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Direct calculation of the S matrix in coordinate space
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We test the strong approximation of the Mgfller wave operator scheme in coordinate space for
N-N scattering using the local Malfliet-Tjon IV potential. Using spline expansion functions we ob-

tain a finite-dimensional Hamiltonian matrix with a band structure which brings about a consider-

able numerical advantage when diagonalizing it. We compute the S matrix and find satisfactory
agreement with a standard solution. We also compute the violation of energy conservation.

I. INTRODUCTION

n
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In recent years a new branch of physics has grown be-
tween experimental and theoretical physics, the so-called
computational physics. In order to make a physical

problem amenable to a numerical solution on the com-
puter sometimes requires or often strongly suggests a
new mathematical formulation, the best known example
of this kind being the lattice formulation of field theory.

In this sense we want to discuss here an alternative
formulation for the numerical computation of nonrela-
tivistic few-body scattering. If a physical system is de-
scribed by the Schrodinger equation governed by a
time-independent Hamiltonian H, its time evolution is
given by U(t) =exp(iHt). This quantity is of central im-
portance in the computation of a scattering process. If
H is self-adjoint, then U(t) is unitary and analytic.
These are two very important properties which have
far-reaching implications on a numerical computation.
However, in the standard time-independent formulation
of stationary scattering theory, these two properties are
used explicitly nowhere. Hence we want to advocate an
approach here which makes use of these properties. In
the strong approximation of the Mdller wave operator
approach, one computes U(t) in the following way (see,
e.g., Ref. 1): One approximates the Hamiltonian H by a
finite-dimensional Hamiltonian H(N) and approximates
U ( t ) =exp( iHt ) by U (N, t) =exp [iH (N)t ]. The last ex-
pression is suitable for the numerical calculation on a
modern computer. Nineteen different methods of com-
puting the exponential of a matrix have been compared
by Moler and Van Loan. In our case —where H(N) is
self-adjoint —it has been suggested to diagonalize H (N),

n
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and to compute U(N, t) in the eigenrepresentation of
H(N),

In order to compute the S matrix numerically, it is con-
sistent to approximate also the asymptotic Hamiltonian
H by a finite-dimensional one, H (N), and the time evo-
lution by U (N, t)=exp[iH (N)t]. In a numerical com-
putation we replace the time limit in Eq. (1.3) by a large
but finite time parameter T, i.e., our approximate S ma-
trix reads

S(N, T)=U (N, T)U(N, 2T)U (N, T) .— (1.4)

It has been demonstrated in a number of cases that
this approach works, if the dynamics are described by
the Schrodinger equation: for the two-body system with
different short range interactions, ' also when the long
range Coulomb force is involved (which requires a slight
modification of the asymptotic time evolution). ' It has
also been applied in the three-body case to the reaction
p(d, pp)n. Moreover, it has been shown to work&or a
number of field theoretical models such as the nonlinear
Schrodinger model, the {b theory in 1 + 1 dimensions,
and the massive Thirring model.

In a numerical calculation for a system with a large
number of degrees of freedom (which is already the case
in the three-nucleon system), due to the large size of the
Hamilton matrices, one soon reaches the limit of the
computer, i.e., the limit of storage location and comput-

It should be noted that the diagonalization of a matrix is
a task well suited for a vector computer. While the time
evolution is not a physical observable, however, the S
matrix is. The S matrix contains the information on the
time evolution plus the boundary conditions. The S ma-
trix is usually expressed to incorporate the boundary
conditions in the time-dependent language, i.e., via the
time evolution of the asymptotic Hamiltonians. Consid-
ering the case that all interactions are of short range and
the asymptotic Hamiltonian H is the same for the
asymptotic incoming state as for the asymptotic outgo-
ing state, the asymptotic time evolution is
U (t) =exp(iH t) and the S matrix is given by

S= lim U'{t)U( —2t)U'(t) .
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ing time (note that the latter increases with the cube of
the dimension of the matrix). Hence it is of crucial im-

portance to reduce the effective dimensions of the prob-
lem. The same kind of problem occurring in the coordi-
nate space formulation of lattice field theory has been
successfully solved by the Monte Carlo method. In our
approach to compute the S matrix and in order to
reduce the effective dimension there are several possibili-
ties:

(i) One possibility is to use a separable interaction.
This allows one to rewrite the eigenvalue equation and
leads to an algebraic reduction for the same reason the
effective dimension of a Lippman-Sch winger or
Faddeev-type integral equation is reduced. This kind of
reduction technique has been employed and proven use-
ful in the nonlinear Schrodinger model, P theory, and
the massive Thirring model.

(ii) Another possibility is to go into the light cone
frame and dicretize light cone momentum and energy.
In 1+ 1 dimensions the light cone momentum is posi-
tive, which puts drastic constraints on the effective di-
mension of the discretized system. This technique has
been applied to compute the spectrum of the Yukawa
model and the massive Schwinger model. '

(iii) Another powerful way is the application of the
Monte Carlo method, which has been demonstrated so
successfully in lattice field theory. One way to apply the
Monte Carlo method to scattering problems has been
suggested in Ref. 11.

The intention of this paper is to discuss a further al-
ternative to reduce the effective dimension of the system.
The basic idea is to use a representation in which the
Hamiltonian is not a full but a sparse matrix, in particu-
lar, a band matrix. This is a matrix that has nonzero en-
tries only in the main diagonal and in a few neighbor di-
agonals. It is well known that the diagonalization of a
band matrix is much easier than that of a full matrix.
The idea to represent a Hamiltonian in the form of a
band matrix has been extensively used for the solution of
bound state problems in nuclear, atomic, and molecular
physics as well as many other physical and engineering
problems. ' ' In this paper we want to advocate the
idea to apply it to a scattering problem. As has been
shown by the Los Alamos-Iowa group, ' ' a convenient
and useful way to obtain a band matrix Hamiltonian is
to use a spline representation in coordinate space. As
will be shown in the next section, the free Hamiltonian
has a band structure in a coordinate space spline repre-
sentation. To ensure that the full Hamiltonian also has
a band structure, it is sufficient that the interaction be
local. Hence the aim of this paper is to show that the S
matrix can be obtained from our time-dependent approx-
imation scheme (1.4), where the finite-dimensional ap-
proximate Hamiltonians have a band structure originat-
ing from a coordinate space spline representation. We
consider a two-nucleon system interacting via a local
short range potential of Malfliet-Tjon type. We compare
the S matrix obtained from our scheme with a reference
S matrix obtained in a standard way. The investigations
presented here are considered as a prerequisite paving
the way for an application of the method to the three-

nucleon system with realistic local interactions. In Sec.
II we present the formalism, in Sec. III we present and
discuss the results, and in Sec. IV we give some con-
clusions.

II. FORMALISM

Let us consider a two-body system in the center of
mass system. Let us assume that the two particles are
spinless, each of mass m, and they interact via a local
central potential V(r). Then the Hamiltonian
H =H + V reads, in coordinate representation,

(r'
~

H
~

r) =5(r' —r) 5+ V(r)
2p

(2.1)

I (I + 1) +V r

(2.2)

We use the standard Lz(E3) scalar product

(Jim
~

Plm ) = I dr r P'(r)P(r), (2.3)
0

which for the reduced wave functions g(r)=u (r)/r and
P(r) =v(r)/r reads

(ulm
~

vlm )z ——f dr u "(r)v(r) .
0

(2.4a)

In the rest of this paper we work with the reduced wave
functions and for convenience of notation we drop the
index "R" and the angular momentum quantum num-

bers I and m,

(u
~

v) =(ulm
~

vlm )a .

Thus a matrix element of the Hamiltonian reads

(2.4b)

2 2

(u ~H
~

v)= I dru*(r)
0 2P dr

I (1+1) +V(r) v(r) .
T

(2.5)

Now we are ready to introduce a finite-dimensional set
of basis functions, which will eventually lead to the
finite-dimensional full and asymptotic Hamiltonians, in-
troduced in Sec. I. We will use, in particular, cubic Her-
mitian splines (for the general theory and application of
splines, see Refs. 17 and 18). We have chosen spline

where p=m/2 is the reduced mass. For the mathemati-
cally interested reader, we want to mention that H is an
essentially self-adjoint operator on $(E3), where $(E3)
is the linear manifold of rapidly decreasing functions
over R3. ' Because the potential is rotationally invari-

ant, H can be expressed in an invariant subspace of an-

gular momentum l,

( r'lm
~

H
~

rim ) = — +—5(r' —r) A'2 d 2 d
r2 2p dr~ r dr
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functions, because they have the following important
features. Firstly, they are localized functions, i.e., there
is only a finite domain, where the function values are
nonzero. On that domain, they are defined as polynomi-
als, i.e., they are smooth functions. As a consequence
they are a powerful tool in approximating smooth func-
tions (they are far superior to any set of orthogonal poly-
nomials). Secondly, they can be chosen such that each
spline function has an overlap with at most N other
spline functions. In our case we will have N =5. As a
consequence, the matrix elements of the Hamiltonian
taken between spline functions will have a band struc-
ture. We take the definition of the cubic Hermitian
splines given in Ref. 15. Let the interval [O,R,„] be
partitioned into I subintervals 0= ro & r

&
&

& rz
&

& rz ——R,„. There are 2I +2 spline functions: 10 20 25

P (r)=
r —r

r& r+
3 —2

r t &r &r (2.6a)

FIG. 2. Cubic Hermite splines for I =5, R,„=25.

P (r)=
ra+1-

ra+ ) ra

2

3 —2
rg+ )

—r

r~+ ) rg

r &r&r +& (2.6b)

u(r) —0. (2.7a)

The property that the wave function is in the domain of
the Hamiltonian implies the asymptotic property

g~(r) =
'2

(r —r ), r t&r&r (2.6c)
u(r) —0. (2.7b)

g (r)= r~+ )
—r

r~+ ) r~

'2

(r —r ), r &r&r +&. (2.6d)

One example for the case I =5 is given in Figs. 1 and 2.
Physics imposes the following constraints on the wave

functions. The reduced radial wave function u (r) has to
have the asymptotic property

Because we want to approximate the wave function by
spline functions, we impose the conditions (2.7a) and
(2.7b) as constraints on our set of spline functions, i.e.,
we drop those splines which are nonzero at r =0 and
r =R,„(see Fig. 2). Thus we are left with N =2I
spline functions, which we renumber from 1 to N and
which then form our working basis of expansion func-
tions ts j, a=1,2, . . . , N.

It should be noted that the functions s are neither or-
thogonal nor normalized to unity with respect to the
scalar product given by Eq. (2.4b). The matrix o,
defined as

tT~p= (s~
~
sp & (2.8)

10

I

I

I

I

I
X I

20 25

N

~e &= g (tr '") p~sp&
P=1

(2.9)

and an orthogonal projector P(N} onto the set [s
a=1,2, . . . , N,

N

P(N)= g ~

&( ') p(sp
~

a,P=1
(2.10)

From the projector we obtain the finite-dimensional
Hamiltonians

is a real, symmetric, positive matrix, which is invertible.
The matrix o. has a band structure; 0. ', however, does
not. One can construct an orthonormal set of basis
functions

FIG. 1. The cubic Hermite spline functions P3 (solid line)
and g3 (dashed line) for I =5, R,„=25.

H (N) =P (N }HP (N),

H (N)=P(N)H P(N) .

(2.1 la}

(2.11b)



37 DIRECT CALCULATION OF THE S MATRIX IN COORDINATE SPACE 489

H(N)
l

()(((k)) E(k( I Q(k)) k =1, . . . , N . (2.12)

In the following we denote by (s) that we operate in the
spline representation. That is, we define

In principle, Eqs. (2.10) and (2.11) define our finite-
dimensional Hamiltonians, which can be diagonalized
[Eq. (1.1)], yielding the time evolution [Eq. (1.2)] and the
S matrix [Eq. (1.4)]. However, from the numerical point
of view, this procedure would not be the optimum one
because it involves the computation of the matrix cr

which does not have a band structure. Hence we would
give up our desired goal to operate with sparse matrices
of band structure. Fortunately, it is possible to proceed
while avoiding cr ' completely. Let us consider, e.g. ,
the eigenvalue equation

[H (s) —E(k)o ]p(k) ——0 . (2.16)

Before proceeding to the S matrix, let us introduce the
asymptotic wave packets. %e assume that the asymptot-
ic wave packets, given in coordinate space, are eigen-
states of total angular momentum l and 3-component m,

One should note that all matrices appearing in this equa-
tion have a band structure. This is the equation we
solve numerically on the computer. After diagonalizing
the Hamiltonian H(N), we can express the time evolu-
tion [Eq. (1.2)] as

N

U(N, T) = g I
s )li(k~ exp(iE(k(T)g(k(i((s&

~

a,P, k =1

(2. 17)

H &(s)=(s iH isp),

(k) (s)=(s IN(k)) .

The eigenstate can be expressed as

(2.13)

(2.14)

&.e.,

P"(r)=P"(r)&, (r) . (2.18)

Again we introduce the reduced wave function u "(r) via

I 0'(k) ) g I sa ) ti'(k)a ~ (2.15)
)

u ( )r
T

(2.19)

a=1

where p(k~ is the ath component of a vector, which is
the solution of the generalized eigenvalue equation

Using the notation of Eq. (2.4), we write the asymptotic
state as

~

u"). Then, we can express the S matrix,
given by Eq. (1.4), as

(u "iS(N, T)
i

u") = u,"(s)p(,(,exp(iEt;(T)ft;(~& l((.( exp( i 2E(J(T—)p(JNcrs,

)& p, „„exp(tEtk(T)f,„&up(s), (2.20)

where

u "(s)=(s
~

u") .

The relative error of the approximation S (N, T) of the physical S matrix S is measured by

(u "iS(N, T) S
i
u")—

( i as
~

S
~

as )

(2.21)

(2.22)

We will introduce two functions, b, (N, T) and i(so(N, T), both of which will measure the violation of energy con-
servation of the approximate S matrix. Based on the intertwining relations

n'+'a'=an'+' (2.23}

and the commutation property of the S matrix

[S,H ]=0,
Eq. (2.23) implies

(Q' —'u "~ H
~

Q' +'u") =(u "~ H—
~

u") .

Denoting

Q(N, T)=U(N, T)U (N, —T),

(2.24)

(2.25)

(2.26)

(N, T}= (Q(N, T)u "iH(N)
i
Q(N, T)u") —(u "iH (N)

i
u")

(u "IH (N)
I

u") (2.27)
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Because

[U(N, T),H(N)]=0,

(N, T) can also be expressed as

(u "i U (N, T)H'"'(N)U (N, —T)
i
u")

(u "iH (N)
i

u")
Equation (2.24) implies

(u "iH S(H ) 'i u")=(u "~S
~

u")
for those asymptotic states

i
u"), for which (H )

'
i
u") exists. We define

(u "iH (N)S(N, T)[H (N)] ' S(N—, T)
i
u")

(u "iS(N, T)
i

u )

(2.28)

(2.29)

(2.30)

(2.31)

III. NUMERICAL RESULTS

—ar
V(r)=A. (3.1a)

a =0.633 fm

A, = —65. 120 MeV fm

(3.1b)

(3.1c)

We have chosen the following wave packet: an s-wave
state given in momentum space by

P"(&)=(t "(k)&oo(k),

gas(k) v "(k)
k

k„—k
v "(k)=a2 sin rr k„—k„„

(3.2a)

(3.2b)

x 8(k„p —k)8(k —kl,„), (3.2c)

a.=[—,'(k„—k„„)] (3.2d}

The constant Ir has been chosen such that P"(k) is nor-

We have used the following interaction: the triplet
part of the local Malfliet-Tjon IV potential, ' ' given by

malized to unity in Lz(R3). The function v "(k) yields a
bell-shaped wave packet with a maximum at
k,„=—,'(k„„+k„„) and a half-width k„;~= —,'(k„~
—kl,„}.We have chosen the wave packet parameters
k &pw 1 0 fm ' and k pp 2.0 fm '. This corresponds to
the energies E],„——41.47 MeV and E„=165.9 MeV.
The expectation value of the asymptotic Hamiltonian in
this asymptotic state is (E)=94.13 MeV. We have
chosen the asymptotic incoming and outgoing wave
packets to be identical. In order to obtain the reduced
wave packet u "(r} in coordinate space, we compute
from P"(k} its Fourier transformation, separate the an-
gular dependence, and form the reduced wave packet by
dividing by r. One has the relation

' 1/2

u "(r)= — —I dx sin(x)v"
7T f 0 T

In Fig. 3 we have plotted the s-wave phase shifts in this
energy region. The phase shifts have been obtained by
solving the Schrodinger equation plus boundary condi-
tions in coordinate space in a standard way and are con-
sidered as our reference values for our approximative
solution. The phase shifts display a smooth behavior
over the energy range covered by the wave packet. We
have used for our finite-dimensional approximation

TABLE I. The relative error of the norm iiu "ii and the relative error of the expectation value (u" iH
~

u ) in the spline ap-
proximation as a function of the length R,„ofthe coordinate space interval and the number N of spline functions. E —n denotes
10—Ij

R,„(fm) 10 20 30 40 50 60 70

10.0

20.0

0.172306 0.948200E —2 0.327000E —2
0.167 937E —2 0.913 304E —2 0.103 184E —1

0.349 864 0.168 134 0.205 560E —1 0.692 400E —2 0.293 OOOE —2
0.117371E —1 0.732 339E —2 0.119613E—2 0.577 883E —3 0.290 003E —3

30.0 0.123 727E + 1 0.215 228
0.880 100 0.197 627

0.168098 0.316510E —1 0.138 310E —1 0.689 700E —2 0.379 800E —2
0.734 676E —2 0.156 793E —2 0.932 686E —3 0.573 633E —3 0.359 052E —3
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T (MeV-'~

FIG. 5. Same as Fig. 4, but R,„=20 fm, N =50.

FIG. 3. The s-wave phase shifts of the MalQiet-Tjon IV po-
tential given by Eq. (3.1). E,„(N,R,„)=a( N /R, „)

a=435 MeVfm2 .

(3.4a)

(3.4b)

scheme intervals in coordinate space characterized by
R,„=10,20, and 30 fm. We have always considered
an equidistant partition of that interval. The dimension
N of the basis has been varied between 10 and 70. The
quality of the spline approximation of the asymptotic
wave packet has been tested by computing the norm of
the wave packet and the expectation value of the asymp-
totic Hamiltonian both in the spline representation and
as the reference value from a continuous integral. The
results are shown in Table I. One observes convergence
towards the reference value when increasing R,„and
N. Note that for large R,„and N, the relative error is
basically determined by N/R, „,which is a measure for
the nodal density in coordinate space. This ratio also
determines an upper limit of the derivative in the spline
representation, and hence determines an upper limit of
the kinetic energy. Because the potential chosen is al-
ways negative, this also determines an upper limit
E,„(N,R,„) of the total energy. One observes, quali-
tatively,

In order to obtain a reasonably converged result for the
expectation value of the asymptotic Hamiltonian, one
has to make sure that E,„(N,R,„) is larger than the
largest energy contributing to the wave packet. We have
chosen a wave packet which has a low and a high energy
cutoff, E~,„and E„, respectively, and fulfills the latter
condition in all cases investigated. Another parameter,
which plays a role, when studying the approximation of
the scattering wave function, is the averaged spectral
density of the energy. The total number of eigenvalues
is identical to the dimension N of the Hamiltonian.
Hence the averaged spectral density is N/E, „(N,R,„).
The scattering wave function, in general, has contribu-
tions from all momenta up to infinity. One expects that
the errors for the S matrix in the spline representation
will depend on both the spectral density and E,„.

Now let us discuss the results for the S-matrix calcula-
tions. The results are presented in Figs. 4-6 and Tables
II-IV. We display the S-matrix elements, given by Eq.
(2.20), and, moreover, hs(N, T), defined by Eq. (2.22),

10 10 I I I I I I I I I I I I I I

IO

10

IO

10 I I I I I I I l -I

0.01 002 0.03 0.04 005 006 007 0.08 0.09 010

T(MeV ')

IO

IO

FIG. 4. Dependence of the relative error h~(N, T) of the S-
matrix element, given by Eq. (2.22), and the error functions

6, , (1V, T) and 60(N, T), given Eqs. (2.27) and (2.31), respec-
tively, on the scattering time T. The wave packet is bell-

shaped, given by Eqs. (3.2) and (3.3) and characterized by the
parameters k&,„——1.0 fm ' and k„~=2.0 fm '. The interval
covered by the spline functions is [O,R,„]with R,„=10fm.
The number of spline functions is N =30.

IO

I/

(
yl

I

I I

I I I I I I I I I I I &I I I

0.04 0.08 0.12 0.16 0.20 0.24 0.28

T(MeV ')

FIG. 6. Same as Fig. 4, but E,„=30fm, N =70.



492 KROGER, SLOBODRIAN, AND PAYNE 37

TABLE II. Dependence of the S-matrix element (u"
~

S(N, T)
~

u"), given by Eq. (2.20), its rela-
tive error hz(N, T), given by Eq. (2.22), and the error functions h, , (N, T) and 50(N, T), given by
Eqs. (2.27) and (2.31), respectively, on the number N of spline expansion functions and the scattering
time T. In each box the top entry corresponds to Re[S(N, T)], the second to Im[S(N, T)], the third
to hz(N, T), the fourth to 6 (N, T), and the bottom to 50(N, T). The wave packet is bell shaped,
given by Eqs. (3.2) and (3.3), characterized by the parameters k],„——1.0 fm ' and k„=2.0 fm '. The
reference value of the S matrix is S=—024251 0+0.965621i and

~

S
~

=0.995607. The interval
covered by the spline functions is [O,R,„]with R,„=10fm. E n—denotes 10

T (MeV)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

10

0.764 321
0.403 437
0.115315E + 1

0.280 612
0.214 470E —1

0.400 357
0.614078
0.732 707
0.230 913
0.463 446E —1

0.160261
0.740 657
0.461 338
0.173 509
0.599 966E —1

—0.243 634E —1

0.856 414
0.243 955
0.110288
0.643 287E —1

—0.163041
0.923 912
0.897 494E —1

0.626 370E —1

0.486 195E —1

—0.227 571
0.942 626
0.274 215E —1

0.370 830E —1

0.323 279E —1

—0.270 385
0.942 293
0.359 221E —1

0.221 739E —1

0.183015E —1

—0.313 821
0.929 652
0.798 688E —1

0.147 234E —1

0.112 178E —1

—0.348 439
0.899 493
0.124 875
0.158 528E —1

0.138 852E —1

—0.375 207
0.835 927
0.185 550
0.344 086E —1

0.203 128E —1

20

0.774 601
0.397 117
0.116520E + 1

0.267 591
0.229 903E —1

0.427 069
0.606 880
0.759 625
0.221 390
0.489 501E —1

0.202 323
0.734 941
0.501 088
0.165 912
0.565 378E —1

0.313 197E —1

0.859 298
0.293 746
0.112349
0.551 096E —1

—0.109091
0.926 940
0.138 913
0.685 714E —1

0.442 257E —1

—0.175 178
0.953 457
0.684 269E —1

0.413 072E —1

0.288 550E —1

—0.216465
0.958 017
0.271 323E —1

0.252 662E —1

0.171 474E —1

—0.260 473
0.948 817
0.245 976E —1

0.176 565E —1

0.103 360E —1

—0.305 128
0.921 782
0.764 386E —1

0.183 348E —1

0.119898E —1

—0.350 682
0.861 264
0.150 304
0.293 722E —1

0.161 225E —1

30

0.774 923
0.396 563
0.116576E + 1

0.266 587
0.234 374E —1

0.428 330
0.605 882
0.761 208
0.223 019
0.495 308E —1

0.150 185
0.773 939
0.436 979
0.149 779
0.582 705E —1

0.334 162E —1

0.857 277
0.296 434
0.110008
0.525 574E —1

—0.106 382
0.925 777
0.141 839
0.704 810E —1

0.428 138E —1

—0.174 391
0.953 449
0.691 979E —1

0.421 214E —1

0.290 042E —1

—0.216 410
0.958 337
0.270 973E —1

0.256 449E —1

0.170 106E —1

—0.260 726
0.948 811
0.247 870E —1

0.178 053E —1

0.103 811E—1

—0.305 426
0.921 350
0.769 307E —1

0.183031E —1

0.114522E —1

—0.348 212
0.867 758
0.144 048
0.298 925E —1

0.159435E —1
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T (MeV) 10

TABLE III. Same as Table II, but R,„=20fm.

N
30 50

0.02

0.04

0.597 275
0.613 960
0.910441
0.312 132
0.418 811E—1

0.266 173
0.831 124
0.526 163
0.532 134
0.669 070E —1

0.406 106
0.608 153
0.740 598
0.229 485
0.627 481E —1

—0.105 119E—1

0.850 817
0.258 849
0.110909
0.533 345 —1

0.429 437
0.604045
0.763 053
0.220084
0.565 811E—1

0.343 433E —1

0.855 007
0.298 132
0.111491
0.499 238 —1

0.430 272
0.603 703
0.763 950
0.223 281
0.572 464E —1

0.351 124E —1

0.854 694
0.298 963
0.112032
0.498 381E —1

0.430 395
0.603 610
0.764 102
0.223 126
0.572 226E —1

0.351 921E —1

0.854 747
0.299 017
0.112067
0.497 833E —1

0.06

0.08

—0.369 779E —1

0.877 824
0.223 498
0.134245
0.864 597E —1

—0.187 232
0.876 128
0.105 188
0.735 844E —1

0.338 558E —1

—0.227 379
0.933 364
0.356 294E —1

0.335 642E —1

0.260 533E —1

—0.279 843
0.950 576
0.402 505E —1

0.590 579E —2
0.755 679E —2

—0.173 779
0.943 459
0.722 156E —1

0.366 408E —1

0.249 271E —1

—0.226 432
0.963 783
0.161 872E —1

0.766 712E —1

0.753 792E —2

—0.173 809
0.943 558
0.721 567E —1

0.367 287E —1

0.249 049E —1

—0.226 596
—0.964000

0.159 963E —1

0.768 801E —2
0.743 018E —2

—0.173 727
0.943 580
0.722 281E —1

0.366 774E —1

0.248 408E —1

—0.226 550
0.964087
0.160335E —1

0.765 461E —1

0.752 748E —2

0.10 —0.279 576
—0.853 908

0.117701
0.475 267E —1

0.275 967E —1

—0.289 694
0.952 682
0.489 259E —1

0.129420E —2
0.142 804E —2

—0.238 419
0.964 801
0.417 237E —2
0.160680E —2
0.164455E —2

—0.238 486
0.964 909
0.408 650E —2
0.155 648E —2
0.159981E —2

—0.238 357
0.964 968
0.420 402E —2
0.155 584E —2
0.161 251E —2

0.12 —0.326 851
0.793 525
0.191 651
0.347 328E —1

0.327 970E —1

—0.291 293
0.953 177
0.503 451E —1

0.107943E —2
0.447 785E —3

—0.241 071
0.965 044
0.155 037E —2
0.637 958E —3
0.647 952E —3

—0.241 038
0.965 111
0.155 784E —2
0.549 156E —3
0.549 518E —3

—0.240 896
0.965 163
0.167 772E —2
0.546 895E —3
0.542 468E —3

0.14 —0.308 807
0.749 665
0.225 903
0.339 752E —1

0.302 142E —1

0.293 475
0.953 204
0.524 558E —1

0.880 983E —3
0.394 500E —3

—0.242 405
0.965 275
0.361 581E —3
0.303 396E —3
0.417 871E —3

—0.242 167
0.965 465
0.376 808E —3
0.282 461E —3
0.258 153E —3

—0.242 011
0.965 516
0.509 927E —3
0.284 852E —3
0.257 587E —3

0.16

0.18

—0.274 128
0.753 105
0.214 855
0.378 597E —1

0.300 135E —1

—0.247 857
0.762 541
0.203 150
0.332 260E —1

0.351 341E —1

—0.295 655
0.953 007
0.546 214E —1

0.219 824E —1

0.321 488E —3

—0.296 331
0.952 430
0.554 139E—1

0.330 867E —3
0.292 115E—3

—0.243 246
0.965 022
0.948 945E —3
0.131610E —3
0.191490E —3

—0.243 666
0.964 516
0.159917E —2
0.460 297E —3
0.277 961E—3

—0.242 983
0.965 305
0.568 845E —3
0.852 265E —4
0.147 513E—3

—0.243 435
0.964 869
0.119211E—2
0.439 385E —3
0.256 927E —3

—0.242 824
0.965 368
0.403 243E —3
0.887 598E —4
0.153 165E —3

—0.243 278
0.964 876
0.106997E —2
0.428 378E —3
0.249 352E —3

0.20 —0.231 567
0.765 016
0.200 903
0.256 515E —1

0.256 431E —1

—0.298 531
0.948 724
0.585 137E —1

0.191 502E —2
0.458 813E—3

—0.247 324
0.962 540
0.571 551E —2
0.176014E —2
0.474 980E —3

—0.244 245
0.962 997
0.422 783E —2
0.175 320E —2
0.486 494E —3

—0.244078
0.962 874
0.494 099E —2
0.174200E —2
0.495 980E —3
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TABLE IV. Same as Table II, but R,„=30fm.

T (MeV)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

10

0.878 366
0.328 471
0.128 931E+ 1

0.279 485E + 1

0.258 318

0.560 670
0.581 884
0.890 141
0.209 428E + 1

0.502 209

0.157 147
0.715061
0.471 705
0.143 740E —1

0.591 923

—0.223 916
0.727 052
0.239 292
0.959420
0.582 100

—0.521 107
0.152 992
0.418 751
0.640462
0.549 293

—0.722 455
0.540 587
0.641 093
0.432 703
0.512043

—0.843 776
0.424 823
0.808 692
0.297 523
0.473 644

—0.908 345
0.334 162
0.917647
0.208 408
0.435 442

—0.937004
0.264 318
0.986 989
0.148 180
0.397 973

—0.945 456
0.215 800
0.102 779E + 1

0.106088
0.360 602

—0.944 315
0.184084
0.105 039E + 1

0.758 340E —1

0.321 901

30

0.406 158
0.608 100
0.740 669
0.229 467
0.621 698E —1

—0.104 171E—1

0.850 733
0.258 971
0.110895
0.535 979E —1

—0.227 236
0.933 412
0.356 470E —1

0.335 323E —1

0.262 613E —1

—0.279 707
0.950 503
0.401 518E —1

0.593 723E —2
0.750 349E —2

—0.289 553
0.952 587
0.488 152E —1

0.132 303E —2
0.129 642E —2

—0.291 254
0.953 220
0.502 967E —1

0.985 021E —3
0.497 483E —3

—0.292 451
0.953 426
0.514083E —1

0.687 001E —3
0.201 232E —3

—0.294000
0.952 614
0.531 074E —1

0.412 290E —3
0.251 427E —3

—0.294 823
0.951 698
0.541 340E —1

0.145 183E —3
0.204 753E —3

—0.295 104
0.951 155
0.545 471E —1

0.726 549E —4
0.364 995E —4

—0.295 177
0.950 945
0.546 735E —1

0.150613E —3
0.698 876E —4

50

0.430073
0.603 813
0.763 723
0.224 546
0.574 569E —1

0.347 906E —1

0.854 689
0.298 666
0.111946
0.501 183E —1

—0.173 788
0.943 424
0.722 187E —1

0.366 457E —1

0.250 064E —1

—0.226 554
0.963 824
0.160 568E —1

0.766 191E—2
0.746 074E —2

—0.238 455
0.964 770
0.414 333E —2
0.154 697E —2
0.156 840E —2

—0.241 078
0.965 041
0.168 240E —2
0.600 762E —3
0.586 410E —3

—0.242 181
0.965 373
0.412 001E —3
0.183047E —3
0.215 176E —3

—0.242 586
0.965 390
0.243 181E—3
0.758 351E —4
0.456 087E —4

—0.242 799
0.965 387
0.371 856E —3
0.530 635E —4
0.717 984E —4

—0.242 879
0.965 388
0.436 405E —3
0.295 642E —4
0.150462E —4

—0.242 949
0.965 383
0.499 364E —3
0.115352E —4
0.206 771E —4

70

0.430430
0.603 579
0.764 148
0.223 132
0.569 138E —1

0.352 369E —1

0.854 705
0.299 074
0.112056
0.499 520E —1

—0.173 645
0.943 535
0.723 199E—1

0.367 088E —1

0.250 011E—1

—0.226 509
0.963 988
0.160 841E —1

0.764 079E —2
0.745 926E —2

—0.238 305
0.964 882
0.426 944E —2
0.153 116E—2
0.153 137E —2

—0.240 895
0.965 148
0.168 248E —2
0.594 953E —3
0.584 769E —3

—0.241 989
0.965 479
0.540 004E —3
0.181 840E —3
0.232 820E —3

—0.242 367
0.965 496
0.189931E—3
0.770 444E —4
0.687 576E —4

—0.242 524
0.965 513
0.965 512E —4
0.364 016E —4
0.447 481E —4

—0.242 589
0.965 544
0.110317E —3
0.222 282E —4
0.133274E —4

—0.242 654
0.965 547
0.161 901E —3
0.107 778E —4
0.176 540E —4
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TABLE IV. (Continued).

T (MeV)

0.24

0.26

0.28

0.30

10

—0.939 845
0.164 755
0.106 191E+ 1

0.539 624E —1

0.281 068

—0.934 897
0.154006
0.106682E + 1

0.384 845E —1

0.239 265

—0.930288
0.148 612
0.106796E + 1

0.279 056E —1

0.201 535

—0.926 276
0.146 127
0.106728E + 1

0.207 857E —1

0.170076

30

—0.295 471
—0.950 910

0.549 661E —1

0.330942E —3
0.848 833E —4

—0.296 115
0.951 253
0.554 971E—1

0.443 875E —3
0.665 120E —4

—0.297 835
0.951 545
0.570 875E —1

0.358 512E —3
0.858 534E —4

—0.299 764
0.951 014
0.590 879E —1

0.308 805E —3
0.703 412E —2

50

—0.242 969
0.965 375
0.520 765E —3
0.987 837E —5
0.951 697E —5

—0.243 024
0.965 351
0.580 599E —3
0.350 356E —4
0.124 247E —4

—0.243 196
0.965 263
0.773 795E —3
0.563 175E —4
0.188 567E —4

—0.243 490
0.964 969
0.117707E —2
0.190053E —3
0.781 140E —4

70

—0.242 673
0.965 539
0.182463E —3
0.826 228E —5
0.784 466E —5

—0.242 725
0.965 516
0.239 269E —3
0.331 241E —4
0.123 571E—

—0.242 890
0.965 431
0.424 852E —3
0.533 050E —4
0.184425E —4

—0.243 175
0.965 155
0.812022E —3
0.195 900E —3
0.704 360E —4

which determines the relative error of the approximate S
matrix [to be precise, we have displayed the numerator
of the right-hand side (rhs) of Eq. (2.22), because the ab-
solute value of the denominator difFers from 1 only in
the third digit]. Moreover, we have displayed

(N, T) and 50(N, T), given by Eqs. (2.27) and (2.31),
respectively, which both measure the violation of energy
conservation. The general observation made is the fol-
lowing: For each value of T, the approximate S matrix
S (N, T) converges as a function of N. For each value of
N, S(N, T) is a periodic function of T. The period is a
function of N and increases with ¹ In practice, the fol-
lowing question arises: For a given N, which is the best
value of T, such that hs(N, T) becomes minimal? The
same kinds of properties of the approximate S matrix
have been observed when applying the technique in
momentum space. " In Ref. 1 an answer to this question
has been given. Roughly speaking, the error in the S
matrix is minimal as a function of T, when the violation
of energy conservation is minimal. Thus, in cases where
the exact S matrix is unknown, one would determine the
best value of T from the minimum of b (N, T) or
bo(N, T). Note that both are functions which do not re-
quire the knowledge of the exact S matrix or scattering
states, but only the approximate ones.

An approximate value of T for the minimal error can
be obtained by considering the motion of the wave pack-
et in coordinate space. Choosing a particular value of R
corresponds to placing the wave packet in a box whose
size is R. The time evolution operator moves the wave
packet both in time and space, and the distance moved
must be less than the size of the box. Also, the value of
T must be large enough so that the wave packet is well

outside the region where the potential is nonzero. For
large values of T only the tail of the wave packet is in
the region of the potential and as T becomes larger the
overlap of the wave packet with the potential decreases.
Thus for large values of T one can obtain a good approx-
imation to the S matrix. However, as mentioned above
the value of T is limited by the size of the box. An ap-
proximate limit on the value of T can be found by using
the time for the free wave packet to move across the
box. Using the relationship p =A'k =m U, one finds
T=mR/(fi k). For k =1.5 fm ' and R =10 fm, the
value of T is 0.161 MeV '. The actual value of T will
be smaller than this because of the finite size of the wave
packet and the spreading of the wave packet in time.
From Fig. 4 one can see that the error is a minimum for
T=0.075 MeV '. Comparing Figs. 4-6 we find that
the optimal value of T is a linear function of R.

Comparing the absolute magnitude in the relative er-
rors of the norm of the asymptotic states and the expec-
tation value of the asymptotic Hamiltonian, given in
Table I, with the relative error of the S matrix, given in
Table II—IV, it seems that in some cases the S matrix is
more accurate than the norm of the asymptotic state and
the expectation value of the asymptotic Hamiltonian.
This is due to the fact that we have renorrnalized to uni-
ty the spline expansion of the asymptotic state before
computing the S matrix.

IV. CONCLUSIONS

We have demonstrated for the case of a two-nucleon
system that a finite-dimensional spline approximation of
a nonrelativistic Hamiltonian is suitable not only for the
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purpose of calculating the bound state spectrum, '

but also for the computation of the S matrix. We find a
fairly rapid convergence of the approximate S matrix to-
ward the reference solution. The important feature of
the spline representation, applied in the case of a local
potential, is that it yields a Hamiltonian matrix of the
band structure. What are the implications for an even-
tual application of this method for the computation of
the S matrix of a three-nucleon system, using the Reid
or Paris or Bonn potential? Also, in a three-nucleon sys-

tern interacting via local potentials one would obtain a
Hamiltonian of the band structure. Currently, people
have treated —on modern supercomputers —band ma-
trices of dimensions of the order of 10. Thus we are
cautiously optimistic that three-nucleon scattering calcu-
lations based on this method using realistic interactions
are now feasible.
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M. Batinic, Z. Bajzer, and H. Kroger, Phys. Rev. C 33, 1187
(1986).

C. Moler and C. Van Loan, SIAM Rev. 20, 801 (1978).
H. Kroger and R. J. Slobodrian, Phys. Rev. C 30, 1390 (1984).

4H. Kroger, A. M. Nachabe, and R. J. Slobodrian, Phys. Rev.
C 33, 1208 (1986).

5R. Girard and H. Kroger, Phys. Rev. D 34, 1824 (1986).
H. Kroger, R. Girard, and G. Dufour, Phys. Rev. D 35, 3944

(1987).
7R. Girard and H. Kroger, Z. Phys. C (in press).
H. Kroger, Phys. Rev. C 31, 1118 (1985).
H. C. Pauli and S. J. Brodsky, Phys. Rev. D 32, 1993 (1985);

32, 2001 (1985).
' T. Eller, H. C. Pauli, and S. J. Brodsky, Phys. Rev. D 35,

1493 (1987).
H. Kroger, Phys. Rev. A 35, 4525 (1987).

' C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys.
Rev. Lett. 55, 374 (1985).

W. K. Ford and F. S. Levin, Phys. Rev. A 29, 43 (1984).
M. Friedman, Y. Rosenfeld, A. Rabinovitch, R. Thieberger,
J. Comput. Phys. 26, 169 (1978).

' G. L. Payne, Configuration Space Faddeev Calculations: Nu-
merical Methods, Lecture presented at the 8th Autumn
School on Models and Methods in Few-Body Physics, Lis-
boa, Portugal, 1986.
W. O. Amrein, J. M. Jauch, and K. B. Sinha, Scattering
Theory in Quantum Mechanics, Vol. 16 of Lecture Notes and
Supplements in Physics (Benjamin, Reading, Mass. , 1977),
Proposition 3.9, p. 117.

P. M. Prenter, Splines and Variational Methods (Wiley, New
York, 1975).
C. de Boor, A Practical Guide to Splines (Springer-Verlag,
Berlin, 1978).
R. A. Malfliet and J. A. Tjon, Nucl. Phys. A127, 161 (1969).
J. L. Friar, B. F. Gibson, and G. L. Payne, Z. Phys. A 301,
309 (1981).


