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A linear expansion analysis of the folding model transition amplitude is used to study the intrin-
sic sensitivity of the inelastic scattering of intermediate energy nucleons to the radial form of the
neutron transition density, given known proton transition densities from electron scattering. Real-
istic density-dependent effective interactions are used to construct pseudodata. These pseudodata
are then reanalyzed and the error matrix is used to calculate an error band for the radial transition
density. This approach reveals the sensitivity of the extracted transition density to absorption,
medium modifications of the interaction, and the extent and quality of the data in a manner that is
largely free of the residual inaccuracies in reaction theory that complicate the analysis of real data.
We find that the intrinsic radial sensitivity of nucleon inelastic scattering is best for projectile ener-
gies between 200 and 500 MeV, but is adequate to resolve the radial dependence of neutron transi-
tion densities even in the interior of heavy nuclei throughout the energy regime 100-800 MeV.
We have also compared our method with scale-factor analyses which assume proportionality be-
tween neutron and proton densities. For states whose transition densities are similar in the sur-
face, we find scaling to be accurate at the 20% level. However, for light nuclei substantial devia-
tions beyond the first peak of the differential cross section reveal sensitivity to shape differences.
This sensitivity is reduced for heavy nuclei. The model dependence of radial densities is also stud-
ied. A high-g constraint is used to analyze the contribution of incompleteness error to the de-
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duced error bands and to reduce the model dependence.

I. INTRODUCTION

Electroexcitation of discrete nuclear transitions has
become firmly established as a quantitative probe of the
radial structure of nuclei and provides radial transition
charge densities with excellent precision.! These precise
measured densities constitute a very stimulating and
rigorous challenge to theories of nuclear structure.’
However, electrons are essentially blind to half of the
nuclear constituents, viewing neutrons almost exclusively
through the magnetic moment of a single unpaired
valence neutron.® Therefore, the development of a quan-
titative technique to measure radial transition densities
for neutrons represents an important challenge to nu-
clear physics.

Hadronic probes, on the other hand, are about equally
sensitive to neutron and protons. However, uncertain-
ties in the reaction mechanism often confound the inter-
pretation of data for hadron scattering. Therefore, most
analyses are content to extract a simple scale-factor that
characterizes the relative contributions of neutrons and
protons in a qualitative manner. This procedure is most
applicable to low-lying collective excitations for which it
is reasonable to assume that the shapes of the neutron
and proton transition densities are similar in the surface
region. Many such studies have been performed. For
example, a series of papers by Bernstein et al. has re-
viewed the ratio of neutron and proton matrix elements,
M,/M,, for low-lying collective excitations that were
extracted from data for a variety of reactions.*® They
find that the various analyses yield general consistency at
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the 20% level.

However, except in the lowest collective states, the ra-
dial shapes of neutron and proton transition densities
will often be considerably different. Whereas collective
core excitations are predominantly isoscalar, the
differences between neutron and proton transition densi-
ties reveal the specific valence orbitals involved. Even in
the lowest collective states, the ratio between neutron
and proton matrix elements is often considerably
different from the simple N /Z prediction of the hydro-
dynamic model.* A comprehensive survey of such tran-
sitions has recently been performed by Lombard and
Mas,” who use the energy density method to supplement
the shell model with semiempirical coupling to giant res-
onances. This model achieves good global agreement
with measured reduced transition probabilities. Good
agreement has also been demonstrated for several transi-
tion charge densities. This theory predicts dramatic
differences between neutron and proton densities, in
shape as well as in scale. Even larger differences are ex-
pected for higher-lying excitations. Equally important
shape differences for sd-shell nuclei have also been pre-
dicted by Brown, Radhi and Wildenthal.$

Experimental information about the radial shape of
neutron transition densities is of fundamental impor-
tance to the evaluation of microscopic theories of nu-
clear structure. Yet, there are few reliable measure-
ments of shape differences between neutron and proton
transition densities. The purpose of this paper is to
evaluate the intrinsic sensitivity of nucleon scattering to
the radial form of the neutron transition density.
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We have developed a versatile modeling procedure
based on a linear expansion of the transition amplitude
in the folding model.’~'® Such a transition amplitude
may be described by the schematic “tp” form represent-
ing the convolution of an effective interaction ¢ with a
nuclear transition density p. For states whose relevant
nuclear structure variables are accurately known from a
reliable source, such as electron scattering, the medium
modifications of the effective interaction can be expand-
ed in a linear series about a suitable initial value and op-
timized with respect to a large body of data.'* Having
established an empirical effective interaction, the struc-
ture of states for which only a single radial density is un-
known may be determined by expanding the radial
dependence in a suitable basis and fitting the coefficients
to data for any set of reactions which share this common
density.

This procedure is almost model independent in the
sense that any plausible radial variation can be
represented by a small set of suitable basis functions.
The interpretation of data is then unbiased by the choice
of model.

Ground-state neutron densities have been studied us-
ing similar “model-independent” analyses of high-energy
proton scattering.!> The accuracy of these results has
been studied using the dependence of the fitted densities
upon projectile energy. Unfortunately, the degree of
consistency obtained in these studies is usually not
sufficient to confidently interpret the relatively small
differences in radial shape between ground-state neutron
and proton densities. Related work with alphas'® and
pions'"!” presents similar difficulties. However, given
the dramatic differences between the predicted shapes of
neutron and proton transition densities, we expect inelas-
tic scattering to offer larger and more varied signals than
elastic scattering. We may then expect to learn
significant new nuclear structure information even while
using an imperfect reaction theory. Therefore, nucleon
inelastic scattering presents more favorable opportuni-
ties.

To establish the inelastic scattering of intermediate en-
ergy nucleons as a quantitative probe of neutron transi-
tion densities, three primary issues must be addressed.
First, we should investigate the intrinsic radial sensitivi-
ty the probe could achieve if the reaction theory were
perfectly accurate. Second, we must understand the
dependence of our results upon the choice of model used
to represent the density. Finally, we must ascertain the
accuracy of our results by investigating their sensitivity
to residual errors in the theory used to describe the reac-
tion. The present paper addresses the issues of sensitivi-
ty and model dependence, leaving the question of accu-
racy to future publications.

Our method for modeling inelastic scattering is
presented in Sec. II. The intrinsic radial sensitivity of
nucleon inelastic scattering is studied in Sec. III using
pseudodata to minimize residual inaccuracies in reaction
theory. Our method is compared to traditional scaling
analyses in Sec. III C. The dependence of the fitted den-
sity upon the unmeasured region of large momentum
transfer is studied in Sec. IV by adapting an analysis of

incompleteness error developed for electron scattering.
Finally, our conclusions are presented in Sec. V.

II. MODELING INELASTIC SCATTERING

A. Linear expansion analysis

We represent the_ scattering amplitude T for the
binary reaction A4(a,b)B as a linear expansion

T=3a,T"0) (1)

of coefficients a, times basis amplitudes 7"(9), where
the four spin projections (m  ,m,,m,,mgz) have been
suppressed for clarity. The quadratic forms

s (O)=Tr[T"(6)a,T"(0)*ap] )

are then constructed as traces over spin projections of
products involving the basis amplitudes and the polar-
ization vectors o, and og. The polarization vectors are
simply Pauli matrices for nucleons. The observables are
then contractions of these quadratic forms:

Hatts Ky
oy(0)= 2m)? E. 1,(6), (3a)
Io0)=LF a, X (0)ar , (3b)
IoD5=13 a, X" (0)a} , (3c)

where p, (u,) is the reduced mass and k, (k,) is the
wave number in the incident (exit) channel. The analyz-
ing power A4,=D, and the induced polarization
P=D,, are special cases of the depolarization matrix
D, defined by Ohlsen.'®

A very simple search algorithm can be used to mini-
mize the total chi-square (X?) for an arbitrary set of ob-
servables with respect to the expansion coefficients a,.
The method is efficient in the sense that the basis ampli-
tudes need only be calculated once and then stored —it
is not necessary to recalculate distorted waves or overlap
integrals during the optimization of parameters. In fact,
whenever the excitation energy is a negligible fraction of
the incident energy, all states of the same multipolarity
in a given target nucleus can share a common set of
basis amplitudes. The method is versatile in that it is
applicable to any structure or interaction model that can
be represented by a linear expansion.

Although our applications have been restricted to in-
elastic scattering within a nonrelativistic distorted wave
approximation that uses local operators, the method it-
self is more general and is equally applicable to nonlocal
interactions or to relativistic theories. All that is really
required is that the reaction be direct and that the tran-
sition amplitude can be linearized with respect to the
quantity of interest. It just happens that the nonrela-
tivistic theory is, at present, more highly developed and
more convenient to use. Furthermore, these methods
can be easily extended to elastic scattering and to itera-
tive cycles in which the distortion is varied self-
consistently.
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B. Folding model

Reaction models of the folding type are most amen-
able to a linear expansion analysis (LEA). While these
models may differ greatly in detail, all folding models
may be described by the schematic “tp” form represent-
ing the convolution of an effective interaction ¢ with a
nuclear transition density p. Control of either the struc-
ture or interaction factor permits the systematic investi-
gation of the unknown factor within a linear expansion
analysis.

The states of interest to the present investigation are
normal parity transitions whose transverse form factors
for electroexcitation are demonstrably small over the en-
tire range of momentum transfer below 2.7 fm~!. The
spin and current contributions are then negligible. We
also assume that other currents relevant to nucleon
scattering are also negligible.!”” These conditions are
satisfied most accurately by relatively collective transi-
tions.

For these transitions, the scattering potential

U(r)=UC—VULS®%V-a @
can be expanded in multipoles with radial potentials of
the form

ufir ——quq Jitar) TTG(g.plpnle),  (5a)
A

U,Ls(r)=;2T— quqzj, r) 3 t85(q,p)ps(q),  (5b)
A

where A=p (n) for proton (neutron) or 0 (1) for isoscalar
(isovector). For simplicity, the density dependence of
the central and spin-orbit interactions 7 ¢ and 715 is
evaluated at the site of the projectile. Knock-on ex-
change is included in the zero-range approximation.?®
More complete descriptions of the reaction model may
be found in Refs. 21-23.

For energies E, <400 MeV, we employed a density-
dependent etfectlve interaction based on the Paris poten-
tial*#?* For E,>500 MeV, the Love-Franey parame-
trization of the free ¢t matrix was used.?® Microscopic
optical potentials were employed throughout. These po-
tentials were obtained by folding the same effective in-
teractions with the ground-state density, assuming
pnxp,. Ground-state densities were constructed by un-
folding the proton form factor from charge densities tab-

ulated by de Vries et al.?’

C. Radial densities

A radial density p,(r) can be represented as a linear
expansion,

pir)=3a,f,r, (6)

where the radial basis functions f,(r) are drawn from
any convenient complete set. The expansion coefficients
a, can be fitted by minimizing the composite X? for all
available data. The error envelope can then be deduced

from the error matrix. This type of analysis is almost
model independent in the sense that rather than fitting
with a restrictive, and arbitrary, analytic form, the
significant coefficients of an expansion in a complete
basis of radial functions are fitted. The resulting density
is then not biased by the choice of model. Virtually any
radial function can be represented in this manner, with
only minor restrictions being imposed by the inevitable
truncation of the series.

The transition amplitude is conveniently represented
by the matrix element

MA.= fdrrl+2p1;t( ) (7)

where A=n or p. For comparisons with electroexcita-
tion data it is convenient to define the form factor for
transitions between nuclear states with initial and final
spins J; and J, as

172 3
4 Iy
= _— —0 8
F,(q) N, 7 piq), (8)
where
P = [ drrij(grip,(r =3a Jolq) O)

is the Fourier-Bessel transform of the transition density
and where £ =V'2x + 1. The particle number N, is ei-
ther N or Z according to whether A=n or p. In the
plane-wave approximation, the cross section for nucleon
scattering is proportional to the square of the form fac-
tor and to an elementary cross section.'*

Electron scattering data are most often analyzed using
some variation of the Fourier-Bessel expansionl’28 (FBE),

j[(qu )’ r< R
fulr)=
vl 0’ r ZR (10)
The principal advantage of this expansion of this expan-
sion is that the dominant contribution each term v
makes to the form factor is localized near its characteris-
tic momentum transfer g, such that

g,R?

Fulg)=—; qzjl(qR)jIH(qu)(q;éqv), (11a)

R3 .
T]IZ—{»] (qu )a,u.v .

Sulg,)= (11b)
Thus, only one term of the FBE contributes at each
characteristic momentum g¢,. While other expansions
are useful, none has a relationship between its expansion
coefficients and the form factor that is so transparent. If
the plane-wave approximation were accurate, the expan-
sion coefficients could be determined directly from mea-
surements performed at g=gq, for each v=1,...,N
such that N+1//2%gq,,R /7, where g, is the maximum
momentum transfer accessible to measurement.

A significant defect of the FBE is that each basis func-
tion is oscillatory at large radius. Thus, unless sufficient
data exist at small momentum transfer or unless the
asymptotic radial behavior is suitably biased, undesirable
oscillations will persist at unreasonably large radii.
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The polynomial-Gaussian expansion (PGE),

fulr=(a’le "y, 12)

where y =ar, provides a useful alternative with a set of
advantages and disadvantages complementary to that of
the FBE. The PGE decreases exponentially for both
large radius and large momentum transfer. If a is
chosen according to the harmonic oscillator model, a
natural radial scale is introduced which minimizes the
number of coefficients required to represent any plausible
radial variation. However, the form factors for each
basis function are not localized in momentum transfer.
Moreover, the radial basis functions overlap strongly,
causing the fitted coefficients to be highly correlated.

A third alternative can be found in the Laguerre-
Gaussian expansion29 (LGE),

fvl(r)zx

where x =r/b and L¢ is a generalized Laguerre polyno-
mial. This expansion also enjoys exponential decay at
both large radius and large momentum transfer. The os-
cillator parameter b establishes a natural radial scale.
However, as an orthogonal series, the correlation be-
tween adjacent coefficients is considerably less than that
which plagues the PGE.

le=x’L1+1/2(2x2) | (13)

III. INTRINSIC RADIAL SENSITIVITY

A. Pseudodata method

The intrinsic radial sensitivity of nucleon inelastic
scattering can be studied in a manner that is essentially
independent of residual inaccuracies in the reaction
model. The basic premise is that the present reaction
theory is sufficiently accurate to assess, at least qualita-
tively, the effects of absorption and of density depen-
dence in the effective interaction upon the extraction of
neutron transition densities from the data. The impact
of residual inaccuracies is minimized by using a pseudo-
data approach. Representative structure models are
used to calculate scattering observables within the
present theoretical framework. As the proton density is
usually taken from electron scattering, the range of
momentum transfer is restricted to that which is gen-
erally measured in such experiments. In practice, these
measurements usually extend a little beyond twice the
Fermi momentum because higher momentum com-
ponents are not expected to be very important. The
number of points within this range should reflect experi-
mental practice. Pseudodata are then constructed by ap-
plying random fluctuations, using a random number gen-
erator, according to a normal distribution whose width
reflects customary experimental precision. Similar
methods have been used to study the scattering of elec-
trons,”®3 pions,!! and kaons.?!

The neutron transition density is then fitted to this set
of pseudodata, holding the proton density fixed. The er-
ror band on the neutron density is then calculated from
the full error matrix for the fit, including the correla-
tions among parameters. The fitted densities tend to be
distributed within this error band and chi-square tends

to be distributed normally about unity because the reac-
tion model is perfect by construction. Using a sample
consisting of many independent pseudodata trials, we
have, in fact, explicitly demonstrated that the sample
mean and variance converge to the input density and er-
ror envelope, respectively. Thus, the original input den-
sity is recovered with an estimate of the ideal minimum
uncertainty with which the density can be determined at
all radii. In analyzing real data, however, additional un-
certainties arise from uncertainties in the reaction
theory.

The present estimate of the error envelope includes,
implicitly, contributions from several sources. First, the
precision, range, and number of data determine the
minimum uncertainty with which a density can be ex-
tracted assuming a transparent medium without distor-
tion. This situation corresponds closely to that realized
for electron scattering. Second, absorption reduces the
contribution of the interior of the nucleus and thus ex-
pands the error envelope in the interior. Third, Pauli
blocking reduces the strength of the effective interaction
in the interior and thus also inhibits scattering from the
interior.

The experimental precision achieved by proton
scattering experiments is often better than a few percent.
Unfortunately, we cannot expect comparable accuracy
from reaction theory. This is perhaps responsible for the
fact that our analysis of real data rarely produces re-
duced chi-squares near unity despite the flexibility avail-
able in the parametrization of the radial density. Thus,
in practice, we fold an additional £10% relative uncer-
tainty into the estimated uncertainty of measured cross
sections. Therefore, our pseudodata will also be con-
structed with error bars of +10%, thereby implicitly
recognizing the limitations imposed by our less than
ideal reaction theory. When this additional uncertainty
is omitted, the estimated error bands become unrealisti-
cally tight, as narrow as those from electron scattering.
Such was the case in the neutron transition density for
the lowest 27 state of %0 that we recently published.'?

B. Interior sensitivity: Monopole transitions

Inelastic monopole transitions provide the best insight
into the intrinsic radial sensitivity of nucleon inelastic
scattering. The transition densities for higher multipo-
larities, / >0, must behave as r’ near the origin. There-
fore, both the density and its uncertainty vanish at the
origin in a manner that is representative of the multipo-
larity, rather than of the interior sensitivity of the probe.
Monopole densities, on the other hand, are free to as-
sume finite values at the origin. The estimated uncer-
tainty is not inhibited near the origin, but rather grows
at a rate which depends on the absorption of the projec-
tile wave and on the medium modifications of the
effective interaction. Furthermore, orthogonality be-
tween initial and final states requires the volume integral
of a monopole transition density to vanish:

[ drripyr=o0. (14)

Therefore, the radial density must have at least one
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node. The interior and surface lobes of the density com-
pete for influence upon the observables. The surface
lobe benefits from weaker absorption and an interaction
less suppressed by density dependence. Hence, this com-
petition tends to increase the width of the interior error
envelope.

We have performed a pseudodata analysis for the
lowest excited 0 state of *°Ca, assuming that its neu-
tron and proton densities are equal. The proton density
was obtained by unfolding the proton charge form factor
from the electron scattering results of Hariher et al.®
Although the uncertainty in the proton density is itself

J.J.KELLY 37

not negligible, we assume, for the purposes of this pseu-
dodata analysis, that the proton density is known exactly
and examine the sensitivity to the neutron density, hold-
ing the proton density fixed.

Pseudodata spanning the range of momentum transfer
between 0.4 and 2.6 fm~! in steps of 0.075 fm~! were
constructed with 10% random fluctuations, assuming
that p,=p,. Calculations were performed for many in-
cident proton energies between 60 and 800 MeV. To the
extent that the form factor specifies the angular distribu-
tion, this procedure minimizes the trivial dependence of
the analysis upon kinematics.

1
T
1

Neutron Transition Density (I0™>fm 2)

60MeV ]

*Ca(p,p)0;

100MeV ]

*Ca(p,p)0;
515MeV “

150MeV 650MeV 7

1 l 1 1 l 1

T ' T T l T
0 VA /]
L ] ]
—4 40 + ] 40 + ]
Ca(p,p)0, ] Ca(p.p)0; A
—6 F E, = 200MeV 7] E, = 800MeV ]

_8 N B | [ N T
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r (fm) r (fm)

FIG. 1. Energy dependence of error envelopes for the 05 state of “’Ca fitted to pseudodata for incident proton energies between

60 and 800 MeV.
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The energy dependence of the radial sensitivity of pro-
ton inelastic scattering is illustrated in Fig. 1 The error
envelopes for each energy were computed from the full
error matrix using the FBE. For the purposes of illus-
tration, the radial uncertainties are applied to the initial
neutron density rather than to the final fitted densities.
As these final densities scatter within the error bands,
the differences between fitted densities complicate the
comparison of the various error bands. The widths of
these bands are not affected by representing the results
in this way.

The surface lobes are very accurately determined for
all incident energies, but the width of the error envelope
increases towards the origin. The interior sensitivity ap-
pears to remain stable between 60 and 100 MeV, and
then to improve rapidly between 100 and 200 MeV. The
broad energy regime between about 200 and 500 MeV
might be described as the ‘“window of visibility,” in
which the stable interior sensitivity is most nearly op-
timal. For higher incident energies, the error envelopes
rapidly widen again as transparency is lost.

These trends are clarified by Fig. 2, which compares
calculated total and absorption cross sections with the
estimated uncertainty in the neutron transition density
at the origin. Unfortunately, experimental data which
span this entire energy regime do not appear to be avail-
able for Ca. The data complied in Refs. 33-35 for other
nuclei exhibit similar energy dependencies, but our cal-
culated cross sections seem to remain too large despite
the inclusion of Pauli blocking effects. However, al-
though the present theory is not specifically designed to
provide an optimum description of integrated cross sec-
tions, it clearly does provide an adequate description of
their energy dependences.

The total cross section falls rapidly below 300 MeV,

@ 2.5 11—
& 20fx *calp.p) 3
=
3 o ]
n 15 e
Q : ]
o 1.0 7
& :\"\M' ]
o, 05 3
g 0.0 : 1 1 i |(a) 4
- 4 T |
L 40

- Ca(p.p)0;

E 3r .
o

£ 2r ]
[%e)

L2}

e 1+ .

(b) 1
0 1 1 1 1 1 | " 1 L
0 200 400 600 800 1000

E, (MeV)

FIG. 2. (a) Energy dependence of calculated total (crosses)
and absorption (circles) cross section for “°Ca. (b) Statistical
uncertainty in p, at the origin for the 05 state of *Ca.

whereupon the opening of the pion production channel
arrests this decline and then causes the total cross sec-
tion to grow again beyond 500 Mev. The energy depen-
dence of the absorption cross section is similar, though
less pronounced. Above 100 MeV, the energy depen-
dence of the interior sensitivity is similar in form to that
of the total cross section, but is even more dramatic.

Below 60 MeV, the energy dependence of the interior
sensitivity is significantly different. The uncertainty at
the origin is smaller at 60 MeV than it is at 100 MeV
despite the large increase in total cross section between
100 and 60 MeV. The origin of this anomalous behavior
is illustrated in Fig. 3, which shows the central part of
the absorptive potential for several energies. For low en-
ergies, Pauli blocking substantially inhibits the growth of
the absorptive potential in the interior, producing a
surface-peaked potential. The reflection coefficients
share this same profile as a function of classical impact
parameter. Evidently, low partial waves are not ab-
sorbed as strongly as are the grazing partial waves con-
tributing most strongly to the absorption cross section.
Thus, the contribution of the interior to the inelastic
differential cross section is actually somewhat larger
than might be indicated by integrated cross sections
alone—the radial profile must also be considered. Upon
closer examination of Fig. 1, we observe that §p,(r) for
60 MeV is somewhat smaller than for 100 MeV when
r <2 fm, but is quite similar when » > 2 fm.

The relative importance of absorption and of the den-
sity dependence of the transition potential is illustrated
in Fig. 4. The shaded band shows the minimum uncer-
tainty obtained in the absence of absorption or distortion
by using a density-independent interaction based on the
low-density limit of the effective interaction. The inter-
mediate band shows the effect of including inelastic den-
sity dependence while still using plane waves. Finally,
the outer band includes both inelastic density depen-
dence and the optical potential. It is clear that absorp-
tion makes the dominant contribution to the error en-
velope, whereas the medium modifications of the transi-
tion potential are relatively unimportant to 8p,. More-
over, the importance of inelastic density dependence de-
clines rapidly with energy.

0 — T T T T 1
[ E,=60 , 1
= —10} E i
"E.=100 ]
P “Ca(p.p)
_20 " 1 1 1 N 1 X

r (fm)

FIG. 3. Imaginary part of central optical potential for “Ca
at 60 and 100 MeV.
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FIG. 4. Error bands for 0; neutron density of **Ca with 60
MeV protons. Inner band uses free interaction and plane
waves, intermediate band (dashed lines) uses density-dependent
interaction and plane waves, and outer band (solid lines) uses
density-dependence interaction and distorted waves.

C. Comparison with scale-factor analyses

One often assumes that nucleon scattering is insensi-
tive to details of the radial shape. It is then appropriate
to analyze data using a single radial shape common to
both neutrons and protons. This radial shape can be ob-
tained from either the collective model or from a folding
model based on the proton transition density measured
by electroexcitation. Alternatively, the radial shapes can
be obtained from a theoretical calculation based on the
shell model. Scale factors are then fitted to the nucleon-
scattering data for low momentum transfer. The results
are usually reported as ratios M, /M, between the neu-
tron and proton matrix elements.

However, given the radial sensitivity exhibited by the
foregoing analysis, it is natural to compare the LEA
with the traditional analysis for representative theoreti-
cal wave functions. To avoid confusing interaction
effects with structure effects, we again employ the pseu-
dodata method. This comparison will provide a qualita-
tive assessment of the accuracy of scale-factor analyses
for states whose neutron and proton transition densities
have similar shapes in the surface region.

As a first example, we consider the 25 state of Mg,
This particular state is interesting because the sd model
of Brown, Radhi, and Wildenthal®® predicts a negative
ratio M, /M, which is unusual for low-lying normal-
parity transitions. The relative sign of the neutron and
proton matrix elements for this transition has been the
subject of considerable controversy in recent years. Ini-
tially, Bernstein et al. reported that their analysis of
data for 650 MeV protons confirmed the predicted nega-
tive sign.’’” However, several subsequent experiments
have disputed this conclusion.’®3® Our immediate in-
terest in this transition concerns sensitivity to shape
differences between the predicted densities and the accu-
racy of fitted proportionality factors.

The theory of Brown et al. employs a residual interac-
tion fitted to selected energy levels throughout the sd
shell, using an empirical dependence upon mass. Core
polarization is described using the Tassie model and glo-

bal effective charges. For E2 transitions, these effective
charges are de,=8e,=0.35 e. This model then yields
good agreement with form factors and reduced transi-
tion probabilities for first and second 27 states
throughout the sd shell. The accuracy of the neutron
densities remains to be tested.

Cross section pseudodata for 200 MeV protons were
produced for ¢ =0.4-2.7 fm~! with +10% uncertain-
ties. Two models were then fitted to the pseudodata, as
shown in Fig. 5. First, a fit using four terms of the LGE
is shown as the solid line. Second, the dashed line was
obtained by assuming p,xp, and fitting the propor-
tionality factor to the pseudodata for 0.6 <q < 1.2 fm~!.
The ratio obtained by the LEA agrees with the true (in-
put) value M, /M, = —0.60. The ratio obtained by scal-
ing p, was M, /M = —0.69.

The scale-factor analysis provides a reasonable
description of the low-g data and of the neutron density
in the surface. However, the difference in shape between
neutron and proton densities is clearly evident in the
failure of scaling to describe the data for ¢ > 1.5 fm~'.
Furthermore, neglect of shape differences causes a 15%
error in the fitted matrix element.

Shape differences of this magnitude are commonly
predicted by any semimicroscopic theory of nuclear
structure. Therefore, we cannot reasonably expect better
than 20% accuracy from analyses which ignore shape
differences. In fact, using surveys of the neutron matrix
elements fitted to hadron-scattering data for low-lying
normal-parity transitions, Bernstein et al.* have con-
cluded that an accuracy of about 20% can be expected.

-1
10 ;
3 =
. *S(p.p)2; 3
\l’_) -
~ 107? —
o) E
\E 3
= _3 ]
2 10 =
) 3
© m
107
0 1 2 3
q (fm™")
6 T T T T T T
R I *S(p.p)2;
S .
E ! \
< o0
S TRr 7
_4 — -
-6 | I |
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FIG. 5. (a) Pseudodata for the excitation of the 25 state of
34S by 200 MeV protons. The solid line is a fit using four terms
of the LGE. The dashed line, with p,= —0.69p,, was fitted to
the range 0.6 <g < 1.2 fm~'. (b) The band represents an LGE
fit to p,. The dashed line portrays p,= —0.69p,,.
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However, this conclusion depends upon the similarity
between the shapes in the surface; single-particle transi-
tions with little core participation could easily violate
this assumption.

As a second example, we consider the lowest 2% state
of 2Pb, using proton and neutron transition densities
predicted by Lombard and Mas.” Neutron-hole transi-
tions involving the 3p,,, orbital provide radial distribu-
tions with considerable structure. Semiempirical cou-
pling to giant resonances supplies the model of Lombard
and Mas with enough collectivity to describe the B (EL)
values and form factors for low-lying 2% and 3~ states
throughout the periodic table. Cross section pseudodata
for 200 MeV protons were produced for momentum
transfers between 0.25 and 2.7 fm~!, in steps of 0.05
fm~!, with £10% uncertainties. The pseudodata were
refitted using the LGE and using p,«p, The same
pseudodata were included in both fits. The results are
shown in Fig. 6.

Although the error band estimated by the LEA does
become relatively wide at the innermost lobe, consider-
able radial structure can still be discerned at all radii.
The intrinsic radial sensitivity of intermediate-energy nu-
cleon scattering appears adequate to probe the shape of
the neutron transition density, even in the interior of
large nuclei. However, the difference between the cross
sections corresponding to p,=2.6p, and the true p, are
not impressive. One must have great confidence in the
reaction theory to interpret deviations from propor-
tionality that are this small. Thus, the error bands es-
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FIG. 6. (a) Pseudodata for *Pb(p,p’) 2{" at 200 MeV. The
solid line is a scaling fit with p,=2.6p,. The LGE fit, with
X2=1.0, is omitted for clarity. (b) Neutron transition densities

for 2%Pb 2. The band was obtained by LEA, the line by scal-
ing p,=2.6p,,.
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FIG. 7. Pseudodata for °Pb(p,p’) 2;" at 200 MeV without
distortion or absorption. The solid line is an LGE fit and the
dashed line represents p,=2.6p,,.

timated by the pseudodata method must be interpreted
with some care. The pseudodata approach is a closed
mathematical model which estimates intrinsic radial sen-
sitivity assuming perfect knowledge of the reaction
mechanism. This approach makes no provision for sys-
tematic errors in the reaction mechanism. The effect of
such errors upon the fitted density is difficult to quantify
and probably cannot be faithfully represented by an er-
ror envelope.

Despite the difference between the interior shapes of
the two densities, the scale-factor analysis produces a fit
that is pleasing to the eye. Although X2=6.8 for scal-
ing, whereas X2=1.05 for the LEA, scaling would ordi-
narily be judged satisfactory. Evidently, the shapes of
the dominant surface lobes are sufficiently similar so as
to obscure the differences in interior detail. The scale-
factor analysis produces an approximate fit to the sur-
face lobe of the density, for which M, /M ,=2.56 can be
compared with the correct ratio M, /M, =3.06. The ac-
curacy of scaling is again about 20%.

Absorption reduces the contribution of the interior
relative to the surface, particularly for massive nuclei.
The importance of this effect is illustrated by Fig. 7,
which compares plane-wave calculations for these two
models of p,. The solid line represents an LGE fit, with
X2=1.0, to the plane-wave pseudodata. The dashed line,
with X2=871, results from the assumption Pn=2.6p,,.
Thus, we find that distortion reduces the sensitivity of X?
to the difference between these models by more than a
factor of 100. Nevertheless, by requiring optimal X2, the
LEA obtains a relatively narrow error envelope from the
pseudodata. However, we rarely expect an optimal fit to
real data. The form factor differences plainly evident in
the plane-wave calculations are reduced to minor
differences in detail by distortion. This problem is par-
ticularly vexing for massive nuclei. Therefore, the LEA
method is most applicable to lighter nuclei with better
penetrability.

D. Summary

We have investigated the intrinsic sensitivity of nu-
cleon inelastic scattering to the radial form of the neu-
tron transition density. The pseudodata method simu-
lates the experimental data that would be obtained if the
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best reaction model presently available were completely
correct. Provided that this model describes, at least
qualitatively, all important features of the interaction,
the error bands deduced for fitted neutron transition
densities represent the intrinsic radial sensitivity of the
probe. The estimated uncertainties include the effects of
absorption and density dependence in addition to the
precision and range of the data. For intermediate ener-
gy nucleons, absorption makes the dominant contribu-
tion to the error envelope, whereas medium
modifications of the transition potential appear to be
much less important.

We have found that the intrinsic radial sensitivity of
nucleon inelastic scattering is considerably better than
prevailing prejudices might suggest. The intrinsic sensi-
tivity is optimal within a broad “window of visibility” be-
tween about 200 and 500 MeV. The interior sensitivity
is sufficient to discern radial structure even in the interi-
or of a heavy nucleus, such as lead. Collective model
and simple scaling analyses are appropriate for nucleon
scattering only for highly collective excitations for which
it is reasonable to assume similar shapes in the nuclear
surface. Fitted scale factors then yield an estimate of
M, accurate to about 20%. For more general transi-
tions, we must employ a method, such as the linear ex-
pansion analysis (LEA), which provides enough flexibili-
ty to describe any plausible variation of the radial densi-
ty with minimal bias. The excellent radial sensitivity of
nucleon inelastic scattering affords a unique and valuable
opportunity to study the neutron transition density, a
quantity that was previously almost completely inacces-
sible to detailed experimental investigation.

IV. MODEL DEPENDENCE

In principle, all expansions of the radial density based
on a complete set of radial basis functions are mathemat-
ically equivalent in the sense that each is capable of
reproducing any radial function that satisfies the ap-
propriate boundary conditions. In practice, however,
meaningful fits to data can only be obtained by either
limiting the number of terms in the expansion or by ap-
plying physical constraints upon the coefficients. The re-
sults then become model dependent.

A fair assessment of radial sensitivity must also con-
sider uncertainties associated with variations of the mod-
el compatible with the data but not excluded by the
physical constraints. This variability represents a basic
limitation upon the precision of a fitted density. There-
fore, it is important to include in the error envelope an
estimate of the model dependence of the fitted density.

The most important physical constraint that must be
applied to the analysis describes the asymptotic behavior
of the neutron form factor beyond the largest accessible
momentum transfer. The implications of this constraint
comprise the subject of the present section. Another im-
portant physical constraint describes the asymptotic be-
havior of the radial density. This constraint is relevant
to the determination of radial moments, but is relegated
to future publications.

A. Truncation effects

We use the lowest 2% state of ®0 to illustrate the
model dependence of a fitted density. The proton densi-
ty was taken from the electron scattering measurements
of Norum et al.,*® which extend to a maximum momen-
tum transfer of 2.7 fm~!. A neutron density was fitted
to 135 MeV proton scattering data,'® using data in the
same range of q. Four terms of the PGE were used in
this analysis. Rather than cloud the present analysis
with peripheral issues concerning the accuracy of this re-
sult, we shall use these densities to produce pseudodata
which are free of such concerns. These pseudodata were
produced for 0.4<q <2.7 fm~! in steps of 0.1 fm™!
with random fluctuations corresponding to 5% uncer-
tainties in cross section.

We employ the Fourier-Bessel expansion, with a cutoff
radius of 8.0 fm, to analyze the pseudodata. The effect
of a finite span of momentum transfer upon the fitted
density is illustrated in Fig. 8, which compares fits using
six, seven, and eight terms of the FBE. All fits were
done using the same set of pseudodata and used p,=0 as
the initial guess. It appears that six terms of the FBE
are not sufficient to obtain an adequate representation of
the true density, shown as the solid line, based on the
PGE. This particular fit of the cross section pseudodata
is unsatisfactory. The truncated expansions are not
equivalent and the estimated error envelope does not en-
compass the true density. The addition of one more
term to the expansion is sufficient to obtain a good fit
and to reproduce the true density. However, although
the last term has a significant effect upon the quality of
the fit, it is strongly correlated with the preceding term
and is only weakly determined by the data. As a result,
the width of the error band grows substantially. Finally,
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FIG. 8. Influence of the number of FBE terms in the ab-
sence of a high-g constraint. The solid line is a PGE density
used to construct pseudodata. The bands portray FBE fits.
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the addition of yet one more term produces a cata-
strophic growth in the error envelope. The oscillatory
structure of the error band has eight nodes and clearly
reflects the final Bessel function. An unconstrained fit
cannot determine the amplitude of a frequency whose
primary contribution to the cross section occurs well
beyond the measured range of momentum transfer. The
experimental form factor is incomplete.

A solution to the incompleteness problem for electron
scattering was suggested by Borysowicz and Hether-
ington*! and then developed more fully by Dreher
et al.”® If we assume that the single-particle wave func-
tions for the constituent nucleons can be adequately
represented by the solutions to a (nonrelativistic)
Schrodinger equation with a smooth well-behaved poten-
tial, the Fourier transform of the transition density g;(q)
must fall at least as fast as g —* for sufficiently large gq.
Moreover, because nuclei have a well-defined Fermi
momentum, we expect that the probability of momen-
tum transfers larger than twice the Fermi momentum
will fall precipitously. Therefore, the onset of the ¢ —*
asymptotic behavior probably begins soon after
2kp=~2.7 fm~!. Experiments at high-energy electron ac-
celerators usually reach this momentum transfer. In
fact, using some high-q data, Heisenberg has shown that
p:(q) often falls considerably faster.!

Therefore, the fitting procedure must constrain the
asymptotic behavior of the form factor. Although the
simplest method of implementing such a constraint is to
truncate the expansion, we have shown that truncated
expansions are often inadequate to describe some per-
fectly reasonable radial densities. Moreover, the data
are sensitive to the truncation of the expansion. Thus, it
is necessary to ascertain the degree of radial flexibility
consistent with the high-g constraint.

B. Incompleteness error

The range of p(r) that is consistent with the postulat-
ed behavior of p(gq) beyond the maximum measured
momentum transfer g,, can be ascertained by performing
fits of the data supplemented by many random sets of
permissible pseudodata beyond g,,. Dreher et al.?® have
demonstrated that a more economical prescription pro-
duces equivalent results. The upper limit envelope can

be attached at q,, using

P'™q)=p(q, gy /9)* . (15)
The analysis is formulated most clearly using the FBE.
A uniform distribution of permissible g(g) points can be
represented by a supplemental set of pseudodata selected
at the characteristic momentum transfers g, beyond g,
such that

[8p(q,)*=1[p"™(q,)]* . (16b)
with variances
[8p(g,) P =1[p"™(g,)]* . (16b)

The factor 1 occurs because a uniform, rather than nor-
mal, distribution is assumed.

The uncertainty 8p(r) in the fitted density can be
decomposed into a statistical contribution (8p),, due to
the uncertainties 8y; in the measured data {y;,i=1, N,}
and a model contribution (8p),,,4¢ due to the uncertain-
ties in the high-¢ pseudodata {y;,,i=N;+1, N} by
analyzing the propagation of errors formula

2

17
i=1 ay

[8p(r))*=

If we represent the density p(r) using a set of fitting pa-
rameters {a,}, we find that

da,
—9— (18)
ay, 2 v 9
If we denote the fit to the ith data point as y;, we find
aav a)—’x
= €un— ! 3 (19)
ayi m aay (5}7,)

where e=a ! is the error matrix.
The curvature matrix e, can be decomposed into two

parts:
N oy, Iy,
1 y; dy;
stat __
%= 2 5y, 7 3a, 3a, ’ (20a)
N V. a—,
= e B (20b)

=Ny +1 (By') aa da,

stat

by assigning the measured data to a®* and the pseudo-

data to @™9¢!, We can then decompose the error matrix
€, =Eet +emote! (21a)
using
t t__ t. t
s al 2 € ’s‘a‘, Vs (21b)
model model
€Oy (21c)

Note that although € is the inverse of a, €** is not the
inverse of a™*' when pseudodata have been included.
Substituting all of this, we find

Bpu=3 5 e il (22a)
a, v
(ap)model E _—& ;‘n‘?delgaaﬂ_ . (22b)

This analysis is not limited to the density, but applies to
any function of the fitting parameters {a,}.

The procedure of Dreher et al.?® consists of analyzing
the error matrix for an extended data set extrapolated
into the unmeasured region of momentum transfer.
Therefore, we call this method of regularizing the expan-
sion and estimating the associated incompleteness error
the error matrix extrapolation method. A significant ad-
vantage of this method is that it provides a realistic er-
ror band with a single fit.
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C. Applications of high-g constraint

High-q regularization of the fitting process is illustrat-
ed by the fit shown in Fig. 9(a), which used 12 terms of
the FBE and includes the high-g pseudodata. This fit
provides a good description of the data. The lo error
envelope encompasses the true density over most of the
radial range, whereas a 20 band contzins the true densi-
ty everywhere. Therefore, this method provides a realis-
tic estimate of the uncertainty that is neither too large
nor too small.

The error band is decomposed into statistical and in-
completeness errors in Fig. 9(b). Improving the statisti-
cal precision of the data reduces (8p)y, with little
change in (8p)yo4e» as the latter depends mainly upon
the maximum momentum transfer. The incompleteness
error tends to dominate near the origin, where the
influence of the high-g components is largest. The total
error band is wider near the origin than that obtained
from the seven-term fit and is comparable elsewhere.
However, unlike the unstable bands produced by un-
biased fits using truncated expansions, the error band de-
duced from the constrained fit is stable-—additional
terms in the model have little effect.

Similar results have been obtained for the 2; state of
206pp, using neutron and proton densities predicted by
Heisenberg?? to produce pseudodata for the kinematics
of Sec. III C. The density obtained using 14 terms of the
FBE expansion, subject to the g —* asymptotic con-
straint, is shown in Fig. 10(a). The error band is decom-
posed into statistical and model contributions in Fig.
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FIG. 9. (a) Density (band) fitted to pseudodata for the 2;
state of '*0 using 12 terms of the FBE, including the high-g
bias, is compared with the true density (line). (b) Statistical
(long dashes) and model (short dashes) contributions to the to-
tal uncertainty (solid).
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FIG. 10. (a) Neutron transition density fitted to pseudodata
for the excitation of the 2; state of 2%Pb by 200 MeV protons;
gm=2.7 fm~'. (b) The total error (solid) is decomposed into
statistical (long dashed) and incompleteness errors (short
dashes).

10(b). The incompleteness error clearly dominates for
small radii, but is important everywhere. Despite the
substantially increased width of the interior error band,
considerable radial structure can still be discerned, espe-
cially beyond 3 fm. Note that the incompleteness error
depends on the maximum available momentum transfer,
and is independent of absorption or distortion. Under
similar experimental conditions, the radial sensitivity of
comparable electron scattering data is little better.

Although the statistical contribution can be reduced
by improving the precision of the data, the interior in-
completeness error can only be reduced by extending the
measured range of momentum transfer. The strong
dependence of the incompleteness error upon g, is illus-
trated in Fig. 11, which shows the fitted density and er-
ror bands for the 2; state of 2%Pb that results when g,
is increased from 2.7 fm~!, as in Fig. 10, to 3.0 fm ! in
Fig. 11. The incompleteness error is reduced by about a
factor of 7 with this 10% increase in g,,. Much of this
reduction is due to the rapid decrease in p,(q,,) with in-
creasing g,,. The statistical error band is also reduced,
though less strongly, by the additional data. We also
note that although nucleon-scattering data can often be
collected for larger momentum transfer, the sensible
range for the analysis of nucleon-scattering data is usual-
ly limited by the maximum momentum transfer for
which the proton density is known from electron scatter-
ing. Doubts about the reaction model for large g may
also limit g,,, .
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FIG. 11. (a) Neutron transition density fitted to pseudodata
for the excitation of the 2 state of 206pp by 200 MeV protons;
gm=3.0 fm~'. (b) The total error (solid) is decomposed into
statistical (long dashes) and incompleteness errors (short
dashes).

D. High-g constraint on LGE

The high-g constraint minimizes the dependence of
the fitted density upon the expansion chosen to represent
the density. Although the most transparent formulation
of this constraint is based on the FBE, it can be applied
to other expansions with similar results if the high-g
pseudodata are chosen properly. For example, the nth
term of the LGE yields a form factor with (# + 1) maxi-
ma followed by a Gaussian decline. To apply the con-
straint over a specified range of momentum transfer,
enough terms must be included so that the last max-
imum of the highest term lies near the end of this range.
It is usually necessary to include more terms of the LGE
than of the FBE to cover the same range of momentum
transfer. The absence of localization in g suggests that
the pseudodata should be evenly spaced beyond gq,,.
However, if this spacing is too close, the constraint will
be overemphasized and will reduce the estimated incom-
pleteness error. The spacing can be decided by using a
criterion based on the largest radius at which it is plausi-
ble to find an appreciable density. An extended object of
characteristic radius R can only support frequencies
with half-period AgR7/R. This radius should be
several times the root-mean-square radius of the ground
state. In the case of the oxygen isotopes, we have found
that R =8.0 fm is adequate to reproduce the inelastic
form factors observed with electron scattering. This ra-
dius is about 3 times the rms radius of the ground state.
Therefore, we expect that Ag 0.4 fm~! is sufficient to

102 p, (fm™3)

o

E

&5

% I vy A

| [ ! ‘\’[ \ (b)—
I\~

0 L 1 1 1 1 | B
0 2 4 6 8
r (fm)

FIG. 12. (a) Density (band) fitted to pseudodata for the 2}
state of '®0 using 12 terms of the LGE, including the high-q
bias, is compared with the true density (line). (b) Statistical
(long dashes) and model (short dashes) contributions to the to-
tal uncertainty (solid).

describe the high-g behavior. This spacing is approxi-
mately the same as that between the g, of the FBE for
large v.

The results of applying this criterion to the high-g bias
upon the LGE fit of the pseudodata for the lowest 2+
state of '®0 are shown in Fig. 12. The LGE produces
the same fit and yields estimates of the incompleteness
and statistical uncertainties which are similar to those
that emerge from the FBE. Therefore, this high-g regu-
larization procedure minimizes the model dependence of
the fitted density, while retaining sufficient flexibility to
describe any physically plausible radial variation.

E. Error matrix extrapolation

Several objections have been raised to the error matrix
extrapolation method. Sick contends that the practice of
producing pseudodata with 5,(g,)=0 tends to suppress
oscillations of g,(g) beyond g,, more strongly than is re-
quired by the postulated asymptotic behavior, and thus
underestimates the incompleteness error.*’ Further-
more, observing that the contribution to X? made by
pseudodata for g >g,, tends to be much less than 1 per
point, he also contends that the incompleteness error
should be increased accordingly.*> However, these argu-
ments are specious because the pseudodata are drawn
from a uniform, rather than from a normal, distribution.

We have demonstrated that the error matrix extrapo-
lation procedure faithfully represents the postulated dis-
tribution, despite its relationship to X 2, using the follow-
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ing multiple trial procedure. Pseudodata with +10%
uncertainties were constructed for momentum transfers
between 0.25 and 2.7 fm~! in steps of 0.05 fm~! using
the first 10 coefficients of the FBE for the excitation of
the lowest 2+ state of 2°°Pb by 200 MeV protons. Using
a cutoff radius of 12 fm, the first 10 g, lie below 2.7
fm~!. Independent sets of pseudodata were fit for 100
trials. After each fit, the next four coefficients were
selected, at random, within the g —* upper limit envelope
matched to the fit at g,, =2.7 fm~'. These randomized
coefficients describe a random modulation of the fitted
density limited in amplitude by the postulated asymptot-
ic behavior of 5,(¢q). The density calculated from each
expanded set of coefficients was then used to calculate
the sample variance at each radial point.

The scatter in these densities was, of course, outside
the statistical error band. However, as shown in Fig. 13,
the sample variance for 100 trials agreed very well with
the error band that results from the error matrix extra-
polation procedure. Although the variance has almost
converged after 100 trials, the fitted density has not yet
quite converged to the true density—the convergence is
relatively slow when the uncertainty is this large. When
analyzing real data, we do not have the opportunity to
evaluate a hundred or more independent trials. Further-
more, we need not include many independent sets of
pseudodata or random coefficients because the error ma-
trix extrapolation method provides the same incomplete-
ness error in a single calculation.

Therefore, we conclude that the error matrix extrapo-
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FIG. 13. (a) Average density fitted to 100 trials (band) is
compared with true density (solid line) and its estimated uncer-
tainty (dashed lines). (b) Sample variance (solid) is compared
with the uncertainty estimated using the extrapolation method
(dashes).

lation method faithfully, and economically, describes the
uncertainties consistent with the assumption that no
more than an upper limit upon the form factor is known
beyond the maximum measured momentum transfer gq,,.
In the absence of further knowledge, the quoted density
has minimal high-g structure, but its estimated uncer-
tainty accommodates the distribution of densities com-
patible with a uniform distribution of form factors
beyond g,, within the upper limit envelope.

F. Asymptotic behavior

The appropriate asymptotic behavior of the form fac-
tor is still subject to some degree of ambiguity. Most
notably, the procedure for matching the asymptotic tail
onto the measured data is somewhat arbitrary. In com-
parable analyses of electron scattering data,! it has be-
come customary to match the asymptotic tail onto the
last measured maximum of the form factor. While this
procedure may be appropriate for heavy nuclei whose
form factors exhibit several maxima within the accessi-
ble range of momentum transfer, it is not appropriate for
light nuclei whose form factors may exhibit only one
maximum. It is then more appropriate to apply the
matching condition at the largest measured momentum
transfer, as prescribed by Eq. (15). In any case, it is
clear that the amplitude of the asymptotic tail is some-
what arbitrary and that the estimated incompleteness er-
ror scales with this amplitude. Nevertheless, any reason-
able prescription for this amplitude is sufficient to limit
the unmeasurable coefficients and to thereby regularize
the fitting procedure.

We also note that electromagnetic form factors mea-
sured for large momentum transfer tend to fall consider-
ably faster than ¢ % Thus, it is common for electron
scattering data to be analyzed assuming a considerably
more restrictive exponential behavior beyond g,,.!
Given identical match points, the incompleteness error
estimated using an exponential envelope is considerably
smaller than that obtained using the ¢ ~* envelope.
Especially in view of the ambiguities associated with the
matching criterion, we believe that our criterion com-
bined with generous error bars based upon the g —*
asymptotic behavior represents a suitable compromise
and a realistic estimate of the incompleteness error.

V. CONCLUSIONS

The radial structure of neutron contributions to in-
elastic transitions is, as yet, largely unexplored. We
have become accustomed, in the last decade or so, to the
precision and accuracy with which electromagnetic
probes view the spatial distributions of charge and
current in the nucleus. With the advent of accurate
high-resolution experiments using intermediate-energy
protons and pions, considerable attention has been paid
to nuclear structure applications which exploit the com-
plementarity between hadronic and electromagnetic re-
actions. Of particular interest is the possibility of un-
folding the neutron contribution to a nuclear transition
whose proton density has been measured using electron
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scattering. However, most analyses of hadron inelastic
scattering have been content to extract from the data
only a scale factor which characterizes, in a qualitative
manner, the relative contributions of neutrons compared
with protons.

We have developed a method for modeling direct re-
actions using a linear expansion analysis (LEA) of the
transition amplitude. The folding model, which
represents this amplitude by the “tp” convolution of an
effective interaction ¢ with a nuclear transition density p,
is most amenable to such an approach. States of known
structure can be used to calibrate an empirical effective
interaction and to assess the consistency of a reaction
theory. Once the interaction is known, the structure of
other transitions can be investigated.

Using a pseudodata technique that is largely indepen-
dent of residual inaccuracies in the reaction model, we
have demonstrated that the intrinsic sensitivity of inter-
mediate energy protons to the neutron transition density
is surprisingly good, even in the interior of a large nu-
cleus. The intrinsic sensitivity is optimal between about
200 and 500 MeV, and remains quite adequate even at
800 MeV.

When both neutron and proton transition densities

peak in the nuclear surface, we find that analyses of nu-
cleon scattering data which presuppose proportionality
between neutron and proton densities or which scale
shell-model wave functions yield M, /M, ratios accurate
to about 20%. However, a scale-factor analysis is not
appropriate for less collective transitions which exhibit
larger shape differences. If we are to minimize the in-
herent bias of our analysis, we should employ a linear
expansion in terms of radial basis functions drawn from
a complete set.

We conclude that the excellent radial sensitivity of in-
termediate energy nucleon scattering is best exploited by
a linear expansion analysis which extracts detailed radial
information from the data with minimum bias.
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