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Three-body models of Li are used to investigate the structure of the Li~p + (na) vertex am-

plitude. Within the three-body framework, the formalism of the Li~p+ (na) overlap amplitude
is delineated. From this overlap, the formula for the central physical quantity, namely, the
Li~p+ (na) joint momentum distribution, is derived. It is shown that the Li~p+ (na) joint

momentum distribution satisfies a sum rule consistent with its probability interpretation. The sum

rule is used as a check on the numerical calculation of the joint momentum distribution and to iso-
late terms that contribute insignificantly. By integration of the Li —+p+ (na) joint momentum
distribution over a given range of the na excitation energy, the momentum distribution of the
valence proton in Li is obtained. From both the Li~p+ (na) joint momentum distribution and
the p-(na) momentum distribution, the dynamical structure of the Li~p + (na) vertex according
to three-body models is uncovered.

I. INTRODUCTION

From the viewpoint of an alpha-particle (a) plus two-
nucleon (NN) three-body model of Li, there are three
possible virtual-disintegration amplitudes for Li: (l)
Li —+a+d, where d means deuteron; (2) Li~a+(np),

where the parentheses around the np indicate that the
neutron (n) and proton (p) are interacting in an unbound
state; and (3) Li~p+(na) or Li—an+(pa), both
equivalent in this work since we neglect the Coulomb in-
teraction. The Li~a+d case has been treated in ear-
lier work' and the predictions for the Li~cx +d
momentum distribution have recently been tested against
data obtained from the Li(e,e'd)a reaction. It is found
that three-body models describe weil the Li~a+d ver-
tex for a-d relative momenta up to -300 MeV/ cIn
fact, the predicted 2s character of the u-d relative wave
function is clearly illustrated by the data. On the other
hand, no work has been done on the Li~a+(np) and
Li~p+(na) vertices from the viewpoint of Li three-

body models. For the 6Li~a+(np) case, this is mainly
due to the absence of experimental data to compare with
predictions. As a consequence, this amplitude will be
considered at a future time in conjunction with pending
Li(e,e'a)np experiments. However, measurements have

existed for a long time that were aimed at uncovering
the physics of the Li~p+ (na) vertex. Data of vary-
ing quality, limited in some cases by energy resolution
and in others by too low an incident-projectile energy,
are available from Li(p, 2p)na and Li(e,e'p)na experi-
ments. Moreover, new high-resolution data for
Li(e,e'p)na, with incident electron energies of 400—500

MeV, will soon become available. Thus, we now apply
the theory of Li three-body models to the Li~p+ (na)
vertex.

The general aim of this series of papers is to examine
in detail the structure of the Li~p+ (na) vertex from
the framework of three-body models of Li. The present
paper gives the formalism for computation of the

Li~p+(na) vertex amplitude or the overlap ampli-
tude. Once the formalism is established, the probability
of finding within Li a proton moving with momentum q
relative to the center of mass of an interacting nu pair,
where the na relative momentum is ~, per momentum-
space volume squared, can be calculated. This "joint"
momentum distribution forms the basis for the following
two papers, which concern the reactions Li(p, 2p)na and
Li(e,e'p)na, respectively.

The present paper is organized as follows: Section II
contains the general formalism for setting up the
Li~p+ (na) vertex amplitude, a review of the form of

the Li three-body wave function, and a concise presen-
tation of the na scattering wave function. In Sec. III the
Li—+p+ (na) joint momentum distribution is derived.

As a means of checking numerical calculations, it is
shown that the joint momentum distribution must satisfy
a sum rule based on the normalization of the Li
ground-state wave function. Numerical results for vari-
ous three-body models are given in Sec. IV: the sum
rule is checked and the joint momentum distribution ob-
tained. The physics underlying the results for the joint
momentum distribution is discussed in Sec. V, followed
by a brief conclusion in Sec. VI. An Appendix contains
a derivation of the na scattering-state completeness that
leads to the above-mentioned sum rule.

II. VERTEX FORMALISM

The virtual-disintegration amplitude for Li~p+ (na)
is depicted by the Feynman diagram of Fig. 1. The Li
nucleus is taken to be at rest. As a consequence, if the
relative momentum of the proton with respect to the
center of mass (c.m. ) of the na pair is +q, the na-pair
c.rn. recoils with momentum —q. In addition, the rela-
tive momentum of the n and a is designated as a. The
amplitude will be called M(q, a-, m, m„,m6), where the
m; represent the magnetic quantum numbezs of the pro-
ton, neutron, and Li nucleus, respectively.
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Since the Li ground state, thought of as a three-body
nucleus, satisfies Schrodinger's equation in the form

(H()+ V„p+ Vp + V„)
~

4['] ) = B—6 ~

4['] ), (2)

where H0 is the three-body (anp) kinetic-energy operator
and B6 is the binding energy, we can write Eq. (1) as

M(q, «; m~, m„,m6)=— 3q 5K

5M 8M

(3)

FIG. 1. Feynman diagram for the virtual-disintegration pro-
cess Li~p+ (na).

which follows from

&~[' ']+„'-.' ~(H, +V„.)

The virtual-disintegration amplitude is defined as fol-
lows:

(„,)( ) 3q 5K2 2

5M 8M
(4)

Thus, the key element in calculating the virtual-
disintegration amplitude M(q, «; m~, m„,m6) is the
Li —+p + (na) overlap amplitude, hereafter denoted

where 7 ' ~ is the spin- —,
' spinor for the proton, y„' ' is

P ll

the outgoing scattering state (incoming wave) for the na
pair, the potentials are the excluded interactions in the
final state, and 4 ' represents the Li ground state.

All calculations described in this series of papers are
carried out in momentum space. The explicit expression
of A(q, . . .) in terms of wave functions in momentum
representation is

A(q, «; m, m„,m6)= fd pd k(qX~[' ]((0~['~]
~
pk) (pk

~

q'[~])

= f d'p d'ke '" '(p)q """"(k)q [„"(p,k), (7)

where p and k are Jacobi momenta appropriate to the p-(na) permutation. Specifically,

(p ' ' (p)=&'(p —q)x ' ",
q, m m (8)

whereas the na-scattering state is given by

( ) 1 1
3/2 /+I/2 h/(k) ( )~[1/2] (k) g3(k «)+ y y ( 1 )2lJ IJ («)4~[ cy[JI (k ) )( $r [I

( )][0] y[l/2]
2n k « +ill I I—/2'/ 1 I/2 h/ («)

8&1

2m A/(h/(«))J( —)(«) (10)

with

h/(k)I ' '(«)= fd k (11)
k —K +lg

Equation (9) follows from the interactions used in earlier
work to generate the Li ground-state wave function:
the nu pair interacts in the dominant partial-wave states
at low energies, i.e., the S1&2, P1&2, and P3/2 and the in-
teractions are assumed to be represented by separable
potentials. All notation follows that of Ref. 5, e.g. , A& is

where the partial-wave scattering amplitudes are defined

by

I

the strength of the partial wave 8, total angular momen-
tum, J, interaction, and h/(k) is the corresponding in-

teraction form factor. Of course, an important aspect of
this work is the fact that the initial and final states origi-
nate from the same underlying two-body interactions.

From Eq. (7), our objective is to derive an expression
for the overlap amplitude that yields easily to numerical
computation. There are two main terms in Eq. (7): (1)
The pure plane-wave term, and (2) The term with the na
scattering amplitudes. This leads us to break the overlap
amplitude into a sum of two pieces denoted by sub-
scripts p (plane wave) and s (scattering). By Ineans of
partial-wave expansion of the Dirac delta functions and
recoupling of the angular functions with the spin func-
tions, we can write
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L L'

(pq)53(kz)p[ /2]+[1/2]Pq+( i mjm~ I(M)(1)/+/+K+
G G'

Xd"
GG'

x [[Y"'(q) x Y" '(k)]["]x [Pp] (p, 1)x Yp,]/2(k, 2) ][ ]]pf],

where

P[[G)/~(p, 1)=g(L q —,
' p i

G mG) Y„(p)X„' / (1),

(12)

(13)

the proton is denoted particle 1 and the neutron particle 2, and the angular-momentum notation follows Ref. 5.
When Eq. (12) is substituted into Eq. (7), the plane-wave part of the overlap amplitude becomes

Az(q, tr; mz, m„,ms)= g ( —,
'

mz —,
' m„~ EM)( —1)'+ +

K
LL'

XM~
GG'

L L'
XX G G ', —,

'
—,
' E . (XM& [ms

i
KM)[Y (q)X Y (tc)]Q]

6 G' 1

Xf dp 5(p —q)f dk 5(k a) fdQ—dQk[[$'p&i/2(p, 1)XPpi]/2(k, 2)][']X+['](p,k)][ ] .

(14)

A similar procedure can be used on the the term that accounts for the na scattering. In detail, the first step is to con-
sider

5'(p —q)X ' [P/ I,(k)x &/I, (&)] X '

5( — )~, q y(-'m -'m„]@M)( 1)'+~+ +'—
2 P 2

P KL
XcP

L
X d / —,

'
—,
' E .[[Y[ ](q)X Y[ ](a)]["]X[5'[ I(p, 1)P[/ I/2(k, 2)][ ]]g] .

2

G J
(15)

Making use of Eq. (15) in Eq. (7), we derive for the scattering part of the overlap amplitude the following:

A, (q, z; m, m„,m6)=g g ( —,
' m —,

' m„ i

KM�)(

—1)'+ +
JF KL

XM~
G

L
Xj G J —' —' K (XMi 1m6

i
KM)[Y[ ](q)X Y[' (k)]Q

G J cP

2 f/ (~) „„~h/(k)f dp5(p —q)f k dk
2h/(~) 0 k2 &2 l

X fd&pd&k[[P P[/2(p, 1)X 9 [/ I/p(k, 2)][ ]

X +"'(p,k)) (16)
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The final element that is needed in the derivation of the overlap amplitude is the ground-state wave function. Follow-

ing Ref. 5, we write

2

(P3 k&2)= —
2 2 z ~~ g g/(k)2)[[I'( )(k)2)XX(')(12)](')X&( )(p, )]( )G (p3)E +k12+ —P3 P P~ P

(~1)

3/2 1+J J + 1/2 J'+ 1/2
P + A/Ih/(k~3)

J= 1/2 J' =
i

1 —J
i

E =J—1/2 E' =J' —1/2
( (1)

X [+/ I/2( 23' ) X +~/~ I/2(p»

XF/(J~~(p~ )+( — ) (31,2))

where N is the normalization constant, G and F&(Jp) are the spectator functions, and E =M86. A numerically
tractable equation for the overlap amplitude is obtained by performing the angular-spin projections on + that are

indicated in Eqs. (14) and (16). This is a straightforward, but tedious task. Since the final expressions are lengthy, we
do not display them here.

In closing this section, we bring to the reader s attention the general form of the overlap amplitude. Examination
of Eqs. (14) and (16) indicates that

A(q, z; m, m„,m6)= g ( —,
' m —,

' m„~ KM)( —1) X(XM~ 1 m6
~

KM)Ag(K;q, z),
XM~

(18)

where K can be only 0 or 1, and thus X=1 or 0 &X & 2, respectively. In the next section, Eq. (18) forms the basis for
the derivation of the Li~p+ (na) joint momentum distribution.

III. JOINT MOMENTUM DISTRIBUTION

The quantity of current physical interest with respect to the Li~p+ (na) vertex is the joint momentum distribu-
tion: The probability of finding within Li a proton moving with momentum q relative to the center of mass of an in-
teracting na pair that has relative momentum ~ per unit momentum volume per unit momentum cubed. In principle,
the joint momentum distribution or integrals thereof can be extracted from (p,2p) or (e,e p) coincidence experiments as
discussed in the following two papers, respectively.

The derivation of the joint momentum distribution follows from Eq. (18). In the experiments that we shall consider,
the Li target is unpolarized and the recoiling na pair goes undetected. Therefore, we shall average over the Li spin
and sum over the spin of the neutron. From Eq. (18), we form

—,'g gA (q, z; m, m„,m6)A(q, z; m', m„, m6)
m6 mn

( —1) ' 1

2

gK K'XX'( —17 f'
KE' P ™ P.
TMT

[A (K;q, sc) XA (K';q, ~)]pp, (19)
2 2 2

where some recoupling algebra has been carried out to obtain the result on the right-hand side of Eq. (19). The bar
over A( l means that the complex conjugate is to be taken, both for the scattering am litude and propagator [see Eq.
(16)]. From Eqs. (14) and (16), it is seen that the angular-momentum structure of A ) comes from the coupling of
the q and a spherical harmonics. Furthermore, as mentioned above, the na pair goes unobserved in the experiments
that we shall consider. Thus, we integrate over the directions of q and k in Eq. (19):
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6

fdQ fdA„,'—gA (q, x; m, m„,m6)/1(q, x; m', m„,m6)= ' '
V(a, q),

6

(20)

where

V(K, q)—= —,'gk X f dA fdQ„[A (E;q,a)XA (E;q, )]
4m

(21)

is the joint momentum distribution. [We shall see in the
third paper of this series that the Li~p+ (na) spectral
function, denoted S(E„,q), is equal to p „aV(i~,q).]
Equation (21) is the basis for our calculations.

Owing to the normalization of the Li ground-state
wave function and the completeness of the plane-wave
and scattering states (for the latter, see the Appendix),
V(a, q ) satisfies a sum rule, i.e.,

note, however, that though the sum rule is exact within
the framework of a three-body model, it must be used
with care in interpreting experimental data since the
three-body model does not allow for dissociation of the
alpha particle. In the next section we see how it is used
to assure the correctness of our results and to single out
terms that contribute negligibly to V(a, q ).

4mfq. 'dq f ~'d~ V(i~, q }=1 .
0 0

(22)

To obtain this condition on the joint momentum distri-
bution, we begin from the ground-state normalization
condition, i.e.,

& y(y[&]
~

gg[&] )
m6

(23)

fd'q
~ q)(q

~

=1, (24)

yfd „~+[ /]' ')( [ l
K, m

m„
(25)

T

yy[1/2]y [1/2]
1 0

m m 0
m

(26)

Then, we get

—,
' g fd'q fd'a(q '"

~ q
.['"]' 'X['"]q)

m6
6 K™n p

m„mn p

( (+[1/2]~[ I
/2]'

~

gy[1] ) —1 (27)
n

or, from Eq. (5},

fd qd z
~

A(q, a; mz, m„,m6)
~

=1 .
m6

m„m

(28)

Letting m =m' and summing over m in Eq. (20) per-
mits us to identify V(a., q ) in Eq. (28). This identification
leads to the sum rule of Eq. (22).

The power of the sum rule is that it serves as a con-
straint on the numerical calculations. The reader should

We insert into Eq. (23) the following complete sets of
states:

IV. NUMERICAL RESULTS

Five different models for the ground state of Li will
be considered in this series of papers. They are dis-
tinguished by the NN and aN interactions that underlie
the three-body dynamics. The most elementary is the
so-called simple model which was used in the first dis-
cussion of the alpha-deuteron structure of Li from
three-body models. This model employs only an S-wave
NN interaction and P3&2 component of the aN interac-
tion. The remaining four models are more sophisticated
in that they include all the dominant components of the
aN interaction at low energies, i.e., S,&2, P, &2, and P3/2,
and the NN interaction can have a tensor component.
The four models are generated by two means: (1) The
presence or absence of the tensor component in the NN
interaction, and (2) whether the S&/z aN interaction is
taken to be purely repulsive or to be an attractive in-
teraction with the forbidden bound state removed. '

These models are denoted as the repulsive- or
attractive-projected, 0% or 4%, full models. The 0%
and 4% denote the percentage of D state generated in
the deuteron wave function by the tensor force. The pa-
rameters of the separable NN and aN interactions of
these models can be found in Refs. 5 and 7, and their use
in other applications in Refs. 1 and 8. Whatever model
is used for the ground state of Li, the corresponding nN
parameters are used for the scattering state in the over-
lap. This assures full consistency of the calculations.

In order to make clear the numerical calculations
presented in this section, it is necessary to examine
Ag(K;q, sc) at the level where the spin part of the pro-

jections in Eqs. (14} and (16) have been carried out.
AQ (K;q,x) can be decomposed into three main parts

according to the three terms of Eq. (17). We call these
parts X, Y, and Z, where X comes from the
6 (p3) term, F[ ] from the F/tJ/~(p, ) term, and Z[
from the F'(/J)/{ p2}term. Each has a plane-wave and
scattered-wave contribution. Specifically,
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2

XPf
) (K;q, z) =4m A, ,N1

r, ~'=o
(~1)

1 1 1

g/( i

——,'sc —
—,'q

~

)G ( i
~——', q ~

)

2 + ~ K2 + 3
q

2
8 5

+( 1)K+X+112g( 1)UQ+( 1)TTy( 1)j+L+1/2/2
U T JL

X

1

2 2
U

'1

J E
U T

1 1

K 1

1 T U 1

2 fLj (lc)
2

hLj(k23)8 c (k12)G (p3)X— d k23
hL()c) (k23 —a iri)(—K + —',k23+ ,'q )—

x [[Y"'(k23) x Y"'(k)]'U'

x [Y"'(k») x Y"'(p3)](~]I)c)'

where under the integral k, 2
——k23 —4q/5 and p3

———k23/2 —3q/5;
r

j j j'
A/h / ()c)F/'1 jy ) (q)

YJ)c )(K;q, ic) = ', 4rrN1+ J—J', —,
'

—,
' K .[1+S ()c,q)][Y( )(k) X Y( )(q)]I)r

J J' 1

(29)

(30)

where

(-)'
2 f~ ()c) [h / (k23)]

S/ ()c,q)=(K + —8)c ++ ', q ) ——Jk23dk23~ [h/()c)] (k23 )c iri)(K—+——', k23+ —',q )

and

(31)

ZPf)(K, q, ~)=—,'4mN1( —1) g ( —1) +'J J'. —,
'

—,
' K A/hz(

~

—.—,'a+ —,",q i
)Fj (j/)( i

—sc ——,'q
i

)
JJ' J J' 1

X K

x( —1)'JJ' &'

T S

X[Y( 1( ——,')c+ 24q)x Y( l( —a —
—,'q)]I)cl

+( 1)Xy( 1)UPS 2yfy( 1)rj+L+3/2J 2

U S T d"L

1 I U 1 1 U K 1

T U S

J g( —)

2 fL~

hL (a. )
1

hL(k23 }h/ (k3, )F/'(j/)(P2)
X d k23

(k23 —)c i ri}(K +—'k23—+ —'q )

X [[Y( )(k23) X Y( }(K)]( 1

X[Y' (k„)XY' (p, )) ']I)c„ (32)
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where under the integral k3, = —k23/5+24q/25 and

p2 k23 q /5. The two quantum numbers upon
which A and thus X, Y, and Z, depend, namely K and
X, represent the total spin angular momentum of the
neutron and proton in the final state and the total orbital
angular momentum in the final state generated by the
motion of the proton relative to the na c.m. and the rel-
ative motion of the neutron and alpha particle, respec-
tively. Since the overlap of the final state is with the Li
ground state (1+),E and X must couple to unity.

Now, from Eqs. (29)—(32) it is even more apparent
than before that the calculation of V(]~,q) is very tedi-
ous. The formulas involve many 6J and 9J coefficients,
complex arithmetic, and complicated spherical harmonic
couplings. Thus, the sum rule of Eq. (22) is the key to
assuring correct results. In order to ascertain the dom-
inant contributions to V(lr, q), the sum rule is applied in
stages.

It is tempting to hope that only the X=0 contribution

to V(]r, q) will be significant, especially since it reduces
the complexity of the coupling in Eq. (21). Thus, we
start by including only the X=O partial wave. When
only the plane-wave contribution to A( ) is considered,
the sum rule yields 0.898 for the full (4%) repulsive
model. This seems like a promising result. However,
when both the plane-wave and scattered-wave pieces are
included, i.e., using the complete A ( 1, we get a
significantly lower sum-rule value: 0.629. This is clear
evidence that part of the scattering contribution is miss-

ing; apparently, contributions from the X&0 amplitudes
make up for the destructive interference that occurs be-
tween the plane-wave and scattered wave contributions
when X=0.

The essential role of the X+0 partial waves, in gen-
eral, is especially striking if only the Y part of A( l is
considered. The contribution to the sum rule for this
case comes from

fdQ fdQ„[Y( )(E;q,~)X Y( )(K;q, ]r)](
EC

'2

[A&ll / (K)F/ [&/](q)] [I+S& (]c,q )+S & (K, q )+
~

S'& (z, q )
~ ] . (33)

477 JJ 8 g + + q

For the sum rule to be satisfied, i.e., produce the same
value as the plane-wave result, the scattering terms must
cancel after integration over ~ and q. That they do can-
cel can be seen from the arguments given in the Appen-
dix. If the sum over X does not cover its full range of

values, then uncanceled cross terms appear on the right-
hand side of Eq. (33), e.g.,

F/ (J/)(q)F~, (~~)(q)S ~ (]r,q )S / (a, q ),J' J' JJ JJ

TABLE I. Plane-wave component contributions (&1% total) to sum rule according to partial
wave. (cr) means cross term, i.e., the (2,31) term with the (1,23) term. Full (4%%uo) repulsive model.
Contributions in percent.

Component

G'XG'
XFo[(1/2)o]

0 1/2

0 3/2G XF1[(1/2)1]
G XF1[(3/2)1]

0 1/2

0 3/2XF1[(3/2)1]

1/2 1/2Fo[(1/2)o] XFo[(1/2)o]
3/2 3/2F1[(1/2)1] XF1[(1/2)1]
1/2 1/2

F1[(3/2)1] XF1[(3/2)1]
3/2 3/2F l[(3/2) I ] xQ I [(3/2) I ]
1/2 1/2

FO[(1/2)o) XFo[(1/2)0]
3/2 3/2

F 1[(3/2)1] XF1[(3/2)1]
1/2 3/2

FO[(1/2)0] XF1[(3/2)1)
1/2 3/2F 1 [(3/2)1] X 1[(1/2)1]

45.10
—21.71

5.19
9.01

16.18

3.08
0.44
1.71
5.41

2.87
3.49
0.37
2.91

74.05

0.90
3.39
8.11

5.38

0.44
18.22

3.49

0.48
0.80

—1.17

0.14
0.53
1.08

0.69

0.90
6.94

Total

48.59
—21.71

5.67
9.81

15.01

3.08
1.48
5.63

14.60

2.87
9.56
0.37
4.25

99.21

All other terms 17.77
91.82

—13.62
4.60

—3.44
3.50

0.71
99.92
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TABLE II. Plane-wave component contributions (&1% total) to sum rule according to partial
wave. (cr) means cross term, i.e., the (2,31) term with the (1,23) term. Full (4%) attractive-projected
model. Contributions in percent.

Component

GO)( GO
0 1/2G XFO[(1/2)0]
0 3/2G XF1[(1/2)1]
0 1/2G )&F1[(3/2)1]
0 3/2G XF1[(3/2)1]
1/2 1/2

Fo[(1/2)0] XFo[(1/2)0]
3/2 3/2
1[(1/2)1]+ 1[(1/2)1]
1/2 1/2

F1[(3/2)1] XF1[(3/2)1]
3/2 3/2

F1[(3/2)1] XF1[(3/2)]]

Fo[(1/2)o] XF0[(1/2)0]
1/2 1/2

F1[(3/2)1] XF1[(3/2)1] (cr)3/2 3/2

1/2 3/2
Fo[(1/2)o] XF1[(3/2)]]

1/2 3/2F1[(3/2)1] +F1[(1/2)1]

42.00
—22.78

4.88
8.33

16.10

5.07
0.42
1.60
5.85

3.65
3.75
1.10
2.74

72.71

0.87
3.23
8.78

5.90

0.38
19.16

3.10

0.41
0.66

—1.00

0.13
0.50
1.17

0.74

0.82
6.53

Total

45.10
—22.78

5.29
8.99

15.10

5.07
1.42
5.33

15.80

3.65
10.39
1.10
3.94

98.40

All other terms 18.59
91.30

—14.15
5.01

—2.99
3.54

1.45
99.85

TABLE III. Li L-S orbital probabilities in percent.

Model
S1

K =0)
3p +1p
(X=1)'

D1
(X=2) Total

Ref. 8

This work
91.78
91.82

Full (4%) repulsive
4.51 3.71
4.60 3.50

100.00
99.92

Ref. 8
This work

91.47
91.30

Full (4%) attractive-projected
5.13 3.40 100.00
5.01 3.54 99.85

etc. Such terms can lead to contributions that destroy
the sum rule. Moreover, it is clear that when the
scattering contributions are present X may have to
range over alI its values for saturation of the sum rule.
With this in mind, let us systematically look at the sum
rule beginning with the pure plane-wave contributions.

The plane-wave results for the full (4%) repulsive- and
attractive-projected models are given in Tables I and II,
respectively. ' The wave-function-component contribu-
tions that are explicitly singled out agree in total with
the component contributions to the wave function nor-
malization given in the Parke-Lehman paper of Ref. 1.
This is as it must be. Small difFerences that occur are
numerical in origin due to the fact that here the calcula-
tion is done from the plane-wave contribution to the
Li~p+ (na) overlap amplitude. As a consequence, the

coordinates are not the optimal set used for the normali-
zation calculation in Ref. 1, but the set appropriate for
the p+ (na) configuration. Thus, angle dependencies
that were removed by a change of variables in the nor-
malization calculation remain in the plane-wave sum-
rule calculation. This makes the numerical integration

more sensitive to the integration mesh. Nevertheless,
the calculations for the component totals are accurate to
better than +0.07% on the average.

What should be noted from Tables I and II, besides
the fact that the sum rule is satisfied, is the partial-wave
decompositon in X. It is striking that the terms in the
normalization calculation of Ref. 1 that are considered
to be small end up that way through the /=0 contribu-
tion being canceled by the X= 1 and 2 contributions (see
"all other terms" in Tables I and II). Furthermore, the
X decomposition with only plane waves corresponds to
the L-S coupling projection of the ground-state wave
function where the P

&
and 'P

&
contributions are

summed. We see (Table III), upon comparison with the
L-S coupling results obtained directly from the wave
function, that the X-partial-wave sums are accurate to
better than +0.15% on the average.

Now that it is clear that the full plane-wave amplitude
satisfies the sum rule and that more than the X=0 par-
tial wave is required to saturate the sum rule when the
na rescattering is present; we now look at adding the re-
scattering contributions systematically. To see what is
involved, we list in Table IV the allowed values for the
quantum numbers in the sums for X~ I, Y~ ~, and Zt
There are many terms, some of which involve complicat-
ed spherical harmonic couplings. The approach is to
add to the plane-wave amplitudes those 5=1 and 2 re-
scattering contributions that are signi6cant, working
with the largest wave-function components 6rst and
from the simplest to the more complicated couplings,
until the sum rule is approximately saturated. The com-
plications arise in the X and Z ter~s themselves, and
through the X-Y, X-Z, etc. cross terms, because the Y
term alone is quite elegant in its form [see Eq. (33)].

The rationale as to the terms retained in the calcula-
tion of V(~, q) can be outlined as follows: Though all
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TABLE IV. Allowed quantum numbers in the sums that determine the overlap amplitude Q. & 0).

X[&]

X=1 plane wave
1

1

U
T
L

Pl

1 1 1

0 2 2
1 1 1

0 0 2
0 2 0

0 2 2
2 0 2

0 0 1

1 1 0
0 1 1

2 2 2
2 2 2

1 1

1 2
1 1

2 2
2 2

/=2 plane wave
0 1 1

2 1 3

X=1 scattered wave
1 1 1

0 2 0
1 1 1

0 0 1

0 2 1

0 1 1

2 1 3

0 0 1

1 1 1

0 1 1

1 I 1

1 1 1

1 1

2 2
1 1

1 1

1 3

U 0 0 1 0
T 2 2 2 2
L 0 1 1 0

0 0 0 2
2 2 2 0

0 1 0
2 2 2
1 1 0
2 2 2
0 0 2

0 1 1

2 1 2
1 1 1

2 2 2
2 2 2

0 1 1

2 1 3

X=2 scattered wave
1

3
1

2
2

0 1 0
2 2 2
1 1 0
0 0 1

2 2 1

0 1 1

2 1 2
1 1 1

1 1 1

1 1 1

0 0 1

2 2 2
0 1 1

1 1 1

3 3 3

contributions from the Y term are retained, it is noted
that the X=2 partial-wave contribution is very small.
For example, in the region of the P3/2 a-n resonance,
i.e., E„=0.7 MeV and q =0.4 fm ', the contribution to
V(ir, q) from Y alone equals 19.54 fm, of which only
0.10 fm comes from X=2. Moreover, a calculation of
all the U =0 pieces of the X=2 contribution (see Table
IV) indicated that their total is insignificant compared to
the X=0 total. On the basis of these results and the fact
that the L-S coupling 8-state component (X=2) in the
ground-state wave function has probability less than 4%,
it was decided to omit the X=2 contributions, except
the Y term, and add all the nonnegligible X= 1 pieces.
The reader should keep in mind that a few percent miss-
ing from the sum-rule integral means only a fraction of a
percent error in the value of V(Ir, q), at a given a' and q,
in general.

Consider V(a, q) in the vicinity of its maximum value,
i.e., E„=0.7 MeV and q=0.4 fm '. We see from Table
V that the X=O contribution is 100.42 fm . The non-

negligible X=1 terms add another 38.4 fm (see Table
VI). Two observations are in order with regard to the
2=1 contributions. No significant contributions arise
from the G spectator function in X and most of the
terms that contain the g2 form factor from the tensor
part of the NN interaction are negligible. A detailed ac-
count of these considerations can be found in Ref. 4.

How does the sum rule turn out with neglect of the in-
dicated terms? As can be see in Table VII, the answer is
quite well. Only about S%%uo is missing from the sum-rule
value and the plane-wave-only result compared with the
value when the scattered wave is included turn out to be
equal. Thus, the calculation is essentially complete,
while being consistent. Furthermore, the level of sensi-
tivity to the integration meshes in the sum-rule calcula-
tion can be seen from Table VII. The numbers in

TABLE VI. X=0 and non-negligible X= 1 contributions to
V(s, q) at E„=0.7 MeV and q =0.4 fm ' [full (4%) repulsive

model].

Term

XxX
YxY
ZxZ
XxY
XxZ
YxZ

V(sc, q )

(fm )

22.16
13.11
4.23

29.12
16.96
14.84

TABLE V. X=O contribution to V(z, q) at E„=0.7 MeV
and q =0.4 fm ' [full (4%) repulsive model].

TerID

&=0 (all terms)
X" (go'6 )XX" (go'6 )
X[1](g160)xX[1](g1GO)
X[1](g160)x Yf1]

X[I](g160)X Yf1]

Xf~](g ~GO) Xzf1]
Y[I]XYf»
Y[l]XZ f1]

Z[&]x Zfl]
Y[»x Y[2]

v(&, q )

(fm )

100.4
5.6
0.0

11.1
0.1

5.7
6.4
7.0
2.4
0.1

Total 100.42 Total 138.8
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TABLE VII.II. Sum rule results [full (4%%uu o) repulsive model]. v(E „,q) (fm6)
Case

X=0, 1

/=0, 1,2

X=0, 1

X=0,1,2

Plane-wave only
(16-6/563)
(16-10/563)
(24-10/563)
(16-6/563)
(24-10/563)
(16-6/620)

(Y only)

Scattered-wave included
(16-6/563)
(24-10/563)

(Y only)

Sum rule value

0.898
0.913
0.915
0.943
0.959
0.946

0.128

0.946
0.959

0.125

O

0-

O.
tO

ATTRAC Tl VE-PROJ . MDEL

O.
IO

parentheses give, in order, the number of
in6nite integrations e h
the number of points in the an ulain t e angular integrations, and th e

formed with Ge
in egration. They are per-

egenbauer, Gaussian
interval trapezoidal uadra

'
a qua rature, respectively.

ina y, with the validit of

S, df 11(4%%u')

H

respectively.
o attractive- ro'e-p jected S,&2 models,

O

oe
o0

0

V. DISCUSSION

FIG. 3. Lii~p + (na) joint momentum
-projected S& z2 model.

0
((rn

v(E„,q) (tm6)

REPULSl VE MODEL

O
Al

0-

0-
CO

o-

o

0.8
p. p

FIG. 2. Li~i~p + (na) joint momentum
(4%) repulsive S&zz model

n um distribution. Full

p ysics contained in the three-bodThe h
ver ex is embedded in the 'oi

turn distribution V(~,q). As m

~ ~

gi s the probabilit f fi
' ' '

i a'
i y o nding within Li a

'th qum o magnitude r
c ing na pair that has re

magnitude
re ative momentum of

per unit momentum vol
t bd V(

fd
a, q ) is the centr

o ata from coinciden
6or t e,e'p)na. Therefore our

derstand its content b d
ur aim is to un-

1 t 1 o ibl
en, ased on three-bod

From the results displayed in Fi s. 2 a
mediately appare t th
where „E=5 I/r28M

'
n at V(a, ),q, plotted as V(E„,q),
M is the relative ener gyo p

'
g s ructure. Two as ects

most notable: (1) h pe: t e prominent

q —. 5 fm, and (2) the nonz

pair in the reson t P~ ~

ue to the strong rescatterin

pan 3/2 partial wa
ion is superimposed on the "b

rescattering in the S
e background" from

citation energ f h
e»2 and P, artial
o th

&2 p
'

waves. The ex-

V(E„, )i i 11 h
rg his resonant-rescatt

~

y gy c te
urs in ree ncz scatterin . The

k 'th t t h
dynamics of the thr

c ot evalueof isq is controlled by the
e t ree-body model of th L'e i ground



37 STRUCTURE OF THE Li—+p + (na) VERTEX: THREE-BODY. . . 455

state; that is, by all the underlying two-body interac-
tions. Starting from the resonant peak and approaching
the origin, V(E„,q) goes through a saddle point and a
secondary maximum is reached at E„=O and q =0. For
q=0, but E„&0, we find V(E„,q)&0. The fact that
V(E„,q ) is not zero in this latter region is due to the na
rescattering in the final state in a relative S wave, com-
ing both from the plane- and rescattered-wave pieces,
that has a nonzero overlap with components of the same
angular momentum in the Li ground-state wave func-
tion. These components are generated by the three-body
dynamics from the given NN and Na interactions. Let
us look at this point in more detail.

In Fig. 4 we give V(z, q ) for fixed v, E„=0.7 MeV, as
a function of q. When the na scattering in the final state
is removed, we see that the prominent resonant peak
disappears and the value of V(a, q) rises at the origin.
The plane-wave version of V(a, q ) continually decreases
from a maximum at q =0. Addition of the na-scattering
contributions to the plane-wave term leads to the prom-
inent P3/2 resonance and reduction of the value of
V(K, q ) at q =0. The Si&2 rescattering term interferes
destrttctive!y with the S,&2 partial-wave piece of the
plane-wave term. This is the case because the P-wave
contributions, whether they come from the plane-wave
or rescattered-wave terms, are identically zero at q =0."
Therefore, removal of only the S&/2 component of the
na scattering will lead to a value of V(a, q) at q =0
equal to the plane-wave result. Clearly, the S, /2 na in-
teraction plays a major role in the physics of the final
state.

How does it come about that final-state na S-wave
components have a nonzero overlap with the three-body
Li ground-state wave function? First, we observe that

due to the unit total angular momentum and positive
parity of the Li ground state, the only na S-wave com-
ponents that can possibly overlap with the ground state
have the proton moving relative to the na c.m. with ei-
ther S-wave or D-wave angular momentum. At q=0,
the D wave yields zero contribution to V(~, q ). Thus,
there must be compatible components in the Li
ground-state wave function that can overlap with an

S&/2 na pair with an S-wave proton moving relative to
the na c.m. If we were to construct a pure p-shell model
of the Li ground state with an inert alpha-particle core,
there would be no overlap, i.e., V(a, q )—:0. On the other
hand, as can be seen from Eq. (17), the three-body model
has three types of nonorthogonal components in its wave
function: (1) a-(np), (2) p-(na), and (3) n-(pa). So, even
if the S,&2 na interaction (also used for pa) is removed
from the dynamics of the ground state, there will be a
nonzero overlap at q =0 with the S&/2 na component of
the final state whether the final state includes the scat-
tered wave or not. This occurs because of components
(1) and (3) in the ground-state wave function [component
(3) because its permutation of particles is different from
(2)]. For example, when the alpha-particle moves with
S-wave angular momentum relative to the c.m. of an S-
wave np pair, such a configuration contains a projection
corresponding to an S-wave proton moving relative to
the c.m. of an S-wave na pair. Nevertheless, as one
might expect, dropping the S,/2 component of the na in-
teraction in the dynamics of the ground state
significantly alters the results (this will be shown in the
planned second paper of this series).

To more fully illustrate the role of the S,/2 na interac-
tion in the final state, we introduce the proton momen-
turn distribution in Li:

170

E„
p(q)= I p„~V(a,q)dE„,

min

(34)

where p„=4M/5. [Note that the integrand is the
Li~p+ (na) spectral function as defined directly fol-

lowing Eq. (21).] p(q) is given in Fig. 5 for E„=Oand

E„=2.5 MeV for the full (4%%uo) repulsive Si&z model.
max

This range of E„encompasses the peak due to the P3/2
na resonance. Beginning with the plane-wave calcula-
tion, we note that it has a maximum at q=0 and falls
steadily with increasing q. That is what was observed in
Fig. 4 at a fixed E„. When only the S&/2 partial wave of
the rescattering contribution is added, destructive in-
terference occurs such that p(q) is lowered in value, but
it retains the same general shape. The S»2 scattered-
wave contribution interferes destructively with the S,/z
plane-wave contribution. If the plane-wave amplitude is
removed, the S&/2 scattered-wave amplitude alone leads
to a small p(q). The combined result is almost like the
difference of the plane-wave p(q) and the S,&2 scattered-
wave p(q). Of course, it is more complicated than a sim-
ple difference since the plane-wave amplitude is real and
the S»2 scattered-wave amplitude is complex. Finally,
when the P, /2 and P3/2 scattered-wave contributions are
added, p(q) has a minimum at q =0 since partial waves
of nonzero angular momentum contribute nothing at
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FIG. 4. Li~p + (na) joint momentum distribution at
E„=0.7 MeV. Full (4%%uo) repulsive S&/2 model.
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noninteracting in the final state. When the na pair in
the final state interact in the dominant S,/2, P»z, and

P3/2 partial waves, the proton momentum distribution
changes shape from the plane-wave result, which has a
maximum at q=0, to a shape where q =0 is a relative
(nonzero) minimum and the maximum occurs at q —50
MeV/c. The S-wave components in the ground state of
Li "fill" the minimum in the proton momentum distri-
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S
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or interacted only in P waves.
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FIG. 5. Li~p+ (na) proton momentum distribution for
0(E„(2.5 MeV. Full (4%) repulsive S, /2 model.

q =0 and add to p(q) for q&0.
The three-body approach to the Li~p+ (na) vertex

has led us to a deeper understanding of the underlying
physics. Some aspects of this physics were already un-
derstood with the alpha-deuteron cluster approach of
Saito, Hiura, and Tanaka, where they allowed for the
unbound He in the final state. ' Based on the limited
variational approach to the three-body model of Li then
available, ' Saito et al. were under the mistaken impres-
sion that the three-body model of Li was inadequate as
far as its content of components that have nonzero over-
lap with an S&/2 na pair, while the proton has S-wave
relative motion with respect to the na c.m. The present
work shows that the three-body model derived by exact
(numerical) solution of Schrodinger s equation with S,-

D, NN and Si/2, P, /2, and P3/2 Na interactions as in-

put leads to a comprehensive description of the
Li~p+ (na) vertex. In the next two papers in this

series, these results will be confronted with available ex-
perimental data for the Li(p, 2p)na and Li(e,e'p)na re-
actions to test 'the viability of the model. The success of
such comparisons is important since no adjustable pa-
rameters are involved. As mentioned above, the model
already is known to describe well Li static properties'
and especially the Li~a+ d momentum distribution.
The correct description of the Li~a+ d vertex in the
three-body model has its origin in the dynamics of the
underlying S,/z na interaction, that partial wave of the
na interaction that makes manifest the Pauli exclusion
between the n and a. In the a-d cluster model of Saito
et al. , the 2s character of the effective a-d wave function
is built into the wave function to satisfy the Pauli princi-
ple. In contrast, the three-body approach is fixed once
the underlying two-body interactions are specified, and
the 2s character of the effective a-d wave function in Li
is a prediction. Moreover, it is apparent that once the

VI. SUMMARY AND CONCLUSION

In the first of this planned series of three papers on a
three-body description of the Li~p+ (na) vertex, we

developed the underlying formalism. The key physical
quantity is the Li —+p+ (na) joint momentum distribu-
tion which gives the probability of finding a proton with
momentum q relative to the c.m. of an na pair that pos-
sess relative momentum ~ per momentum space volume

per unit momentum cubed. We showed that the joint
momentum distribution satisfies a sum rule, consistent
with its probability interpretation, that follows from the
normalization of the Li wave function and the com-
pleteness of the p+ (na) states. The sum rule was used
to assure the correctness of the calculation of the joint
momentum distribution and to eliminate terms that con-
tribute insignificantly. In assessing the physics of the
joint momentum distribution, we were led to define the
valence-proton momentum distribution in Li. From nu-

merical calculations of these two distributions with
specific three-body models, we find that the three-body
approach leads to a deeper understanding of the under-

lying physics. For example, the three-body model of Li
generates pure S-wave components in the Li ground-
state wave function. As a consequence, a state with a
proton moving in an S-wave relative to the na c.m. ,
while the na pair has S-wave relative motion, has
nonzero overlap with the Li ground state of three-body
models. This is in contrast to a p-shell shell model of Li
with an inert alpha-particle core. The three-body model
leads to the joint momentum distribution being nonzero
at q =0 for any na excitation energy. Thus, the proton
momentum distribution has a nonzero value at q =0: A
maximum at q =0 if the final-state p-(na) system is total-
ly noninteracting or a relative minimum at q =0 when
the na interactions are present. The relative minimum
is due to destructive interference between the plane-wave
and scattered-wave terms of the na wave function.

The work of the authors was supported in part by the
U.S. Department of Energy under Grant No. DE-
FG05-86-ER40270.
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APPENDIX

(A 1)

and

The purpose of this Appendix is to demonstrate the
completeness of the an-scattering-state wave functions as
given by Eq. (9). First, we observe that

5 (k —x)=
z gY (k)Y (k)

Ern

so that by recoupling

53(~ )
5(k —~)

IG

xg( —1) J[P(/I/, (k)x'P (/]/, (k)]
Ji

1 0
mn mn 0 1

Pl

(A2)
Then, Eq. (A3) can be used to rewrite Eq. (9) as

(A3)

qP' 'l (k)=y( —l)~JE'/ '(k, lc)[ ti'yI/, (lt)Xy yI/z(K)]( X '

Ji

where

J( ) 5(k a) 1 4m h/(k) I( )(ka) = + f / (&),
k 2n k v+i—ri h/()r)

(A4)

(A5)

and f&' '(a) is nonzero only for the St/2, P, /2, and P3/z partial waves. Therefore, after further recoupling, the com-
pleteness integral can be written as

(-)'
y J d3tr~()/&l' '(lt)(p(&/~l'

'
(lt') y I ~&dtr[gj (k )r)gJ/ (k' tr)] [( 1)~/[)))'(/ I/z(k)X P (/I/z(k ')]( l] .

0

(A6)

The completeness proof is finished once it is shown that

(A7)

and the fact that they satisfy dispersion relations

[h/(k)] (k2 —a. ) [h/()r)]
(A9)

and use is made of Eq. (A3) in Eq. (A6). Equation (A7)
follows from the unitarity of the scattering amplitudes,

lmf/' '(~)= —~ lf/ «)
I

'

As a consequence, all the terms that contain the scatter-
ing amplitude under the integral in Eq. (A6) cancel. All
that remains is the pure delta-function term which leads
to the right-hand side of Eq. (A7).
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