To calculate the 8 (E2) transition rates or the more
symmetric, M„(E2;2,+~+0+) matrix element, we form
the overlap (4"(2+)~(E2~(%'"(0+)) which we denote by
Mz(2iOj ) [see Fig. 15(a)]. This leads to the set of equa-
tions (in matrix form)

Zn

(o)

f (g.s.)

Azn

(b)

Og

FIG. 15. (a) Schematic representation of the M&(2iOj) tran-
sition matrix elements between the physical states of "Zn. (b)
Schematic representation of the E2 transition matrix elements
between the basis states of "Zn.

M„(2101)
M„(2102)
M„(2201)
Mq(2202) p~5~ pAY A

-a~5~
pArA

&A'V A

QA
g

e

QA
e

(10)

=QA +VA +VA +QA2 2 2 2

g g e e
(1 la)

indicating that the total E2 strength is invariant under a
change of basis. Another invariant, which is easily
verified from Eq. (10), is given by the expression

M„(2101)M„(2202)—M„(2102)M„(2201)

=us ua —ua va . (11b)
g

The total 8 (E2) strength from the 2+ to the 0+ states in
this two-state mixing model represents a quantity which
does not depend on the amount of 0+ or 2+ mixing in
the basis states. It is possible to form other partial
8 (E2) strengths that are independent of only 2+ mixing
or only 0+ mixing. In particular, the sum of the E2
strengths leading only to the ground state or the sum of
E2 strengths leading only to the excited 0+ states are in-
dependent of the amount of 2+ mixing and are given by

Mz(2101)+M&(2201)=a&(uz +uz )+pz(uz +uz )

+2a„p„(u„u„+u„u~ )
g e e g

(12a)

and

where we denote the E2 reduced matrix elements be-
tween the basis states by u A, VA, v„, and u A, as de-

g g
picted in Fig. 15(b). As matrices, M„=P„U„with
P z V„=I. The unitary property of the matrix Pz leads
immediately to the sum rule M TM„=U „U„which,
written out in its entirety, becomes

Mq (2101)+M~(2102)+Mq (2201)+Mq (2202)

Mq(2102)+Mq(2202)=pq(uq +uq )+aq(uq +uq )

—2a„pa(ua u„+u„va ) .
g e e g

(12b)

Similarly, the sum of 8 (E2) strengths coming from only
the 2i+ state or the sum of 8 (E2) strengths coining from
only the 22+ state are independent of the amount of 0+
mixing and are given by

Mq(2101)+Mq(2102)=rq(uq +v„)+5q(uq +uq )

+2r~5&(u& v~ +u~ u~ )

(13a)

and

M„(2201)+M„(2202)=5„(u„+u„)+r„(u~+v„)

2r. 5~—(u~ u~ +u~ u~ ) .
g e e

(13b)

VI. COLLECTIVE-MODEL LIMITS
IN THE BASIS STATES

The large 8(E2) transition rates compared to the
single-particle estimates in AZn suggest collectivity in
the basis states and two of the simplest types of collec-
tivities are vibrational and rotational. We, therefore,
shall consider calculations in which the basis states in
"Zn are vibrational or rotational.

A vibrational spectrum contains two low-lying 0+ and
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two low-lying 2+ states. However, in that case the
second 2+ level (a member of the two-phonon triplet)
has no E2 decay to either of the two 0+ states. ' In
the present notation, this requires uA =v„=0, which

e

via Eq. (11b), demands that M„(2101)M„(2202}
=M„(2102)MA(2201). This condition is not satisfied by
E2 data in Zn because both M6s(2101) and M6s(2202)
are large while both M6s(2102) and M&s(2201) are small.
Therefore the vibrational-model limit in the zinc 0+ and
2+ basis states can be ruled out.

Hence, at least one 0+,2+ pair must be other than vi-
brational. If they are true intruder states, they are likely
members of a 0+ rotational band. Then it is natural to
assume that each of the low-lying 0+ basis states is con-
nected (via an E2 transition) to only one of the low-lying
2+ states. We label this the NODME limit (no off-
diagonal matrix elements). We therefore set
VA =VA =0.

g e

In this NODME limit the set of Eqs. (10) become

aA —QAaApA —pA =02 2—

with

(18a)

yA —SAy A5A —5A =02—

with

(19a)

MA (2101)—MA (2201)+MA (2102)—MA (2202)

MA (2101)M„(2201)+M„(2102)MA(2202)

(19b)

In terms of the ratios, x„=a„/p„and V„=y„/5„,
Eqs. (18a) and (19a) become

MA (2101)—M„(2102)+MA (2201)—M„(2202)

MA (2101)MA (2102)+M„(2201)M„(2202)

(18b)

A similar set of steps also leads to the 2+ mixing proba-
bilities satisfying

M„(2101)=a „y„u„+P„5„u„
g e

M„(2102)=P „y„u„—a „5„u„
g e

M„(2201)=a„5A u A
—pA y A u „

g e

MA(2202)=pA5Au„+aAyAu„
e

the set of Eqs. (11)become

M„(2101)+MA (2201)+MA (2102)+MA (2202)

(14a)

(14b)

(14c)

(14d)

xA —Q„x„—1=02 (20)

VA
—SAVA —1=02 (21)

x A =(-,')[QA+(QA'+4)'"1 (22)

Using the fact that we can physically require x„and V„
to be non-negative leads to the unique amplitude ratios
given by

2 2
uA +uA

e

(15a)

and

V„=(—,')[SA+(S„+4)' ] . (23)

M„(2101)+M„(2201)=a „u„+p„u „
g e

M„(2102)+ M„(2202)=a „u„+a „u„
g e

M„(2101}+M„(2102)=y „u„+5„uA
g e

M„(2201)+M„(2202)=5„u„+y„u„
g e

(16a)

(16b)

(16c)

(16d)

To solve these equations for the 2+ and 0+ mixing, we
subtract Eq. (16b) from (16a) to obtain

MA (2101)M„(2202)—MA (2102)M„(2201)=u„u„
g e

(15b}

and the set of Eqs. (12) become

Therefore the E2 transition rates in Zn, assuming two-
state mixing and the NODME limit in the 0+ and 2+
basis states, lead to unique values for the 0+ and 2+
mixing probabilities, a„and yA, and, hence, a unique
value for R.

It should be noted that the expressions given by Eqs.
(22) and (23) result from Eqs. (16a)—(16d) which are rela-
tionships between the squares of M„(2iOj ), a„,y „,u „,
and u„. These values of x„and V„may not necessarily

e

satisfy all of Eqs. (14a)-(14d), which are linear in

M„(2iOj), a„,y„, u„, and u„. There exists, in fact, a
g e

connecting equation that the mixing-amplitude ratios
given by Eqs. (22) and (23) must satisfy. To obtain this
relationship, we combine Eqs. (14a) and (14b) yielding
the set of equations

M„(2101)—M„(2102)+M„(2201)—M„(2202)

=(aA —PA)(uA —uA ) .2 2 2 2

e

In addition, Eqs. (14a)—(14d) combine to yield

MA (2101}MA (2102}+MA (2201 }MA (2202)

aApA(uA uA
2 2

g e

(17a)

(17b)

p„MA (2102)+a „MA (2101)=y A u A

P„M„(2202)+a„M„(2201)=5„u„

P„M„(2101) a„M„(21—02)=5„u„
a„M„(2202)—P„M„(2201)=y „u„

(24a)

(24b)

(24c)

(24d)

Finally, these two equations coupled together lead to which together imply
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and

M„(2102)+xqM„(2101)
M„(2202)+x„M„(2201)

x „M„(2202)—M„(2201)
M„(2101)—x „M„(2102)

(25a)

(25b)

and

u z ——P„S„M„(2101)—a„5„M„(2102)

—p„y„M„(2201)+a„y„M„(2202}.

(26)

Using Eq. (22) to obtain the 0+ mixing, Eq. (25a) (with
y„&0) to obtain the 2+ mixing and Eqs. (26) to obtain
the E2 reduced matrix elements connecting the basis
states will yield x„,y„[and, hence, a„=x„/(1+x„)
and y„=y„/(1+y„)],u„, and u„ that satisfy all of

e

Eqs. (14a)—(14d).

VII. APPLICATIONS TO Zll

It is clear from Eqs. (18b}, (21), and (25a) that four
physical E2 transition rates between 2,+ and 0~+

(i,j=1,2) are needed in order to calculate mixing ampli-
tudes between the 0+ and 2+ basis states as described
above in the NODME limit. In all the zinc isotopes, ex-
cept for Zn and Zn, the experimental B (E2) data are
not complete (Table VIII} enough to apply this analysis.
In Zn, enough data exist provided we assume that it is
the 02+ state that is mixed with the ground state in the
Rergl analysis. However, the excitation energy trend
with A and Fig. 14 favors the 04+ state in Zn as the
proper mixed excited 0+ state. If we assume that this is
so then there does not exist enough E2 transition-rate
data for the NODME limit E2 analysis in Zn. Thus
we apply the model only to Zn.

In addition, Eqs. (24) combine to yield the basis state E2
transition-rate matrix elements

u„=a„y„M„(2101)+p„y„M„(2102)

+a „5„M„(2201)+p„5„M„(2202)

Since it is the E2 "amplitude" ratios that determine

Q6s in Eq. (18b) and, hence, x6s in Eq. (22), we must
consider all 16 possible sign combinations in the four E2
experimental matrix elements. Of these 16, eight of
them lead to negative y6s [via Eq. (25a)] values and may,
therefore, be dismissed. The remaining eight solutions
(labeled A H)—are tabulated in Table IX where the fol-
lowing observations can be noted: (1) both M6s(2101)
and M~s(2202) must have the same sign in all cases, (2)
the eight solutions occur in two sets of four with one set
having us and u, positive and another with them nega-
tive, and (3) in each set of four solutions, the elements
occur in two sets of two that are related by the transfor-
mation, M6s(2101)~M&s(2101), M6s(2202)~M&s(2202),
M6s(2102}~—Mss(2102), M6s(2201)~ —Mss(2201),
a6s~P6s, y6s~5ss, and us~u, . Thus there are only two
"independent" solutions which are labeled by A and B
in Table IX.

In both calculations A and B, we find that u«g is
larger than u68, by factors of 1.9 and 1.4, respectively.
Also in solution B, we find almost no mixing in the Zn
2+ basis states. In fact, within the uncertainties in the

Zn B (E2) data, yss =1 is consistent with calculation B
in Table IX.

VIII. 0+ MIXING AMPLITUDES
IN THE EVEN ZINC ISOTOPES

The 0+ and 2+ mixing amplitudes in Zn have been
determined above using only the E2 transition-rate data.
If we incorporate this 0+ mixing probability in Zn
with the Rergl results of Fig. 13, then we can determine
a unique value for the Rergl parameter R, and hence the
0+ mixing probabilities, az and 0+ mixing potentials
—U„ in all even zinc isotopes. These are given for

Zn, with error bars, in Table X for the a«values
resulting from the four E2 calculations A, B, C, and D
in Table IX. The results are also plotted versus mass
number in Figs. 16-19. We do not consider Zn and

Zn because the 0+ mixing probabilities for these are
not uniquely determined by the Rergl analysis (see
dashed curves in Fig. 13}.

The results of calculation A give R =1.251+0.032 and

TABLE IX. The calculated values of a«, y«, u«, and u6s using the Zn B(E2) transition-rate
g e

data and the NODME limit in the basis states for those sign combinations in M6s(2iOj) consistent
with x«and y6s non-negative. The sign combination order is for M6s(2101), M6s(2102), M«(2201),
and M«(2202)

Calc.

B
C
D
E
F
6
H

Sign combinations 2a6s

0.7027
0.8769
0.1231
0.2973
0.2973
0.1231
0.8769
0.7027

2
$6s

0.7648
0.9924
0.0076
0.2352
0.2352
0.0076
0.9924
0.7648

u6s (e fm )

42.33
38.61
28.11
22.11

—22.11
—28.11
—38.61
—42.33

u6s (e fm )

22.11
28.11
38.61
42.33

—42.33
—38.61
—28.11
—22.11

'Using Eqs. (22), (25a), and (26) in the text.
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TABLE X. The 0+ mixing probabilities and mixing potentials determined from the B(E2) elec-
tromagnetic transition-rate and two-neutron transfer data using calculations 3 and 8 from Table IX.

Calculation A

y 6s =0.765+0.057
—U6s(2+ ) =0.342+0.058 MeV
u6s ——42.33+2.84 e fm

g

u6s ——22.11+3.04 e fm
e

R = 1.251+0.032

Calculation 8

y 6s
——0.992+0.008

—U6s(2+ )=0.070+0.070 MeV
u6s ——38.61+2.04 e fm

u« ——28.11+2.57 e fm
e

R = 1.327+0.027

64
66
68
70

2
Cl g

0.883+0.041
0.817+0.049
0.703+0.058
0.448+0.063

—U& (MeV)

1.041+0.159
0.917+0.097
0.757+0.043
0.532+0.007

2a&

0.971+0.029
0.941+0.050
0.877+0.084
0.663+0.113

—U& (MeV)

0.540+0.540
0.558+0.259
0.544+0.128
0.506+0.122

Calculation C

y6s =0.008+0 008
—U6s(2+ ) 0 070+0 070 MeV
u« ——28.11+2.57 e fm

g

u6s ——38.61+2.04 e fm

R =0.890+0.051

Calculation D

y6s =0 235+0 057
—U6s(2+ ) 0 342+0.058 MeV
u6s ——22.11+3.04 e fm

g

u« ——42.33+2.84 e fm
e

R = 1.001+0.038

64
66
68
70

2az

0.321%0.097
0.239+0.088
0.123+0.084
0.022+0.022

—U& (MeV)

1.513+0.123
1.011+0.131
0.544+0.128
0.155+0.155

a&2

0.520+0.064
0.426+0.063
0.297+0.058
0.097+0.037

—U„(MeV)

1.619+0.008
1.172+0.023
0.757+0.043
0.317+0.055

show a monotonic drop in a„as a function of A (Fig.
16). Similarly, for the 0 mixing potentials (Fig. 17).
We note that the uncertainty for the —U70 calculation
at R =1.251 is very small and is due to the fact that at
this R value, the function —U70(R) is very Rat and near
its maximum value of 0.538 MeV (see Fig. 14).

Calculation 8 gives R =1.327+0.027 and also shows a
monotonic drop in a„as a function of A (Fig. 18). The
0+ mixing potentials at R =1.327 (Fig. 19), within the
uncertainty of the calculation, are almost all equal. This
result was also noted in Sec. IV B.

Calculation C, of course, has a6s(calculation C)
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FIG. 16. Plot of a& vs A using the Zn mixing probability
determined from the E2 transition-rate data in 'Zn (calcula-
tions A and D).

FIG. 17. Plot of —Uz (MeV) vs A using the Zn mixing
probability determined from the E2 transition-rate data in Zn
(calculations A and D).
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FIG. 18. Plot of o.„vs A using the Zn mixing probability
determined from the E2 transition-rate data in 'Zn (calcula-
tions B and C).
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FIG. 19. Plot of —U„(MeV) vs A using the 'Zn mixing
probability determined from the E2 transition-rate data in Zn
(calculations B and C).

=ass(calculation B) and y6s(calculation C) =56s(cal-
culation B); and, hence, the 0+ and 2+ mixing potentials
in Zn are the same as in calculation B (but not, of
course, in the other isotopes). The value for the basis-
state 2n-transfer overlap ratio R is 0.8897+0.0510 and at
this R value (Figs. 18 and 19), both the az's and —U„'s
decrease linearly with mass number A.

As with calculation C, calculation D is related to cal-
culation A via ass(calculation D) =P6s(calculation A )

and y6s(calculation D)=56s(calculation A) and so the

0+ and 2+ mixing potentials in Zn for calculation D
are the same as in calculation A. The value for the
basis-state 2n-transfer overlap ratio R is very nearly uni-

ty (1.0010+0.0384). At this R value, the 0+ mixing
probabilities (Fig. 16) decrease monotonically with A

and similarly, the 0+ mixing potentials decrease with A

and are linear (Fig. 17).

IX. SUMMARY AND CONCLUSIONS

We have measured the cr (Oz+ ) /o. (g.s.) ratio in

Zn(p, t) Zn and used this result and other existing data
to perform a generalized two-state coexistence (Rergl)
analysis on zinc as was done for germanium. This two-
state analysis on the ground state and first excited 0+
state in the even-even zinc isotopes has been shown to
account for the 2n stripping and pickup a(02+)/o(g. s.)

ratios without having to assume much about the nature
of the initial- and final-state wave functions. This is in
contrast to a shell-model analysis of two-nucleon transfer
data which is very dependent on the form of the initial-
and final-state wave functions.

The results of the Rergl analysis show that the wave
functions for the heavier zinc isotopes (i.e., for Zn and

Zn) are different from those of the lighter ones with the
transition occurring at about %=40. This is consistent
with previous measurements and calculations as deter-
mined in Refs. 2-4, and 18. Our calculations do howev-
er, seem to favor a small destructively interfering term in
2n-transfer overlaps between the ground states of the
zinc isotopes (to the extent that r is small and negative).

For each calculation considered, there exists an R re-
gion for which the mixing potentials are all about equal
to —0.5 MeV, especially when the 3.240-MeV state in

Zn is used as the 0+ state instead of the 1.910-MeV
state. This, however, is not a sufficient requirement to
determine the value of R nor to determine the correct
mixed excited 0+ state in Zn.

We have taken these 0+ wave functions, along with an
assumed set of two-state mixed 2+ wave functions, and
applied them to fitting the E2 transition-rate data in the
even zinc isotopes. The fact that these transition rates
are so large suggests collectivity in the basis states and
we have considered both vibrational and rotational col-
lectivity. Assuming a vibrational-model limit in the
basis states leads to an inconsistency between the model
and the experimental E2 data in Zn. However, with
no off-diagonal matrix elements between the basis states,
the E2 data allow for the determination of the 0+ and
2+ mixing probabilities in Zn. There exists (Table IX)
two independent sets of mixing probabilities consistent
with the E2 transition-rate data in Zn.

Knowledge of the 0+ mixing probability in one zinc
nucleus allows for the determination of all 0+ mixing
probabilities in the other even zinc nuclei because the
value of the Rergl parameter R may be determined.
The results of these calculations (using the a„'s and
—U„'s of Figs. 13 and 14) are given in Table X. We
note that for calculations 8 and C of that table, the 2+
states in Zn are nearly pure. For calculation 8, the 0+
mixing potentials are nearly independent of mass num-
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ber A while for calculation C, the 0+ mixing potentials
decrease linearly with mass number. Calculation D has
R = 1.00 and 0+ mixing probabilities that decrease
linearly with A. Furthermore, the 2+ mixing potential
is very nearly 1/&5 times that for 0+ in calculation D,
as one might expect in some models of the basis states.

Quantitatively checking these Rergl 0+ and 2+ wave
functions with other data (e.g., precise proton occupa-

tion numbers as was done for germanium' or more elec-
tromagnetic transition-rate data in the other zinc iso-
topes) may confirm these mixing probabilities and may
identify which state in Zn is mixed with the ground
state in a two-state model.
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