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Starting from beam and target spin systems which are polarized in the usual way by applying
external magnetic fields, measurements of appropriate final state tensor parameters, viz., {t{;,‘,
k=1,...,2j} of particle d with spin j in a reaction a +b—d +c;+c,+. .., are suggested to
determine the reaction amplitudes in spin space free from any associated discrete ambiguity.

Considering the general reaction
a+b—d+ci+ecy+ 00, (1)

where the  particles have  respective  spins
Jardpsdsdisdas -« it has been shown recently1 that the
reaction amplitudes A4/ (a,i) defined through

(m;a|T|i)=(=1)"4)  (a,i) )

may be determined, except for an overall phase and cer-
tain discrete ambiguities, by measuring the tensor pa-
rameters t‘f with k =2j alone and the differential cross
section. Here, |i) denotes the initial spin state and a
denotes collectively the spin state of the coproduced
companions c¢; of particle d. This result provides an ex-
tension, to arbitrary spin j, of a theorem obtained for
spin-1 particles by Goldstein and Moravcsik? using their
optimal formalism. A basic difficulty that is met in us-
ing these theorems in a practical situation is that the ini-
tial system is required to be prepared in a pure state
|i). This requirement appears to be rather too
stringent to be capable of experimental realization in the
near future. Even in reactions initiated by neutrinos
(which are intrinsically in a pure spin state to the extent
that they are massless) or muons (which are produced in
a pure spin state in 7 decay but which nevertheless suffer
depolarization before they get absorbed by a nucleus), it
is, however, almost impossible at present to prepare par-
ticle or nuclear targets which are populated entirely in
the same magnetic substate.

The purpose of this paper is thus twofold: (1) We sug-
gest a possible method by which the information that is
obtained by using hypothetical pure initial spin states
could still be deduced by employing mixture state
preparations such as are usually realized by subjecting
the system to external magnetic fields. (2) Since the re-
sults of Refs. 1 and 2 leave a large number (see below) of
discrete ambiguities unresolved, we examine alternative
sets of polarization observables as candidates for com-
plete sets® and demonstrate the existence of several such,
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each of which is equally capable of determining the am-
plitudes A7/ without any ambiguity. In particular, the
observables {Trp,t§,,k=1,...,2j} are shown to be
complete.

If p’ denotes the n;Xxn; density matrix, where
n;=(2j,+1)2j, +1), specifying the spin state of the in-
itial system, it is clear that, p’ being Hermitian, it is
canonically characterized by its eigenvalues p; and the
corresponding eigenstates |i>,i=1,..., n;. In prac-
tice, the spin states of @ and b are uncorrelated; p’ is a
direct product of density matrices p® and p® characteriz-
ing the beam and the target. If, in particular, they are
oriented systems (i.e., uniaxial* or cylindrically sym-
metric)’ Di zpmapmb and l l/}i ) = Ijama ) ljbmb) with
respect to their respective axes of orientation. Thus, the
measured tq" of the particle d in the final state are given
by generalizing Eq. (30) of Ref. 1 as

ny . .
Trptf=(—1Y*[j1 3 pil 4/a,i)e 4Ya,D]s ()

i=1

where p is the density matrix of the spin j particle. If
we repeat the experiment with different initial prepara-
tions characterized by the statistical weights p/, with the
index r taking values r =1, . . ., n;, it is clear that

(— 1Y [ AUa,i)® 4 (a,i)]X
n

=3 (P71, Trp(rkr), @

r=1

provided, the matrix P with elements (P),, =p," is inver-
tible. In particular, when P=P°xP® where,
(P%),,, =p\", (P”),,,,,b =p,‘,,’2, the existence of P! is as-
sured if det(P?)s£0, det(P%)s£0. If the target and beam
are polarized by applying external magnetic fields H,

and H,,
(P9, = exp(m, g, H\" /kT,)/Z\" , (5)
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where Z!” is the associated partition function, and like-
wise for P®. Keeping the direction as well as the tem-
perature fixed, the conditions on the invertibility of P¢
may be translated to those on the allowed values of H.".
To that end, we observe that D =det(P?)=0, if and only
if, the determinant D’ of the associated equivalent

. j,+m .
matrix (P’%),, =(x,)* "° vanishes, where x,
a

= exp(g,H\"/kT,). But then, D’ is the well known
Vandermonde determinant and has the factorization
D'=T1l;.;(x;—x;). Thereby, we conclude that any
(2j,+1) unequal fields, which may be chosen at will,
may be used to prepare the spin states of the particle a.
The same argument holds for the values of H,, ad ver-
bum. It may be noted that the choice H,=H, =0, cor-
responding to unpolarized state for both a and b, is an
allowed one. Thus, experimentally one needs to only use
2j,(2j,) nonvanishing magnetic fields for a (b).

Having accomplished the first objective of relaxing the
purity conditions on the initial state, we now turn our
attention to identification of spin observables which
determine the reaction amplitudes without any ambigui-
ty. The following preliminary remarks are in order here.
No doubt, the discrete ambiguities which survive in the
earlier analyses"> may be eliminated by relatively crude
experiments such as the sign of ¢} for spin-1 particles,
whence the importance of the tensor parameters t2.
However, in general, the nature and number of these ad-
ditional experiments is unspecified. Moreover, as it fol-
lows from Eq. (47a) of Ref. 1, the number of discrete
ambiguities has an inflationary character with increasing
j values and is given by N(2¥ ~1—_1)/(2j +1), where N
is the number of complex amplitudes that describe the
process (1). Note that this number is zero only in one
case, viz., j =§. So far, the resolution of these discrete
ambiguities has remained a vexing problem in spite of
several attempts.’~® To our knowledge, the problem of
identifying complete sets seems to have been tackled sat-
isfactorily only in the case of N-N scattering, first by
Schumacher and Bethe’ and more recently, by France
and Winternitz.® In the course of their study, the latter
have aptly observed that even in this simple case where
only five complex amplitudes have to be determined, one
could injudiciously choose as many as 27 observables
which would still not completely determine the reaction
amplitudes. This feature, in juxtaposition with the re-
port’® that there are ongoing programs in at least three
laboratories, LAMPF, KEK, and SACLAY, to measure
as large as 30 spin observables to study pd scattering,
shows one cannot overemphasize the importance of ob-
taining optimal choices of observables which are truly
complete—given the great effort (and cost) that goes
into planning each experiment.

The approach that we take here is based on exceeding-
ly simple but equally general considerations. Our
analysis adheres to the choice of pure initial states, pure-
ly for simplicity’s sake (as we have already seen that
mixture states may be used with equal utility). The re-
sults we present are completely general, since we assume
no symmetry such as parity or property such as unitari-
ty. A given kinematical configuration is understood.

Consider, then, the process (1). The particle d may be
isolated from its companions ¢, quite arbitrarily. The
reaction is, in general, characterized by N =nn,n, [], n,
(complex) amplitudes. We have set n, =(2j,+1). Start-
ing from the expression

pf= T;)"T)r s (6)

the observables in p/ are to be chosen so as to determine
T completely. Since p’ is (assumed) prepared in a pure
state |i), we obtain

pla,i)=3 Agla,i)Af(a,i) | fIf'] @)
s

relative to some basis | f) for particle d. Note that if
{1f))={]jm)}, A;=(—1)"47,, and that (7) im-
plies that d is produced in a pure state 3, A (a,i)| f).
We examine how A4,(a,i) (which are at once the proba-
bility amplitudes for the states | f) of particle d as well
as the transition amplitudes for the process) may be
determined from (7). Indeed, measurements of diagonal
elements of p fix the values of | A/(a,i)|. To deter-
mine the 2j relative phases, one may choose any row or
column of p. Since a relative phase by itself is not an
observable, but some (trigonometric) function of it is, it
is obvious that 2X2j measurements have to be per-
formed. Thus, for a given (a,i), the number of measure-
ments is (3n —2) so that as all (a,i) are covered the
number of observables totals to N(3n —2)/n.
Remembering that one has to determine, in addition,
N /n —1 relative phases of the amplitudes with different
(a,i) (a discussion of which we do not enter here in view
of the detailed attention it has received in Ref. 1), it fol-
lows that the total number of observables that we have
obtained for completely determining the amplitudes is
given by'°

NC=3N—%I;V-+2

N, ]=3N—2. (8)
n

Thus the number of redundant measurements, with this
optimal choice of observables, is given by

N'=N2—(3N—=2)=(N —1)N =2) . 9)

The significance of (9) for N=1 and 2 is quite clear.

To concentrate on the tensor parameters as a choice
for the observables, let us express p in a |jm ) basis.
We advocate a sequential determination of the phase of
A} (a,i) relative to 4}, _,(a,i). This is easily achieved

by  determining  the 2j  entities  p, .
m=—j,...,j—1. To wit, the measurement of
{PrmmsPm,m +1) is equivalent to measuring

{Trp,tg,lzl""’zj }; the latter set consequently turns out
to be capable of determining the reaction amplitudes
without any ambiguity. Thus, the observables t;‘;ll are
truly redundant, and may play a role only in minimizing
uncertainties and errors associated with the measure-
ments. Only the overall phase (which is not in any way

observable) remains undetermined.
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