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Calculations are performed for the continuum spectra of protons, deuterons, and tritons emitted
from a- and h-induced reactions of the breakup type. It is shown that the sum of the elastic
breakup and breakup-fusion contributions fit the major parts of the observed spectra, except for
the (a, p) case, where the theory underestimates experiment. It is then shown that the contribu-
tions from the quasi-elastic channel, in which T=1 dinucleons are created, account for most of
the remaining (a,p) cross section. The quasi-elastic breakup and breakup-fusion are further shown
to nicely fit two-proton coincidence data. The question of radial regions where the various modes
of reactions dominantly occur is clarified, making it possible to understand why the various modes
of reactions explain certain portions of the observed spectra.

I. INTRODUCTION

As is well known, the multistep direct reaction
(MSDR) theory has been successful in analyzing a
variety of data from reactions induced by both light and
heavy ions. Earlier, the theory was applied exclusively
to reactions that lead to discrete final states. ' More re-

cently, the theory has been extended to analyze continu-
um reaction data.

Regarding the continuum reactions, however, there
are cases which call for methods of descriptions that go
beyond those developed in Refs. 2-4. In fact, evidence
has been accumulated to indicate that there are reactions
in which the direct and compound mechanisms play in-

terwoven roles. These are reactions that have been
called by many different names: inelastic breakup, ab-
sorptive breakup, incomplete fusion, massive transfer,
or breakup-fusion (BF) (Ref. 9) reactions.

Take as an example the (a,p) reaction. ' ' The for-
ward peaked angular distribution of the continuum pro-
tons indicates that they were produced via a direct reac-
tion. However, the coincidence measurement of these
protons with y rays demonstrates that the whole or a
part of the rest of the system, i.e., the triton, fuses into
the target to form a compound system. Similar features
have been seen in many other reactions. ' The pur-
pose of the present paper is to study BF reactions in-
duced by a and h particles.

We have already reported' ' on a few realistic cal-
culations of the BF reactions. In these calculations,
however, we have included only the elastic BF (EBF),
i.e., the fusion that takes place via the elastic breakup
(EB) channel, where the broken-up pair and also the tar-

get are all in their ground states. However, particles like
a and h have a large spectroscopic amplitude for break-
ing up into quasi-elastic (QE) breakup channels, in which
one or both of the broken-up pair are in their excited
states. For instance, the a particle can break up strong-
ly into d'+ d' and 2p+ 2n, where d', 2p, and 2n
denote T =1 di-nucleon systems. In this paper, we shall
study, along with EB and EBF, the breakup of the pro-
jectile into these QE channels and the fusion that takes
place in these channels. We shall call the breakup into
the QE channels the quasi-elastic breakup (QEB) and the
(partial) fusion taking place in these channels the quasi-
elastic BF (QEBF).

We have presented' ' the formalism of the EB and
EBF calculations, and in Sec. II A, we summarize the
formulas thus obtained. In Sec. II B, we then formulate
the calculations of QEB and QEBF, which are new in
this paper. In Sec. III, we discuss the details of the nu-
merical calculations, because this was not done in either
Refs. 18 or 19, in spite of the fact that our use of the
finite range method requires it. In Sec. IV, results of nu-
merical calculations are presented and are compared
with experimental data. We consider not only the sin-
gles cross section, but also some of the coincidence cross
sections. A further discussion of the results obtained in
Sec. IV is presented in Sec. V, explaining in particular
the significance of using the finite range method in our
calculation. Section VI concludes this paper.

II. CROSS SECTION FORMULAS

A. Elastic BF cross sections

We first consider the elastic BF (EBF) reaction, which
may be written symbolically as
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a~A ~b~x~ A ~b~8* . (2.1)

The two steps (i.e., the two arrows) in (2.1) stand, respec-
tively, for the breakup of the projectile a into b +x, and
the subsequent fusion of x into the target A to form 8'.
Note that we are considering here the simplest possible
BF process, in that we treat the first step as a simple
elastic breakup (EB). The second step of the process is
the fusion (absorption) of x into A (to form 8'), the par-
ticle b being a spectator in this step.

Let us call the systems consisting of a + A, b +8, and
x + A as a, b, and x channels, respectively, and also
denote the optical model distorted wave functions for
the relative motions in these channels as X,'+', g& ', and
X„' ', respectively. X(, ' (i =a, b, and x) satisfies the fol-

lowing Schrodinger equation:

(E; —T; —U;)X,' '=0, (2.2)

@ibm

[(1((+)
I W„

I

g(+))/n], (2.3)

where p(Eb) is the phase space volume of the emitted

particle b, and s, is the spin of a. The summation in-

deces m„m&, and m are the projections of spins of the
particles a, b, and x, respectively. In addition, i(r(+) is

the wave function in the x channel defined as

I

y(+)) G(+)p

where

(2.4)

where E;, T;, and U; are, respectively, the energy, the
kinetic energy, and the (optical) potential in the channel
i. We ignore in the present work the spin orbit term in

U, Also, we assume that the spin of the target is zero.
The EBF cross section may then be given as' '

d2O BF 1=(2n /AU, )p(Eb }
dEbdQb 2s, +1

p. =(~'b 'V bV. V A I
V. I~.'+'V.

V A &

G„'+'= 1/(E„—T„—U„~i e),
with

(2.5)

(2.6)

V, =U„~Ub —U, ,

E„=E Eb—~gi .

(2.7}

(2.8)

In Eq. (2.5), the symbol (II ) is used to mean that the in-

tegration is taken over all the coordinates except the x-
channel coordinate r„, while p; (i =a, b, x, and A } are
intrinsic wave functions of the particle i. Clearly, the m,.

dependence of the matrix element in (2.3) comes from
that of g&;. In (2.8), Q& stands for the Q value of the
three-body breakup reaction.

As seen in (2.4) and (2.5), f(+' depends on g(b '. Since
X'b ' depends on Eb and Qb, so does l(„'+'. This depen-
dence of 1(„'+' on Eb and Qb is the origin of the depen-
dence of the right-hand side of (2.3) on Eb and Qb.

It should be remarked that Eq. (2.3) contains contribu-
tions not only from true fusion but also from other
(direct) reactions that take place in the x channel (i.e.,
between x and A). If the contribution from the true
fusion process is to be singled out, W„has to be replaced
by a fusion potential W, where W„ is the part of W
that is responsible for the true fusion. In the calcula-
tions to be reported in Sec. IV, we use W„ instead of W~

because we are concerned with the b-singles cross sec-
tions. If we are to fit cross sections of (a, bxn) type reac-
tions (obtained, e.g., from the b ycoincid-ence measure-
ments), we need to use W„.

In the calculations in Sec. IV, contributions not only
from EBF, but also from EB are included. In the EB, x
is emitted along with b. The cross section formula for
the EB process is well known, but we give it here for
completeness. It reads

d2 EB
=(2')r/&Uo )P(Eb)p(Ex )

2 1 g I &&b ~x (pb(PxV A I . I &.'+'(P. (pA &
I

'
b b ~+mmrnx b a

(2.9)

where p(E„) is the phase space volume of x. The rest of
the notation has been explained above.

a+ A —+2p+2n+ A —+2p+C" ~p~p~C", (2.11a)

a+ A ~d'+d*+ A —+d'+C" ~p+n~C*, (2.11b)

B. Quasi-elastic BF cross sections

Similarly as in (2.1), the quasi-elastic BF (QEBF) pro-
cess may be written as

h~ A ~2p~n+ A ~2p+C*~p+p+C*,
h+ A ~d*+p+ A —+d*+C*~p+n+C* .

(2.11c)

(2.11d)

a+ A ~c+x+ A ~c+C*~b+y+C* . (2.10)

The first two steps in (2.10) are the same as those in
(2.1), except that the very first step is a QEB process.
Namely, c is left in a (metastable) excited state. The
third step in (2.10) describes the eventual separation of c
into b +y, where b is the particle that is to be observed.

The QEB processes that we consider explicitly in Sec.
IV are the following four:

d g d
dE dQ I ~ ~ dE, dQ, dedco

where

(2.12a)

In all of the processes in (2.11), the T =1 di-nucleons,
d', 2p, and 2n are produced in the first step QEB.

The contribution to the b-singles cross section from
QEB and QEBF may then be given as
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and

do do. d 8'
dE, d Q, d E d co dE, d Q, d E d ro

d2 d2 QEB d2 QEBF

dEd Q, dE~d Q, dEd Q,

(2.12b)

(2.12c)

QEBF processes to the b-singles cross section, as given
by (2.12a), we also calculate the angular correlation be-
tween b and y. It is given by

d'o &E d4c

dQ dQ ~ ~ dE, dQ, dade

d W
=p(E)

i p, (k)
i

(2.13a)

where

p, (k)= I e'"'pb„(r)d r . (2.13b)

However, yb is not well known for the purpose of the
present paper to describe QEB processes. In the numeri-
cal calculations performed in Sec. IV, we do not use
(2.13), but parametrize d W/dsdco. This parametriza-
tion will be discussed in Eq. (4.1) in Sec. IV.

In addition to the contributions of the QEB and

l

In (2.12a), E denotes the internal energy, which c carries,
while co denotes the direction of the relative motion be-
tween b and y. J is the Jacobian for the coordinate
transformation from the set (E,Q, Ec0) to (EbQbErQr),
E; and Q; (i =b, c, and y) denoting the energy and the
direction of motion of the particle i As .seen in (2.12b),
the quadruple differential cross section
d o /dE, d Q, dade is given as a product of two factors.
The second factor d W/dsdco may be called the spec-
troscopic strength function for the QEB process in
which a breaks up into c and x. The former factor
d o /dE, dQ, is the c-singles cross sections and is given

by (2.12c) as a sum of QEB and QEBF cross sections,
which are denoted, respectively, by d o i /dE, d Q, and
d o ~ "/dE, d Q, . These two cross sections have the
same form as the EB and EBF cross sections had in (2.9)
and (2.3), respectively.

The spectroscopic strength function d W/dade may
in principle be obtained in terms of the Fourier trans-
form of the internal wave function qb~ in the cluster c,
i.e., as

III. DETAILS OF THE BF CALCULATIONS

In Sec. II, we presented cross section formulas for the
EBF and QEBF reactions. In the present section, we
discuss details on how to carry out the numerical calcu-
lations. We shall concentrate on the BF cross section of
(2.3), because the prescription given for this case can
also be used for the evaluation of the BF part of the
QEBF cross section of (2.12).

A. Simplification due to the absence
of the spin-orbit interaction

X ( l, m, s„m„ i
sm, )pl ~ (rz), (3.1)

where C,','», is the spectroscopic amplitude, ' whileabx2
(r2) is the wave function for the relative motion be-

2 2

tween z and b. The orbital angular momentum and its z
component for this motion are denoted, respectively, by
12 and m2. (jmj'm'i j"m") is the Clebsch-Gordan
coefBcient.

We now introduce the special part x-channel wave
function, and its partial expansion as

Throughout this paper we ignore (as also done be-
fore' '

) the spin-orbit interactions; these interactions
are insignificant for the continuum cross sections. The
important merit of doing this is that we can completely
dissociate the calculation of the overlap integral of the
intrinsic wave functions from that of the distorted
waves. The overlap integral in question is then given as

(IP„IPb i IP, ) = y C,',', I, (sb mbsm,
i s, m, )

sl&

@x+;I,'~,«. ) =G.'+'(&'b '
I V.

I
&a+'V i, m, )

=(1/r„) g ( —) '(I„m„12—m2
) Imi)ui I tm (" )' ~t m (Qx) .

I lm
x 2 I x z

x x

The radial partial wave function ui I i (r„) is then found to satisfy
x 2 I

x
—x( x+ )/x)+ .— xi I i i~( x)=pr I im( x»

(3.2)

(3.3)

with

p( I,I,( „)= g ( — ) '(I„m„12—m2 i
Im, )r„(i "Y, Xb 'i V, ~y,'+'qr, ) .

m pal 2

Equation (3.3) is to be solved so that ui I I (r„) satisfies the following outgoing boundary condition
x 2

u, I I (r„)~exp(io, )SI I I (GI +DEFI ) .

(3.4)

(3.5)

In (3.5), Fi and GI are the regular and irregular Coulomb wave functions, respectively, while err is the Coulombx x x



432 T. UDAGAWA, X.-H. LI, AND T. TAMURA 37

phase shift. Sl 1 1 is the S matrix for the EB reaction.
x 2 1

Inserting (3.1) and (3.2) into (2.3), the BF cross section is written, in the partial wave expanded form, as

d2 BF

dE d~ =(2~~&Ua)p(Eb) g I cs's, s„~,s I'
2l

(3.6)

An important remark is in order here T.he cross section formula (3.6) describes not only the b-singles cross section,
but also the probability with which the compound nucleus B' with a given pair of spin I and its z component M is
populated. (Note that I =l and M =mr. ) Since Eb is uniquely related to the energy E' of the compound nucleus, the
above probability of population is in fact obtained as a function of E*,as well as of I and M.

The EB cross section can be written in terms of the source function p& I &, and of XI defined in Eq. (39b), as
x 2 l x

d2 EB
(z)=(2~~&U )p(Eb)p(E )g I&',",.„t,. I 2l I X I(4~~k ) f XI„(" )PI„I,t, (" )d" (3.7)

2Px
Xi pi & &

dr„= —
z

exp(so'& )SI I &x x 2 I x x 2 1
X

(3.8)

B. Source functions

The most decisive quantity that appears in (3.6) is the
wave function ul 1 1~ . It can be obtained easily by solv-

x 2 l

ing (3.3), once the source function pi I I is known.
x 2 I

This source function pl 11 is closely related to theZ2ml
DWBA (transition) amplitude of the first-step breakup
process. In fact, if pl 11 is multiplied by the x-channel

x 2 l

distorted wave, and then integrated over the coordinate
r„ the result is nothing but the usual DWBA amplitude
for EB. [This fact is seen in (3.7).] As is well known,
this DWBA amplitude involves a six-dimensional in-
tegral. This means that the construction of pl 11 in-

x 2 l

This cross section can also be written in terms of the
S& I I introduced in (3.5), because

z 2

volves a five-dimensional integral.
It is remarkable that the evaluation of this five-

dimensional integral is more involved than that of the
six-dimensional integral (which is well known in the usu-
al exact-finite-range (EFR) DWBA calculations '). The
reason is that pl 11 has to be obtained as a function of

x 2ml

r„, which forces one to transform one of the channel
coordinates, r, or r&, into r . Namely, one has to per-
form a coordinate transformation so as to express the
distorted wave [either X,'+'(r, ) or Xb '(rb)] as a function
of r, . In the usual EFR-DWBA calculations, we need
to perform a coordinate transformation for the bound
state wave functions, ' however this is much simpler, if
not trivial, than to transform the distorted wave func-
tion. (The number of bound state wave function is very
limited, very often equals one, while there are a number
of partial waves in the distorted wave. ) In what follows,
we explain how to perform this coordinate transforma-
tion and then to evaluate the five-dimensional integral.

We first perform the partial wave expansion of the dis-
torted waves 7,'+' and X&

X,'+'(r„k, )= g i 'XI (k„r, )Y& (r, )Y&' (k, ),
a a 1 ma a

(3.9a)

Xb
' (rb, kb)=

k g i XI, (kb, rb)Yi, ,(rb)Y
b b Ibmb

We also give here yl somewhat more explicitly as
2 2

(rz)=i '[XI (rz)/rz]YI (rz) .

(3.9b)

(3.9c)

Inserting (3.9) into (3.4), we see that the latter is rewritten [defining co&(r) =X,(r) Ir and l =&2l +1] as

4~&&~ . la lb+12 1

Pl ! Im ( rx ) = "x X & la 0ib mi I lmi & la Yi" m (kb )i '
a b la Ib

Xl ' f drzdr„V, coI (rz)co& (r, )coi (rb)[(Y& Y, )I(YI YI )&]~ . (3.10)

In (3.10) there appear four radial coordinate vectors, rz, r„, r„and rb. They are, however, related through the follow-
ing relations:
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r2 ——a(r, —r„),
x(a+A) . a

rb —ar — r„with a:——.
(3.11)

Therefore, we have only two independent vectors, and we choose them to be r, and r . The integration is then to be
carried out over r, and the angle part (r„) of r„.

In carrying out the integration over the angles, we use the same technique as used before. Namely, we make use
of the fact that the integrand is a scalar and therefore does not depend on the choice of the coordinate system. We
choose as the z axis the direction of r„as the x axis the direction that is orthogonal to the z axis and lies in a plane
defined by r, and r„; this is illustrated in Fig. 1. Then, we see that Eq. (3.10) can be reduced to the two dimensional
integral given as

pI„I,I,(ri)= " 2 &I 0Ibmi
I

Imi &I 1'I;, (&b)i ' "+ ' '"I I, I~I„I2

I r
ml m 2

(I,OIqm('
(
Im/)(I„m„'12m2 [

Imr')(a /2)

X f r, dr, col (r, ) f dp„P(' (p„)V,co( (r2)col (rt, )P;, (p2)PI, (p~), (3.12)

where p; and P«are defined as

p;=cost; (i =2, x, and b),
&4~

PIm =—
2

~in(»0)
2l +1

(3.13a)

(3.13b)

In all the calculations we performed so far, we assumed I2 ——0, an assumption that is valid for light-ion induced re-
actions. Under this restriction, I becomes equal to I and the source function is greatly simplified. It takes the final
form given as

pi (r„)= r„g (I,OI&m„~ l„m„)I,F~ (k&)i ' "I,l&1„'

X g (1,01&m„'
~

I„m„')(a /2) f r, dr, col (r, ) f dpP I",(p„)V,coI (r2)col (rl, )P, , (pl, ) .
I

(3.14)

We also note here that we use V, given as

V, =U„+Ub —U, . (3.15)

IV. NUMERICAL RESULTS AND COMPARISON
%'ITH EXPERIMENT

This is a choice normally made in the EFR-DWBA cal-
culations for stripping type reactions.

As we remarked above, the calculation of pI is the
x x

most involved, and in order to speed up this calculation,
we used a variety of techniques which were developed in
the past for the EFR-DWBA calculations. ' ' This
helped us to minimize computational time. The rather
large amount of numerical results we present in Sec. IV
will testify to the efficiency of our calculations.

I

Zr(a, p) and (a,2p) reactions with E =140 MeV, ~4~~

and the ' Ho(h, p) and (h,d) reactions with Eh ——100
MeV. This means that the calculations were per-
formed with both strongly bound (a) and loosely bound
(h) projectiles, and for both the massive transfer type
[(a,p) and (h, p)], and light particle transfer type [(a,d),
(a,t), and (h,d)] reactions. [Actually the (a,d) reaction is
neither massive nor light-particle transfer reaction. We,
nevertheless, classify it as a light-particle transfer type
reaction, for the reason to be explained below. ] Because
we have treated a wide variety of cases in this manner,
we feel we now have a good overall view of the mecha-
nism of the breakup reactions. In what follows, we first
explain the choice of the parameters involved in the cal-
culations, and then present the results.

We now present results of the numerical calculations
performed for the EB, EBF, QEB, and QEBF reactions,
and compare them with experiment. The calculations
were done for the Ni(a, p), (a,d), and (a,t) reactions
with the incident energies of E =80 and 160 MeV, the

A. Choice of parameters

The most important parameters involved in the calcu-
lations are the optical potential parameters. They were
mostly taken from the literature: Those for a, h, and t



434 T. UDAGAWA, X.-H. LI, AND T. TAMURA 37

d' + d' and 2p + 2n systems, the separation energy was
assumed to be equal to the binding energy of the a parti-
cle. A similar assumption was also made for the 2p+ n
and d' + p systems; the separation energies of these sys-
tems were set equal to the binging energy of h. This is
equivalent to assuming that the intrinsic energy of the
T =1 di-nucleon system is zero.

With the parameters and prescriptions as described
above, the calculations of the EBF cross sections can
now be executed. In calculating the contributions from
the QEBF reactions, however, we need to know the
spectroscopic strength function. [See Eq. (2.12).] As
mentioned in Sec. II B, we parametrize the spectroscopic
strength function, instead of making a calculation. We
choose it as

d W —xc=Pl8
dE, dco

(4.1}

where n is fixed from the normalization condition that

d WI dade =1 (4.2}

X

FIG. 1. Coordinates relevant in the evaluation of the in-

tegral that appears in Eq. (3.16).

were taken from Shepard et al. , for d from Daehnick,
Childs, and Vrcelj, and for p for E & 20 MeV,
E„=20-40 MeV, and E p40 MeV from Percy-Percy,
Becchetti-Greenlees, and Menet et al. ,

' respectively.
The parameters for the T = 1 di-nucleon systems are not
known. We thus simply assumed them to be the same as
those for d.

We may note here that the magnitude of the theoreti-
cal cross sections obtained depend to some extent on the
choice of the optical model parameters. We nevertheless
found that different choices of the parameters did not
cause the change by more than a factor of 2. In other
words, no dramatic dependence on parameters, as ex-
perienced in the DWBA calculations of the (a,p) reac-
tions that 1ead to discrete final states, has been observed
in the BF cross section calculations.

The spectroscopic factors used were
~

C' '
~

=2 for
the (a,p) and (a,t) reactions, =3 for the (a,d) reactions,
=1 for the (a,d*) and (a,2p) reactions, =—', for the (h,p)
and (d,h) reactions, =1 for the (h,d') reaction, and = —,

'

for the (h, 2p) reaction. The bound state wave function
ul (rz) (with 12

——0) was generated by using a Woods-
2

Saxon potential with the geometry of ro ——1.20 fm and
a0=0.67 fm. The depth of the potential was determined

by the well-known separation energy method. For the

The parameter A. in (4.1) is then treated as adjustable.
Crudely speaking, 1/A, represents the correlation energy
of the T =1 di-nucleon system in a or in h. The fact
that this system has no bound state suggests that the
correlation energy is small. In the present calculations,
we simply chose A, =0.5. This value corresponds to a
correlation energy of 2 MeV.

As seen in (2.12a) and (2.14), the evaluation of the
contributions from QEB and QEBF requires one to car-
ry out the integration over E„and Qz, and over E~ and

Eb, respectively. In either case, we need to know the
values of d 0 IdE, dQ,, at a large number of pairs of the

E, and 0, values. To calculate the cross sections for
many pairs of these values is extremely time consuming.
However, we again find that the cross section is a rather
smooth function of E, and Q, [=(8„q,}]so that it can
be well represented by an analytic function. We found
that d o /dE, d0, can be written as

d tr a(p po)~ —po— —

dE, d0,
(4.3)

B. a-induced reactions

1. ¹(a,x ) reaction

We start with the Ni(a, x) reactions, and present in

Fig. 2 the energy spectra at 8&,b ——6 and in Figs. 3 and 4
the angular distributions. The theoretical cross sections
0'", represented by solid lines in Figs. 2—4, include all
possible contributions, i.e., those from EB and EBF for

where P, is the momentum of c. The constants N, a,
Po, and P were fixed by calculating the left-hand side of
(4.3) for a very limited number of representative pairs of
E, and 0, . The values of these parameters calculated in
this way for the (a,2p) and (h,2p) reactions are listed in
Table I. We used the same parameters also for the
(a,d') and (h,d') reactions.



37 BREAKUP-FUSION ANALYSIS OF CONTINUUM SPECTRA OF. . . 435

TABLE I. Values of parameters that appear in Eq. (4.3).

E (MeV) N {mb/MeV sr) a (I/amu MeV) Po [(amu MeV)'~ ]

Ni

90Zr
165Ho

160
80

140
100

20.53
6.66

13.44
50.9

0.0941
0.188
0.110
0.211

19.0
13.8
17.9
17.8

0.121
0.0792
0.140
0.159

E&= 80 MeV¹1.2
10.0 —~ ~

rr
1 I

Ni(a, p)
ep= 6

E =l60 MeV

I.Q— \

\

\
1

O.I—

~ 10.0—

E

UJ I 0—

E&= 80 IVleV

N =1.0

58N ( d)
d=6

(b):

E~= 160 MeV

N =0.6

Io.o—
E.~= 80 MeV

N =1.0

I r r i

Ni(a, t)
e, =e. E~ =160 MeV

N =1.0

(c)-

O.I—
/

I I r I I I s
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FIG. 2. Experimental and calculated energy spectra of (a)
the Ni(a, p), (b) the ' Ni(a, d), and (c) the Ni(a, t) reactions
with E =80 and 160 MeV. The data were taken from Ref. 23.
The solid lines represent the sum of all the contributions, while
the dashed lines represent o. only. Also, the dashed-dotted
and dotted lines shown in (a) represent e and o. , respective-
ly, while the dashed —double-dotted line shown in {b) represents
the contribution from the breakup-pickup and breakup-
pickup-fusion reactions (Ref. 32).

the (a,d) and (a,t) reactions, and from EB, EBF, QEB,
and QEBF for the (a,p) reactions. We shall denote the
contributions from EB, EBF, QEB, and QEBF by u
0 ", cr, and o ", respectively. We shall also
define o and sr~ as 0. =0. +0. " and
0 =o. +0. ". In Figs. 2—4, we presented 0.

cr, and o. separately by the dashed, dashed-dotted,
and dotted lines, respectively. In plotting these cross
sections in these figures, an overall normalization factor
N was multiplied into the calculated values. The values
of N used are given in each figure. As seen, they are all
very close to 1. The experimental data 0'" were taken
from Ref. 23.

The calculated spectra 0'", shown in Fig. 2, fit the
data rather well for all the (a,p), (a,d), and (a,t) reac-
tions. Note that in the light particle transfer (a,d) and
(a,t) reactions, cr'"=o, while cr'"=cr +o~ in the (a,p)
reaction. It is remarkable that in the former two reac-
tions the (major parts of the) experimental cross sections
are explained by 0. alone, while this is not the case in
the massive transfer (a,p) reactions. In the (a,p) case,
0 fits the data only at very high E region. The data
are not fit even at the peak region. This was one of the
difficulties encountered in our previous analysis of the
(n, p) reaction. ' As seen in Fig. 2, however, the major
parts of the gap between o and cr'" are filled by cr

Note that the gap between 0. and 0'" increases with in-
creasing incident energy, and it is remarkable that this
energy dependence is also well accounted for by our
present calculations.

We remarked above that the data of the (a,t) and (a,d)
reactions were well explained by 0 alone. Discrepan-
cies are, nevertheless, seen in the low energy regions,
particularly in the case of the (a,d) reactions. Note that
the experimental deuteron spectra have second peaks at
energies of about E /4. Since this is the energy which
each nucleon has in the projectile, a possible mechanism
to create these second peaks is conjectured to be the fol-
lowing. Namely, the breakup of the u particle into p + t
(or n+ h), with p (or n) then picking up one n (or p)
from the target; the t (or h) is then fused into the target.
We have estimated the contributions of these breakup-
pickup and breakup-pickup-fusion processes, and found
that the second peaks are explained very we11 in this
way. (The result of the calculation done in Ref. 33 for
E = 160 MeV is presented in Fig. 2 by the
dashed —double-dotted line. We remark, however, that a
few simplifying assumptions were made in performing
these calculations, making the level of sophistication of
the calculations done in Ref. 33 somewhat lower than
that in the present paper. Improvement of the work of
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are poorer in Fig. 4, as expected. It is worthwhile to
note that in Fig. 4, the difference between o'"i' and rT'"

increases as the angle increases, suggesting that the yield
at the backward angles comes from mechanisms that we
have not yet taken into account.

2. Zr(a, x) reactions

In Fig. 5, we present the calculated p-singles cross sec-
tions of the Zr(a, p) reactions with E =140 MeV and
compare them with the data. ' The meanings of the
various theoretical curves are the same as those in Fig.
2. The closed circles are the measured p-singles cross
section, while the open circles are twice the contribu-
tions to the p-singles cross section deduced from the
measured coincident (a,2p) cross sections. [The factor
2 was introduced in order to take into account the possi-
ble contribution from the (a,d') reactions. Also in

deducing the contributions to the singles cross section,
we assumed that the coincidence cross sections are in-

dependent of the azimuthal angle, an assumption that
appears justified as argued in Ref. 25.] The o "' are to be
compared with the solid circles, while o~ with the open
circles. In plotting the theoretical curves, we again in-

troduced normalization factors: 1V for o and o
and X' for o~ . The values of these factors are shown

in Fig. 5 and are very close to 1.
It is seen that the calculated cr'" and o. both fit the

data very well, except at very low energies. It is remark-
able that we have achieved the fits not only of o''" but
also of o.~ . This gives direct support of the validity of
the calculations we made for the QEB and QEBF cross
sections. The discrepancies in the low energy region
may again be ascribed to higher order processes, includ-
ing evaporation.

In Fig. 6, we present the calculated angular correla-
tion cross section in the form of the angular distribution
of the (second) proton measured in coincidence with the
first proton measured at a fixed angle of 8, =15' (indicat-
ed by an arrow in the figure). The experimental data
were taken from Ref. 25. An important feature of the
measured angular distribution is that it is peaked at
82-0' and is symmetric with respect to this peak angle,
indicating that the two protons are very weakly correlat-
ed. It is remarkable that this characteristic feature is
well reproduced by our calculation. The calculated an-
gular distribution is peaked at 82 —3', which is indeed
very close to 0', and is almost symmetric with respect to
this angle. In our calculation a rather small I/A, value
(2 MeV) was used, which corresponds to a rather weak
correlation of two protons. Had a larger value, say, 5
MeV, been used, the resultant angular distribution
would have peaked at 8z-15'.

I (

Zr(a, p)

E, = l40 MeV

ep = 15'

C. h-induced reactions

Calculations were done for the ' 'Ho(h, p) and (h,d) re-
actions, with Eh ——100 MeV, corresponding to the exper-
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E
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N =l. l

= l.4
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FIG. 5. Experimental and calculated energy spectra of the
Zr(a, p) reaction with E =140 MeV. The closed and open

circles are, respectively, the experimental singles cross section
(Ref. 24) and twice the contribution from the coincident (a,2p)
reaction to the singles cross section (Ref. 25). The solid line
represents the sum of all the contributions, while the dashed-
dotted and dotted lines represent (1.1&()cr and (1.4X )g, re-
spectively.

-40 -20 „0
ep

20 40

FIG. 6. Experimental and calculated angular correlation
cross sections for the Zr(a, 2p) reaction with E =140 MeV.
The data were taken from Ref. 25.
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FIG. 7. Experimental and calculated energy spectra at 8&' ——17' of (a) the ' Ho(h, p) and (b) the ' Ho(h, d) reactions with
Eh' ——100 MeV. The experimental data were taken from Ref. 31. The solid lines represent the sum of all the contributions, while
the dashed lines represent cr only. Also, the dashed-dotted and dotted lines shown in (a) represent o and o ~, respectively.

iment done by Motobayashi et al. In Ref. 26, data
were taken not only of the singles cross sections, but also
of the particle-y and particle-particle coincidences. By
using these coincidence data, the total (energy integrat-
ed) BF and EB cross sections were extracted. We can
thus compare, in this case, the calculated total o "and
o separately to the data.

In Fig. 7, we present the calculated spectra and com-
pare them with the data. Again the overall normaliza-
tion factor X was multiplied into each of the calculated
cross sections. The values used were N=0. 65 for the
(h,d) reaction, and N =1.0 for the (h,p) reaction. The
solid lines shown there include all possible contributions,
i.e., EB and EBF for the (h,d) reaction and EB, EBF,
QEB, and QEBF for the (h, p) reaction. On the other
hand, the dashed, dashed-dotted, and dotted lines
represent o. , cr, and o, respectively. As seen, the
ealeulated cross sections that include all the contribu-
tions fit the data rather well, except again at lower ener-
gies. In any case the general quality of the fit achieved
here is very similar to that seen in the u-induced reac-
tions.

Note that the discrepancy observed in the lower ener-
gies is somewhat larger in the (h, d} reaction than in the
(h,p) reaction, and further that in the experimental spec-
trum of the (h,d} reaction, a second peak appears at
around Ed ——35 MeV. This position is approximately
equal to the incident energy per nucleon. Thus this situ-
ation is very similar to what has been seen in the (a,d)
reactions. As noted in Sec. IVB1, this peak was ex-
plained in terms of a simultaneous breakup-pickup and
breakup-pickup fusion. We may thus expect that the

TABLE II. Calculated and experimental energy integrated
cross sections o. and o ", respectively, for breakup and
breakup-fusion modes, in the ' Ho(h, p) and (h, d) reactions
with E„=100MeV. Data were taken from Ref. 26.

o " (mb/sr)
o (mb/sr)

Calc.

243
110

(h,p)
Exp.

278
84

Calc.

63

(h,d)
Exp.

119
62

discrepancy seen in Fig. 5 will be largely removed, if cal-
culations similar to those done in Ref. 33 are repeated.

In Table II, we list the energy integrated breakup (EB
plus QEB) and BF (EBF plus QEBF) cross sections at
8=17', and compare them with the data. The calcu-
lated cross sections fit the data fairly well, except that
the calculated BF cross section for the (h,d) reaction is
about half the experimental value. To have this
discrepancy is not surprising, because we have underes-
timated the lower Eb part of the spectra (in Fig. 5).

It is worthwhile to note that the contributions from
the EB (and QEB) reactions amount to 15—30%%uo of the
total singles cross sections. These figures are consider-
ably larger than those in the a-induced reactions, which
were 1 —10%%uo. This difference originates from the fact
that h is more loosely bound than is a.

In Figs. 8 and 9, we compare the calculated angular
distributions with experiment. Those in Fig. 8 are for
higher Eb [Eb ——60 and 70 MeV for the (h,p) and (h,d)
reactions, respectively], where the fit to the spectra was
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FIG. 8. Experimental and calculated angular distributions of (a) the ' Ho(h, p) reaction with Eh' ——100 MeV and E~ =60 MeV,
and (b) the ' 'Ho(h, d) reaction with Eh' ——100 MeV and Ed" ——70 MeV.

good. On the other hand, those in Fig. 9 are for lower
Eb (E& ——30 and 60 MeV}, where the fit to the spectra
was poor. Thus, as expected, a much better fit to the
data is seen in Fig. 8 than in Fig. 9.

V. DEEP PERIPHERAL NATURE OF BF REACTIONS

In this section, we study the radial region where the
EB and EBF reactions take place dominantly. (The in-
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FIG. 9. Experimental and calculated angular distributions of (a) the ' 'Ho(h, p} reaction with Eh' ——100 MeV and E
p

=30 MeV,
and (b) the ' Ho(h, d) reaction with Eh ——100 MeV and Ed' =60 MeV.
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formation obtained for these reactions apply also for the
QEB and QEBF reactions. ) More specifically we extract
the values of three radii r„rb, and r„, which are, respec-
tively, the radial positions, where the breakup of a, the
emission of b, and the absorption (or emission) of x, tend
to occur dominantly. Since they differ for EB and EBF,
we are to obtain six radii r, with c =a, b, and x and
i =EB and EBF.

A. Reaction regions

The r,' values are calculated as follows. We introduce
lower (R&) and upper (R„) cutoff radii for the radial in-

tegrals, and calculate the EB and EBF cross sections as
functions of these cutoff radii. [When RI and R„refer
to r„ these limits are used in the r, integral in (3.14).
When they refer to r„, the integral that appears either in
(3.6) or in (3.7) is used for this purpose. When RI and
R„refer to rb, we use again the integral in (3.14), inter-
preting it as a double integral that takes rb and p as in-

tegration variables. ] The r,' value is then determined as
the value of either RI or R„, where the cross section
changes most rapidly. We can fix in this way two values
of r,', one from RI and the other from R„. In most of
the cases studied these two values agreed with each oth-
er, enabling us to fix r,' uniquely. In cases where these
two differed, we took their average as r,'.

The r,' values thus obtained are summarized in Tables
III and IV, respectively, for the a- and h-induced reac-
tions. In these tables, we also list values of the incident
partial wave l,' that contributes most importantly to the
reaction i (=EB or EBF), and also the absolute value

~
S&

~

of the elastic scattering S-matrix corresponding to

I,'.
We discuss first the results for the a-induced reac-

tions. In Table III, we see that r, =8.6, 8.2, and 7.8
fm, respectively, for (a,p), (a,d), and (a,t) reactions. This
means that the incident a breaks up in the peripheral re-

gion, irrespective of whether the particle b is p, d, or t, if
this breakup is to result in pure EB. It is seen, however,
that r, " r, = —1.8, —1—.0, and 0.0 fm for the above
three reactions, meaning, in particular in the EBF-type
(a,p) reaction, that the a particle penetrates deeper by
1.8 fm beyond the peripheral region before it is broken
up. This feature which we may call the "deep-
peripheral" nature (of the EBF reaction) is more remark-
able when b is lighter (all but disappearing for b=t}.

Table III also shows that rb always takes a peripheral
value (8.0—8.6 fm for all b and for both i =EB and

EBF). This means that b is always emitted from the
peripheral region, as it should be; otherwise it cannot es-

cape. Similarly we see that r„=rb, this must again be
the case.

We see, however, that I„(r, ". This means that
the absorption of x takes place in a region which is even
deeper than where the breakup takes place. Note also
that r " decreases as x gets lighter. This is very natu-

ral, because the lighter x, the less absorptive it is, and
thus it can penetrate deeper into the target before being
absorbed.

The value of r, "describes the center of mass position
of the a particle when its breakup occurs. It is then in-

teresting to see whether we can relate r, "and rb "as
pEBF pEBF (x/a)(p ) (5.1)

where (r, ) is the size of the particle a. If we assume
that (r, ) =2 fm (which is somewhat larger than the
means radius of the a particle), and take rb

" from
Table III, we see that Eq. (5.1) gives r, "as 6.5, 7.4, and
7.7 fm, respectively, for the (a,p), (a,d), and (a,t) reac-
tions. These values are very close to 6.8, 7.2, and 7.8 fm,
which are the corresponding values of r, " listed in
Table III. This shows that (5.1) holds. The significance
of (5.1) is that it gives a simple explanation on why the
deep peripheral nature becomes more pronounced as x
becomes heavier.

The values of I,' listed in Table III are seen to be
roughly proportional to r,'. For the case of the (a,t} re-
action, it takes the value of the grazing partial wave.
For smaller b, however, I, gets smaller, and thus gets
strongly absorptive. (This fact is also seen in the small-
ness of

~
Si

~

in Table III.) Thus the EBF-type (a,p) re-
a

action is induced by strongly absorptive (lower 1) partial
waves.

The results for the h-induced reactions shown in Table
IV are more or less the same as those shown in Table III
for the a-induced reactions. [The (h,p) and (h,d) reac-
tions behave very similarly to the (a,d) and (a,t) reac-
tions, respectively. ] All the values of r, (c =a, b, and
x) and rb

" lie within a rather narrow range in the peri-
pheral region. The strongest deep peripheral nature is
seen in the (h,p) reaction which gives rP" r, = —0.6—
fm. Since this is much smaller (in magnitude) than
r, " r, = —1.8—fm encountered in the (a,p) case, we
conclude that we do not see a very marked deep peri-
pheral nature in the h induced reaction, as we did in the
(a,p) case. We arrive at the same conclusion when we

TABLE III. The radii where the various a-induced reactions take place dominantly. The optimum
value of the incident partial wave, and the absolute magnitudes of the corresponding elastic scattering
S matrices are also given. These values are for the a-induced reactions.

Reaction

(a,p)
(a,d)
(a,t)

p EBFf~
(fm)

6.8
7.2
7.8

EB

(fm)

8.6
8.2
7.8

p EBF

(fm)

6.2
5.8
4.6

7 EB

{fm)

8.5
7.5
6.0

EBF
P'b

(fm)

8.0
8.4
8.2

rEB
Tb

{fm)

8.6
8.4
8.2

j "(~S~)
22(0. 18)
23(0.35)
24(0.56)

26(0.80)
25(0.70)
24(0.56)
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TABLE IV. Same as in Table III, except that the values are for h-induced reactions.

Reaction

(h,p)
(h,d)

EBF
7?I

(fm)

9.3
9.8

EB
rh
(fm)

9.9
9.9

r EBF
Z

(fm)

7.8
8.7

r EB
Z

(fm)

9.5
9.5

EBF

(fm)

10.3
10.3

rEB

(f )

10.3
9.8

IM ( /s [)
29(0.5)
29.5(0.5)

&h (f&/)
31(0.7)
30(0.6)

1ook at the problem via I,'.
We may obtain a further insight into the EBF reaction

mechanism by examining the x-channel partial wave
function ui, and the source function pI, see Eqs.

Z Z Z Z

(3.3) and (3.14). In Fig. 10, we plotted the magnitudes
and phases of pI and ui as functions of the radial

Z Z Z Z

distance r„. [They are for (l„m„)=(12,0) in the (a,p) re-
action with E, =80 MeV. ] The

~ pi ~

measures the
Z Z

strength with which x is produced, while uI describes
Z Z .

the propagation of the thus created x. [From now on we
shall suppress the subscripts (l„m„).]

It is seen that
~ p ~

is peaked at r„=6.1 fm, which is

very close to r„"given in Table III; this is expected.
We also note that p has a phase that decreases with in-
creasing r„. This means that p has an incoming wave
nature. The significance of this fact is that at the mo-
ment of its production, x has already a tendency to
move towards the center of the target.

Refiecting the behavior of p, ~

u
~

also has a large
peak at r„=6.3 fm. It has also an incoming wave na-
ture in the deep peripheral region. Note that u flips into
an outgoing wave at the peripheral region, as it should.
However, its magnitude here is extremely small. This
means that the probability with which the particle x is
emitted, along with b, is very small. This explains why

EB EBF

In concluding this section, we want to emphasize that,
in order to obtain all the results given above in this pa-
per so far, it has been crucial that we have used an exact
finite range description. Had the zero range approxima-
tion been used, all the positions r„rb, and r would
have coincided. Thus it is clear that the zero range
description is incapable of describing properly, e.g. , the
different behaviors of the (a,p) and (a,t) reactions.

We may also remark that we showed earlier that the
zero-range calculations that include the finite-range
corrections by means of the local energy approximation
predicted very poorly the theoretical cross sections.

values of these angular momenta of partial waves that
contribute most importantly for i=EB or EBF. They
depend on Eb, except that I,' is fixed once the incident
energy is fixed. The matching condition which they
satisfy may be given by

1„'=1,' —1/ (or 1,'=1/+l„'} . (5.2)

5eN =6 (o)

12-
0

v)

X
CL

50-
(b)

C3
D 10—2

To be more precise, this relation is to be satisfied only at
a selected value of Eb of Eb, where the peak appears in

the spectrum of b.
In order to see the way with which the condition (5.2)

is satisfied, we plot in Fig. 11 1„' and 1,
'

Ib fo—r (a)
i =EBF and (b} i =EB as functions of E„. [We take
here, as an example, the Ni(a, p) reaction with E =80
MeV. Thus we have a =a, b =p, and x =t.] The solid
circles given in Fig. 11 were obtained by calculations

B. Angular momentum matching condition

0 )0

As discussed in Sec. IV, the peak energies of the cal-
culated o " for the (a,p) reaction were much higher
than Eo=(bla)E„ i.e., the energy that corresponds to
the incident beam velocity. We showed in Ref. 16 that
this shift of the peak was due to the deep peripheral na-
ture of the reaction, which significantly a8'ects the angu-
lar momentum matching condition. We shall briefly re-
capitulate here the argument of Ref. 16.

Let us first note that there are three angular momenta
involved in the reaction. We denote by I,', lb, and I„' the

r„(fm)
10

FIG. 10. Calculated phase and absolute magnitudes of the
source function p1 and the x-channel wave function uI for
(I,m)=(12,0) for the (a,p) reaction with E =80 MeV.
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which used the upper and lower cutoff method, very
similar to that used above for extracting r,'. On the oth-
er hand, the full and dashed lines drawn in the figure for
l„' and lb, respectively, were obtained by using the rela-

tions

I,' =R,'[2p, (E, —V,')/A' ]'~ (c =b and x) . (5.3)

In calculating the I,' value from Eq. (5.3), we used

I, =26 and I, "=22, listed in Table III. We also used

R, =8.5 fm and V, =4.4 MeV for both c =b and

c =x and R EBF R EB yEBF yEB R EBF 6.5 fm and
V~ "=—6.8 MeV. All these R,' values are close to the

r,' values tabulated in Table III. Also, the V,
' values are

the values of the potential energies evaluated at r,'.
Since r„"=6.5 fm is a deep peripheral value, we find

that V„&0, showing that the nuclear potential is

overwhelming the Coulomb potential here.
It is seen that, for the EB reaction, the two curves

cross at E =20 MeV, which is nothing but the beam ve-

locity energy Eo. The peak of cr thus appears at this
energy, which has been seen in Fig. 2(a). On the other
hand, the crossing of the two curves for the EBF reac-
tion occurs at Ep 40 MeV, which is much higher than

Eo ~ The appearance of the peak of g at Ep 40
MeV, as seen in Fig. 2(a), is thus explained in this way.

Note that the above shift of the crossing point to
higher Eb, when we switched from EB to EBF, has re-
sulted essentially from the smallness of l, "as compared
with I, . We can thus conclude that the shift occurred
because of the deep peripheral nature of the EBF reac-
tion.

The above result suggests that if the reaction is of a

peripheral nature, the peak will appear at an energy
close to Eo. This was indeed experienced in the (a,d),
(a,t), (h,p}, and (h,d) reactions. Experimentally, we ob-
serve the peak appearing close to Eo even in the (a,p) re-
action. What we have shown in this paper is that this
occurs, because the apparent (a,p)-type reaction is, in
fact, dominated by the QE-type modes (a,d') and (a,2p).

VI. CONCLUDING REMARKS

The breakup-fusion (BF) description has been applied
to calculate continuum spectra of the a-induced (a,p),
(a,d), and (a,t) and the h-induced (h,p) and (h,d) reac-
tions. The quasi-elastic breakup (QEB) and the accom-
panying breakup-fusion (QEBF) reactions, along with
the elastic breakup (EB) and elastic breakup-fusion
(EBF), were also taken into account in the calculations.
The results of these calculations were able to explain the
major parts of the observed spectra for all the reactions
considered, leaving unexplained only a small part of the
spectra at the lower energy regions.

The results also showed that the dominant contribu-
tions came from the BF (EBF and QEBF} reactions and
that the contributions from the simple breakup (EB and
QEB) mechanisms were generally small, being less than
10% for the a-induced reaction, and 15—30% for the
h-induced reactions. The increased importance of the
latter for the h-induced reactions was attributed to the
loosely bound nature of h. It was also observed that the
relative importance of the simple breakup increased with
increasing incident energy.

For the light ion transfer-type (a,d), (a,t), and (h,d) re-

(a)

ES (EB
ol P

SF

P

I

20 40 60
Ep(MeV)

20 40 60

FIG. 11. Optimum angular momenta I„' and I,' —Ib as functions of E~, for the (a) EBF, and (b) EB. These are for the "Ni(a, p)

reaction with E,= SO MeV.
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actions, the contributions come only from the EBF and
EB reactions, and these mechanisms alone were able to
explain successfully the major parts of the observed
spectra. For the massive transfer type (a,p) and (h,p) re-
actions, additional contributions come from QEBF and
QEB, and it has been found that these additional contri-
butions, particularly those from QEBF, were crucial in
explaining the larger portion of the observed spectra. In
fact, the contributions from the EBF and EB were able
to explain only the spectra in the highest energy region.

The calculations of the QEBF and QEB reactions were
further tested against the coincidence cross section data
of the Zr(a, 2p) reaction with E,=140 MeV. The re-
sults showed that the calculations fit the data rather
well.

All these results permit us to conclude that our BF
approach is working rather well, and thus can be regard-
ed as a theory that is basically correct. It is particularly
encouraging that we were able to explain the major parts
of the spectra by taking into account the lowest order
elastic and quasi-elastic breakup, and the following (par-
tial) fusion. The remaining discrepancies in the lower
energy region may certainly be ascribed to the next
higher order processes. As such higher order processes,
we may consider, e.g. , the simultaneous breakup-pickup
and breakup-pickup-fusion reactions. Very recently, we
made an estimate of the contributions from these pro-
cesses to the (a,d) reaction, showing that the second
peak observed in the low energy region can in fact be ex-
plained by such a mechanism.

We also made a detailed study of the radial regions,
where the breakup of the projectile, the emission of the
outgoing particle, and the fusion of the rest of the
broken-up pair take place dominantly. We found that in
the massive transfer-type reactions, such as the (a,p) re-

actions, the breakup takes place within a deep peripheral
region; a region which is considerably inside the usual
peripheral region, and that the region where t is ab-
sorbed is still deeper. This deep peripheral nature, how-
ever, diminishes as the mass of the emitted particles in-
creases. Thus, e.g., the (a,t) reaction takes place almost
exclusively in the peripheral region.

We were also able to explain, from this deep peri-
pheral nature, e.g., of the (a,p) reaction, why the peak of
the EBF cross section for this reaction shifts to an ener-

gy much higher than the beam velocity energy. We may
thus say that what we have achieved in this paper is not
only to show that we can fit the data, but also to deci-
pher the details of the mechanism of the reactions which
we have dealt with here.

Extension of what we have done in this paper to
heavy-ion-induced reactions is possible in principle, but
very involved in practice. This is because a large num-
ber of channels are open in the heavy-ion case, and thus
a hugh amount of calculations are required. In one case,
however, we have performed an analysis. It was a
(' N, a) reaction in which we considered only the EB and
EBF, where EB corresponded to the breakup of ' N into
a and ' Be, ' B, as well as a being assumed to stay in
their ground states. ' Thus, although we were able to fit
the data, the fit was limited to the highest energy part of
the observed a-particle spectra. How to improve the sit-
uation by extending the fit to lower energies is now clear
from what we have learned in the present study. It is
necessary to include other breakup processes, e.g., the
(' N, Be) reaction, which eventually give rise to lower
energy a particles.
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