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The electromagnetic properties of ground and excited states of nuclei with an odd number of
particles and holes outside the closed shells are described in the j-j coupling shell model. The re-
sidual interaction between the valence particles and holes causes two different configuration mix-

ing: (a) one where the valence particles and holes are scattered to higher shell model states, and
(b) ones where the valence particles and holes excite particles out of the core. The electromagnetic
properties of odd-even nuclei are sensitive to the correct treatment of both types of configuration
mixing. In this paper the matrix elements of the nuclear Hamiltonian evaluated using the basis of
configuration mixing states of types (a) and (b), and the resulting eigenvalue equations, have been
exactly calculated. The matrix elements of the electromagnetic multipole operators calculated
with the resulting eigenvectors of type (b) are then related to the deviation observed between the
experimental and valence expectation values.

I. INTRODUCTION [+J,(lsiJi)&J, (PiJ. )]'

The importance of configuration mixing in studying
the electromagnetic properties of odd-even nuclei with
one valence particle (hole) has been pointed out by
several authors. ' The residual interactions between par-
ticles in diFerent orbits are taken as the cause of
configuration mixing and the correction to the single
particle matrix elements of the electromagnetic opera-
tors has been calculated introducing selected particle-
hole configurations.

The importance of introducing configuration mixing
diagonalizing the nuclear Hamiltonian, in a nonrestrict-
ed @sM(a,J, ) and tsst(p, J, ) basis, has been pointed
out in Refs. 2 and 3. In the present paper we generalize
the calculations, including in the model configuration
mixing modes where the single particle (hole) excite out
of the closed j-j core n particles. The calculation is then
extended to odd-even nuclei with valence particles and
holes interacting with the core via particle excitations.

In Sec. II we calculate the commutators of the nuclear
Hamiltonian with the configuration mixing modes, re-
taining only the Tamm-Dancoff (TDA) diagrams. The
matrix elements of the nuclear Hamiltonian calculated
with the configuration mixing wave functions (CMWF)
of the nth kind are then grouped in terms of the matrix
elements calculated with the CMWF of the (n —1) kind.

In Sec. III we expand the 4JM(azJ& J2) (three
particle —two hole) CMWF in linear combinations of
state vectors coupled

[4J (a,J, )@s (a)J, )]

and

[As (e)J))MJ (e)J, )]

In Sec. IV we derive an iterative expression for the
transformation coefficients. In Secs. V and VI we gen-
eralize the method expanding the @&M(a„J,J2 J„)
and

%zest(p„J,

Jz J„)CMWF and deriving the trans-
formation coefficients iteratively. The general expres-
sions for the matrix elements of the nuclear Hamiltonian
in the basis of the Asst(a„J, J2 J„) and
4 JM(p„J&Jz J„) CMWF are given in Secs. VII and
VIII. And finally in Sec. IX we calculate the matrix ele-
ments of the electromagnetic operators.

The coupling of the valence particles and holes to
complicated doorway states is exactly taken into con-
sideration in the present paper. The nuclear Hamiltoni-
an is then calculated in the full basis of CMWF. The
ground and excited state wave functions are therefore
showing contributions of perturbation terms to all order.
As shown in Refs. 2 and 3 these contributions play an
important role in studying the electromagnetic proper-
ties of odd-even nuclei.

II. CONFIGURATION MIXING
AND LINEARIZATION METHOD

Odd-even nuclei with particles and holes outside the
closed shells, interacting with the core via particle exci-
tations, are characterized by wave functions of the fol-
lowing forms:
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A. CMWF for n particles —(n —1) holes

I @1M(a JlJ2 ' ' ' J„)&=N g X" I J . . J JN" J J . . . J1J I @JM(a„JIJ2 ' ' J )&
n I 2 n n 1 2 n„JJ J„

+
n

1
1 2 n

1
n

1
1 2 n

1

1 1

+ n ~ n +
&n JnJn. . . Jn

n 1 2 n
n n

n JnJn. . . Jn JN n JnJn. . . Jn J ~
@JM(a» JlJ2 J» )&

n 1 2 n n 1 2 n n n
n n n n

(2.1)

B. CMWF for (n —1) particles-n holes

I'p JM(p»J1J2 ' ' ' J }&=N g ~"1J1J1.. . JlJN"1J1Jl. . . JlJ l +JM(Pn J1J2 ' ' ' Jn)&
pn J,J, .

+ g ~2 J2J2. . . J2 NJ2 J2J2. . . J2 J I
+ JM(P», J1J2 Jnl }&

2 J2J2 . . . J2 n112 nl nl 1 2 nl
pnl 1 2

'''
nl

Pn 1 2 n
n n

(2.2)

with

and

n
&
=n +one particle-hole pair,

n2 =—n + two particle-hole pairs,

1 1 1 I

al Jl

(2.3)

and

I
+ JM(P1Jl }& = g ~' J JN"' J J l

q'JM(P1 J
1 }&

pl J1J pl J1J
plJ1

n„:n+ ( n ) p—article-hole pairs .

Let us recall the results of Refs. 2 and 3, neglecting
the single particle component and the off-diagonal terms
that will be treated in Sec. VIII. The one-particle-
hole —one-particle-hole pair (n =1, nl ——2) or the two-
particle (-hole)-one-hole (-particle) (n =2) components
of the (2.1) and (2.2} CMWF, both characterized by one
particle-hole pair, are

Ij2 j, t j3 '
j and total spin J', to a final spin JM(J —M).

To simplify the notation we use the following conven-
tions:

(a} al =Pl —= I n 1 I
1jl,'n2I2 j2 n 313j3 j ~

(b) The particle-hole pair t j2 —j3 j is coupled to the
intermediate spin J&M', .

(c) The sum over all the projection quantum numbers
is not included explicitly in the formulas.

(d) The subindex I 1 j indicates the number of
particle-hole pairs we are considering.

(e) N', are the normalization factors difFerent

Pl

from 1 if the coordinates of the single particle tj, j or of
the single hole Ij, '

j are equivalent to the coordinates
of the Ij2j particle or of the I j3 '

j hole.
Calculating the commutators of (2.3) and (2.4) with

the nuclear Hamiltonian

H =gE a a + —,
' g V I3rsa aIIasa

aPy5

where V &z& are the matrix elements of the effective re-
sidual interaction

V il s ——(ap
~

v'
~

y5),
and linearizing we obtain in the TDA approximation

[H, A, (a',J', ;JM) ]= g 0I(a',J',J;P,J", J)A, (P,J", ;JM)

pl J 1

(2.4) and

(2.5)

where the operators A t(a', J', ;JM) and A, (p', J', ;J —M)
create, respectively, a particle (hole) in a shell model
state with quantum number Ijl j (Ijl '

j ) and coupled
then with a particle-hole pair with quantum numbers

[H, A, (p',J', ;J—M)]

= g 02(plJ1J;o 1J1'J}A1(o1J1',J —M), (2.6)
II

al Jl
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g Qz(p 1JIJ;o 1J1'J)Y' I„I E,J,J
——Y', l,J .

01J1J p1J1J p1J1J
cr1J 1'

(2.9)

We write then for the one-particle (-hole) and two
particle-hole pairs (n =1, n2=3) or the two-particle
(-hole) —one-hale (-particle) and one particle-hole pair
(n =2, n1=3) or the three-particle (-hole) —two-hole

(-particle) ( n =3) components of the (2.1) and (2.2)
CMWF, characterized by two particle-hole pairs, the fol-

lowing:

I
@JM(+2J1J2))

= 2 X.'...N'. ,;,;, I
CJM(+2JIJ2)&

2 1 2 2 1 2
~2J1J2

with

QI(ai J',J;P,J",J)=
& @J(a'1J', )IIH Il@J(P,J"

, }) (2.7)

and

Q2(p1J1J'0 1J1'J}—= & +J(p1J1 ) ll~ll+J(o 1J1

The single particle and single hole energies, the particle-
particle, the hole-hole, and the particle-hole matrix ele-
ments are contained in the QI(a'1J',J;p1J", J) and

Qz(p1J', J;o 1J",J) matrices.
Taking the expectation value of (2.5) and (2.6) between

ground and excited states we obtain the following equa-
tions for the amplitudes X', , and Y', , :

1 1 p1J1J

g QI(a'1J', J;P1J1'J}X' „=E, , X'. .

Az(pzJ', Jz,J —M) create, respectively, a particle (hole)
in a shell model state with quantum numbers Ij, )

( Ij, '
) ) coupled with two particle-hole pairs and where

we use the following additional conventions.

(a) az—=pz=—In, l, j„nzlzjz, n313j3;n4l4j4,'n5lsj 5).
(b) The particle-hole pair ( jz —j3 I is coupled to the

intermediate spin J',M'„ the particle-hole pair Ij4 —j ~

is coupled to the intermediate spin J2M2', the coupling
between J

&
and Jz is not included explicitly in the for-

mulas.
(c) The subindex (2) indicates the number of particle-

hole pairs.
(d) N

P2

from 1 if the quantum numbers of the particles (holes)
are all (or in pair) equal, and (or) the quantum numbers
of the two holes (particles) are equal.

Taking the commutators of the nuclear Hamiltonian
with the Az(azJ', Jz,JM) and Az(pzJ', Jz,J—M) opera-
tors between ground and excited states, and diagonaliz-
ing the resulting eigenvalue equations, we obtain the
X. . . and Y. . . amplitudes and the corresponding

2 1 2

energies.
We are therefore confronted with the calculation of

the following matrix elements:

Q1(~2J'1J2J P2J1J2J)= & @J(~2J1J2)ll~ll@J«2J1J2

(2.12)
X. . .N. . . Az(azJIJz', JM)

I
0)

a2J, J2

(2.10)
and

and

I

+ JM(pzJ1 Jz)'l

= g Y', , p"'. ..I+JM(P2J1J2)'l
g P2 1 2 P2 1 2

p2J 1J2

where the operators A 2 (azJ', Jz;JM) and

Y'. . . N'. . . Az(pzJ', Jz,J —M) I0),
2 1 2 2 1 2

p2J 1J2

(2.11)

Q2(P2J1J2J & ~2J1 J2 J}=& + J(P2J1J2 ) IIHII+ P~2J I J2

(2.13}

The treatment of the off-diagonal terms, connecting the
particle (hole) with the two-particle (-hole) —one-hole
(-particle), and the three-particle (-hole) —two-hole
(-particle) CMWF, or the three-particle (-hole) —two-
hole (-particle) with the two-particle (-hole) —one-hole
(-particle) CMWF, is given explicitly in Sec. VIII.

We simplify the calculation grouping the resulting two
body matrix elements accordingly to the following ex-
pressions:

Q1(azJ'1J2J;P2Ji'Jz'J) = g P1(aIJ;J„J;P1J,'J„J)QI(aIJ,J„;PIJ,'J„)

R 1(p',J;J„J;O ',J J„J)Q2(p',J;J„;O ',J,'J„)
p la IJ,J,.J,

Q, (e',J J„J;zliJ J„J)Q3(e',J;J„;zl',J J„)
elg1J,.J,- J

(2.14)
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and

Qz(pzJ', J2J y irzJ1'Jz J)

I AJM(elJi ) & = g ~''J'JN, '
J J I AJM(klJ1 ) &

I I
1J 1

P 1
cr

1J,.J,.J
R, (p',J J,J;o ',J,'J„J)Q2(p',J J„;o',J J, )

(2.18)

Pz(a'1 J;J„J;pIJ,'J„J)Q'l(a', J;J„;p'1J J„)
alPiJ, J, J,

S 1 (vl J J„J;lu'1J,'J„J)Q4(v'1J;J„;tu'1J J„) .
v1PI J,.J, J

(2.15)

The sums in Eqs. (2.14) and (2.15) are extended over all
possible two-particle -one-hole, two-hole -one-particle,
three-particle and three-hole combinations that we can
form out of the I az I and Ipz l coordinates.
The Pl (aIJ;J„J;pIJ JrJ), R 1(p'1J;JrJ;aIJ;JrJ),
Qzl( IeJ,.J„J; )IiJ,'J„J), and Sz(v', J,J,J;p', J,'J„J) are recou-
pling coefficients, time 5 functions in the s.p. coordinates
in [az,pz, pz, o zI not active in Ial, p'l, pI, o I,eI, ll, vI, P''l I.
In Eqs. (2.14) and (2.15) we have introduced the follow-
ing additional matrix elements:

I MJM(vlJi ) & = y z', JN„''J', J I MJM(vlJ1 ) &

I I
v1J1

= Q Z', , N' J JB (1vIJI', JM) I0&
I I

vl J 1

(2.19)

are the CMWF for three-particle and three-hole excita-
tions. Let us generalize the calculation to the nth com-
ponents of the (2.1) and (2.2) CMWF.

The solutions of the eigenvalue equations for the am-
plitudes and the energies depend upon the knowledge of
the matrix elements:

Q",(a'„J1J2 J„'J;p„J1'Jz' . J„"J)

& a'J«' J'iJz ' J' )IIHllc'J(&. J'1 Jz'

(2.20)

Q3(e'1J J„;I)'1 J„)=—(AJ (et I; )IIHIIAJ (211J ) &

and

(2.1 6)
and

Qz(p„' J1J2 J„'J;cr„J'1'Jz' J„"J}

—:( P J(p' JIJz ' ' ' J')Il~ll@J(a Jl'Jz' ' ' ' J")&

Q4(v', J J„;pIJ J„)= (MJ (v'Ji )III IIMJ (plJi') &

where

(2.17)

According to (2.14) and (2.15) we write

(2.21)

Ql(a J1J2 J J 0 J 1 J2 J J) fJ(QI (a —1Jk Jk Jk J P —lJk Jk Jk J ))

+gJ«2 —
(P. 1J.,J.,

+ J(Q3 (en —1 k/ Jkz Jk„
1
Jr~ 9n —1Jk/ Jkz Jk„

1
Jr )) (2.22)

and

2(Pn Jl 2 Jn J&an Jl J2 n J) fJ(Q2 (Pn —1Jkl Jkz Jk„ i
Jrian —1JklJkz Jk 1Jr ))

+gJ(Q1 (a —1Jk Jk Jk„J ~ —1Jk Jk Jk„

+ J(Q4 (Vn —1 ki k~ k„ i r~Pn —I ki k2 k iJr )) ~ (2.23)

where fJ, gJ, hJ, and kJ denote linear combinations.
The calculation of the recoupling coefficients, due to

the high number of terms occurring in Eqs. (2.22) and
(2.23), is, however, still too laborious. We apply, there-
fore, the expansions directly to the CMWF and we cal-
culate the expansion coefficients looking at the transfor-
mation properties of the CMWF under the group of fol-
lowing substitutions:

I @JM(a

=-g (U)MM.
I 4JM (a„J1Jz . J„)& (2.24)

I
+ JM(Pn JlJ2 Jn ) &

X (H)MM'
I
+ JM'(Pn J1J2 ' ' Jn ) &, (2.25)
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where the matrices (U)MM and (H)MM are infinitesimal
generators of the SU2J+1(n) group.

III. EXPANSION OF THE CONFIGURATION MIXING
WAVE FUNCTIONS

The matrix elements of the nuclear Hamiltonian cal-
culated with the @JM(a2J]J2) CMWF have been ex-

pressed in Eq. (2.14) in terms of the matrix elements cal-
culated with the C]zM(a]J]), 4'zM(p]J]), and A&M(e]J])
CMWF. Therefore, we write the @&M(a2J]J2) CMWF
in form of linear combinations of the @JM(a]J]) coupled
to a particle-hole, of the 't

~M (p,J, ) coupled to a
particle-particle, and of the A&M(e]J]) coupled to the
hole-hole CMWF; we write

p2
1

I +JM(a2J]J2) & 2 TJ(a2J]J21ja]Ja]J, )[
I
@J«]Jk)& c'J(a]J, ) &1M

a,Jk J„J,
g2

2

+ g zJ(a2J]J2 I jp]JP ]J, )[ I
+ J„(p]Jk ) &

I AJ (p]J, » lM

P,Jk J,J,
g2

3

+ & ~J' 2 1 2I j'1 "1 '[IAJ, ']Jk'
I

(3.1)

where 82], 8z, and 83 give the number of different [a]j,
[p, j, and [e] j combinations we can form with the [a2j
coordinates, where we have introduced the following
transformation coefficients TJ(a2J, J2

I ja,J„a,J, ),

ZJ(a2J]J2 I jp]J.p]J. )»d 'VJ(a2J]J2
I
j&]J,&]J, » »d

where 4J (a,J, ), AJ (p]J, ), and MJ (F]J, ) denote the
S S S

particle-hole, particle-particle, and hole-hole wave func-
tions, respectively. The indices [a, j, [p, j, and [F]j are
the indices complementary to the [a, j, [p, j, and [e]j,
so that [a],a]j:—[a2j, [p],p]j—:[p2j, and [e„F]j

The coefficients

'TJ(a2J] J2

ZJ(a2J]J2
I jp]JP iJ.»

and

1 J(a2J]J2
I

j&]J,&]J, )

are called transformation coefficients of the second
kind. " To calculate the transformation coefficients we
introduce unit tensor operators in the space spanned by
the 4&M(a2J]J2) CMWF. The algebra of unit tensor
operators and their utility in calculating the coefficients
of fractional parentage for n particles (holes) in the same

[jj shell is well understood. We will define the follow-
ing sets of unit tensor operators: u" (n), h" (n), and

k k

p" (n) with the following properties.
k

(a) They are generators of the SU2J+](n) group acting
on the basis of the (2.1) and (2.2) CMWF.

(b) The generators of the group of unitary substitu-
tions on the CMWF of the nth kind are

=g(u"„(n))MM
I @IM(a.JiJ2

M'

„(n )
I

@JM(a.J]J2

g (h m (n ))MM'
I
@JM'(an J]J2

M'

and

p" (n)
I
eJM(a„J]J2 . . J„)&

=g(p"„(n»MM'I @JM (a J1J2'
M'

Let us begin with the introduction of the following ten-
sor operators for the n = 1, n, =2, or n =2 components:

u" (1)=[U (J;)U (J )]" (3.2)

where the
~ I

.I I Jj
U- (J )= y ( —1)'

I

J

I
m,

JJ'
a.,a.,

Mj

u" (n)= g u" (n —l,a„,),
a n —I

h" (n)= g h (n —l,p„]),
pn —

&

p" (n)= g p" (n —1,E„]).
En —1

(c) Because we are interested in the group of unitary
substitutions (2.24), we regard the u" (n), h ~ (n), and

mk ~ mk

p" (n) as unit tensor operators defined by the following
k

equations:

eJM(a JIJ2
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=[H (J, )eH (J,')]" (3.3)

is an operator that destroys a particle-hole pair with

quantum numbers [ai ] and

h" (1)=(—1) "h" (1)

a
1J1Jk p,J,Jk

The coeScients M ' ' (1) and L ' ' (1) are explicitly
calculable in terms of recoupling coefficients and are
given in the Appendix.

The expressions given in Eqs. (3.4) and (3.5) are then
the reduced matrix elements of the irreducible tensor
operators

where the
~ I ~ Jt

1 Jg Jg g

H (J)= 0 Q. p(1+$,)»2, m' m M,
' Ji J,'j.j'. m. m.'

J I J

&@J(a,J'1 )~~u "(1)~[4J(a,J, ) & =M ' ' (1)5,
1 1

& + J(P1J'1 )llh "(1)ll+J(PiJi ) &
=L" ' (la, J,

1 1

(3.6)

(3.7)

u" (1}

is an operator that destroys two holes with quantum and the operators
numbers Ipi). Applying the operators (3.2) and (3.3) on
the @JM(+1J1} and + JM(PlJl ) ~M~F we get

& @JM(+1JI}
l

11 „(1)I
@JM'(+1J1}&

1 J —k 1
u" (1)=

k
(3.8)

and

a1J1Jk

1 1 P2l k
(3.4) h" (1)

h (1)=
L ' ' (1)

(3.9)

& + JM(p»1) I
h "„(1}

l

+ JM (piJ1 ) &

J k J—5 ~ L (1) M1 1 mk
(3.5)

are unit tensor operators in the sense of Ref. 4. The
commutation relations of two u" (1)'s and two

h " (1)'s, calculated in the Appendix, are
k

T

k k 1
k& k2 k kkk ' ' '

k

I 2

(3.10)

1 2

1 2

(3.11)

& @J(+2J1J2 }II&'(2}ll~'J«2J1 J2 }&

1 1 2 2

& @J(+2J1J2}llh '(2)1[@J(~2J1J2 ) &

1 1 2 2

(3.12)

(3.13)

and due to the three particle CMWF we have introduced

&@J«2J1Jz)lip'(2}ll@J(~2J1J2) & =fi, J t)J J
1 1 2 2

with unit tensor operators

(3.14)

The sets of all u" (1)'s and h" (1)'s, except for the
k k

uo(1)'s and h 0(1)'s, are therefore infinitesimal genera-
tors of the SU2J+, (1) group and the wave functions
@J(aiJ1)and t J(piJ1) carry irreducible representations
of this group.

Going now a step further let us define unit tensor
operators for the n =1, nz ——3 or n =2, n, =3 or n =3
components:

g2
3

p" (2)=gp" (l, e, ),

where

p"„(1)=[P—, (J;)P-, (J )]"„ (3.15)

and where the

P (J)= 1

(1+tl ..)'"j,j, m. m.
I

J; J;

el J1Jk

M M'
1

(3.16}

is an operator that destroys two particles with quantum
numbers Ieii. The matrix elements of the p" (1) with

mk

the three-particle CMWF are

& AJM(e»1) I P "„(1)
l AJM «1J1 ) &
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and the reduced matrix elements are

&Ag(e]JI)IIp "(1)IIAJ(e]J])&=o ' ' (ll5,
i i

so that the

(3.17)

—k

~J Jk
O ' ' (1)

(3.18)

are unit tensor operators in the sense of Ref. 4. The ma-
ri Ji Jk

trix elements 0 (1) are calculated in the Appendix
and two of the p" (1)'s obey the following commutation

k

relations:

k) k2 k k) k2

1 2

(3.19)

The commutators of two u" (2)'s, of two h " (2}'s, and
k k

of two p" (2)'s are then expressed in terms of the
mk

u~ (2)'s, h" (2)'s, and p" (2)'s by relations similar to
mk mk mk

the ones given in Eqs. (3.10), (3.11), and (3.19). We con-
clude, therefore, that the sets of all u" (2)'s, h" (2)'s,

and p" (2)'s, except for the u 0(2)'s, h 0(2)'s, and
k

po(2)'s, are unitary generators of the SUzJ+, (2) group
and that the &&M(azJ]J2) CMWF carry irreducible rep-
resentations of this group.

p2
3

p" (2)=gp" (l,e]), (4.3)

i
u" (2)=g [u" (l,a])]S]1(l,a])]"

ai
(4.4)

or equivalently, using the definitions of complementary
indices:

IV. TRANSFORMATION COEFFICIENTS
OF THE SECOND KIND

To calculate the transformation coefficients of the
4 JM(azJ, Jz ) CMWF we write for the unit tensor opera-
tors u" (2), h " (2},and p" (2) the following relations:

k k mk

2

h
" (2)=g [h "„(l,p])1(1, P])]"„,

Pi

g2
3

p" (2)=g[p" (l,e])@1(1,F])]"

(4.5)

(4.6)

g2
I

u" (2)=gu" (l,a, ),
ai

g2
2

h" (2)=gh" (1,P]),
Pi

(4.1)

(4.2)

The transformation coefficients of the second kind are
then defined in terms of the matrix elements of the
u" (2), h " (2), and p" (2) unit tensor operators by the

following expressions:

~J(a2J]J2
I
la]J,a]J })"TJ«2J]J2 I I a]J,a]J, }

= &@J(azJ]Jz)IIU.'-, (J.)ll@J„(a]Jk) & & @J,«]Jk )IIU.—,(J.)ll~'~«2J] Jz) & (4 7)

('ZJ(azJ] Jz I IP 1
J PlJ ) ) ZJ(azJ] Jz

I IP 1JP 1J. )

=&@J(azJ]J2}IIH;,(J, )ll~'J„(P]Jk) &&+ J,(P]J], )ll~,'-, (J, )ll~'J, (azJ]J2) & (48}

and

( 1 j(azJ]J2
I I ~]J„~]J}} VJ(azJ] Jz I )~]J s]J )

=&@i(azJ]J2)lip;,(J. )IIAJ„(e]Jk }&«i„(~]Jk)lip,'-, (J, )ll@J(azJ]J2) & (49}

To prove the expressions (4.7), (4.8), and (4.9) let us calculate the matrix elements (3.12) using for the @&M(azJ]Jz)
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CMWF the expansion (3.1); we get

&@Jz(azJ,J2)llu "(2)ll@~(azJ1J2)&

( 1) r+ s+ + (f )llz
J„J J,
J J I { TJ{a2J1J2

I I a1J,a1J, »"Ti(azJ1Jz
I
Ia1J,a1J )

r
(4.10)

On the other hand, using Eq. (4.1) and the definition (3.2) of the u" ( l, a, )'s, we calculate

J +J +J
J(azJ1J2)llu "(2)lie~(azJ1J2) & g { 1) (k ) J J I

a)J„J

x &@'z(azJ1Jz)IIU';, {J. ) Il@z„(a1Jk ) & & @J„(a1Jk)IIU;, (J.)Il~'J(azJ1 Jz) &

(4.11)

From (4.10) and (4.11) we obtain the expression (4.7). Analogously we prove the expressions (4.8) and (4.9), taking the
matrix elements of the h " {2)'s and p" (2)'s in the 4JM(azJ1Jz) CMWF.

k k

The problem of finding transformation coefficients of the second kind is now regarded as the problem of reducing
the SUzJ+1(2) representation carried by the

[4q (a1Jk )I31@q (a1J, )]~ (4.12)

wave functions. To effect this reduction we calculate the matrix of the Casimir operator of SUzJ+, (2) in the basis
states (4.12) and then diagonalize it. According to Ref. 4 we can prove that

g (u "(2) u "(2))
k

commutes with all the u "(2), k =1, . . . , 2J, and therefore is the Casimir operator for SUzj+1(2). We calculate then
the following matrix elements:

& [@g(a1Jk)8@J(a1J, )]ll(u (2).u (2))II[@J.(p1J/, )s@g (p1J, )) &

=('~z{azJ1J2
I Ia1J.a1J.» {'TJ«zJ1Jz I Ia1J,a1J, » (4 1»

On the other hand, using Eq. (4.4), we have

& [4J (a1Jk)S@J(a1J, )]ll(u "(l,a) 1(l,a) u "(l,p) 1(l,p))II[4', (p1Jk)CHING, (p1J,')] &

(4.14)

Comparing the result obtained with the one of Eq. (4.13), we can write the following iterative formula for the transfor-
mation coefficients:

('TJ(azJ, Jz I Ia,J,a1J, )) TJ(azJ, J2 I )a,J„a,J, )

t'

2 3 J, JJ, +J,. +J„+J,+1
( ) JJ„

kJ,.J,
J Jr r

J, J,' J
k J J'

J, J; J2

k

(4.15)X( Tz (a1Jk
I JaoJ;aoJ„)) TJ (a1Jk

I lap, ap„){ T",(p J 1lkIpp, 'pp„)) T", (l31Jk I
I. pp, 'pp„) . .

r

The transformation coefficients depend upon the TJ (a,Jk
I JaoJ;aoJ„), i.e., the k components of the transformation

r

coefficients of the first kind we need to expand the 4J I (a,Jk ) CMWF in terms of a particle coupled to a particle-
r r

hole pair, which are given by the following equations:
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2'

aOJ,.J„
(4.16)

The eigenvalues of the matrix defined in Eq. (4.15) uniquely identify the SU2J+1(2) transformation properties. The
procedure is thus an iterative one defining the TJ(tx2J, J2

~
}tx,J„tx,J, ) transformation coefficients in terms of the

known TJ (a,Jk i }uoJ;txoJ„) transformation coefficients. To calculate the ZJ(a2J, J2 i }P1J„P1J,} transformation
I'

coefficients we have to diagonalize the Casimir operator:

Q (h "(2).h "(2)}
k

in the basis states

[+J, (PlJk ) AJ, (P 1J, })M

The expression we get is not given explicitly, but defines the ZJ(a2J, J2
~ }plJ„p,J, ) transformation coefficients in

terms of the ZJ (P,Jk
~ }POJ,'pllJ„).

The VJ(a2J, J2 i
}elJ„e',J, } transformation coefficients have to be calculated using the following relations:

J J+J k
VJ(tX2J1J2 }E1JelJ }) VJ(CX2J1J2

I }elJ,elJ, )

=0 ' ' ' (2)=-Xf (It) 0 ' " " (1) . (4.17)

V. GENERALIZATION OF THE METHOD

In this section we generalize the method for the calculation of the transformation coefficients for the CMWF of the
nth kind. We write the following linear combination:

yn
1

I@'JM(~ J1J2
—1 k k

1 2 n —1

TJ(tX„J1J2 J„ i }tX„1J„tX„1J,)

&&I
l @J„(~ 1Jk Jk —Jk„}& I

C J,(~. 1J, ) &)M

yn
2

—1 k k k
1 2 n —1

'"+'ZJ«n Jl J2 ' ' ' Jn
i }Pn 1J.Pn

&& [ I
+J„(Pn —1Jk1Jk2 Jk„ 1) &

I AJ (Pn l~s ) & lM—

yn
3

—I Ic It k
1 2 n —1

VJ(&.J1J2 J„ i }&„—1J„t„ 1J, )

X[ i&J" '(e„ 1Jk J„.. Jk, }& I~J'(&. 1J, )&1M (5.1)

where we have introduced the nth kind transformation
coefficients and where the Ã&, 8z, and 83 give the num-
ber of different [a„,}, [p„,}, and [e„,} combina-
tions we can form with the [a„}coordinates. The trans-
formation coefficients are then given by the matrix ele-
ments of the unit tensor operators:

k
( )

p
" (n)

an J1J~. . . Jn Jk0"'' " (n)

h (n)
h" (n}=

~an 1
P'''

n (Jk (5.3)

u" (n)
u" (n}= ian12 nJ(

)

' (5.2)

calculated in the basis of the 4 JM(tx„J1J2, . . . , J„)
CMWF.

It i.s easy to show that the unit tensor operators of the
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nth kind, (5.2), (5.3), and (5.4), have commutation rela-
tions of the forms (3.10), (3.11), and (3.19), so that they
are unitary generators of the SU2J+, (n) group. The
transformation coefficients of the nth kind are then cal-
culated reducing the SU2J+, (n) representations carried
by the

[@J (tr lJk Jk Jk )@J (/T —lJ )]/lr

the Casimir operators of the SU2J+, (n),

ukn uk n
k

g (h "(n) h "(n)),
k

alld

(5.8)

(5.9)

[+J, (P —1Jk,Jk Jk„,)+J, (P —lJ )]M (5.6)
g(p"(n) p"(n)}
k

(5.10)

[+J {~n —lJklJk2 Jk /)MJ {~n —1Js }]M (5.7)

wave functions.
To effect these reductions we calculate the matrices of

in the basis of (5.5), (5.6), and (5.7) CMWF. We obtain
the following iterative expression for the
"+'TJ(a„J,J2 J„ Ia„,J,a„,J, ) transformation

coefficients:

( "+'TJ(a„JlJ2 J„
I ]a„,J„a„,J, )) "+'TJ(a„JlJ2 J„ I Ia„ /J„a„ lJ, )

J J, J„'

J, k J
J J, J;
J„' k J„

J„J; J, J„
J„' J,' k

&&[(
" 'TJ (a„,Jk Jk . Jk I Ia„2J/a„2J, )) " 'TJ (a„,Jk Jk Jk

I ]a„2; „2J„)]

(5.11)

The matrix elements

( @J {/2 —1Jk Jk Jk„,)II// "(n 1)ll@J„'(~.—lJk, Jk Jk„

2
J;+J, +J, +k

J. k
'" '

J { . l k, Jk, , I I~„—2J, /7„—J')}'
Q r ] 2 n —1

J,.J,

J {+ —lJk Jk Jk

can now be expressed in terms of the already known matrix elements

&@J ~ '(~. 2Jk Jk Jk„—, )ll~ "{n 2}llc'," '—(~. 2Jk Jk — Jk
r

until we reach the matrix elements of the first kind, defined in Eq. (4.16).
The eigenvalues of the matrix defined in Eq. (5.11) identify uniquely the SU 2J(+n) transformation properties, and

therefore the transformation coefficients. Analogous expressions can be derived for the

ZJ(& Jl J2 J.
I Ip. —lJ.p. —lJ. )

and

VJ{&.J i J2 J. I I ~.—iJ.~.

transformation coefficients, taking the matrix elements of the Casimir operators (5.9) and {5.10) with respect to the
(5.6} and {5.7) CMWF, and diagonalizing the resulting matrices.
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The formulas we obtain are iterative formulas fully defining the three sets of transformation coefficients in terms of
a11 P1 1the known M ' ' (1),L ' ' (1), and 0 ' ' ' (2) matrix elements.

VI. ONE-HOLE CONJUGATION

The nth components of Eq. (2.2) for the one-hole conjugation states are expanded according to the formula

I+JM(P JIJ2
Jk

1 2 n —1

'" "ZJ(P.J1J2 J.
l I p. 1JP. 1J. )—

&&[l+J„'(pn 1Jk1Jk2 Jk„1)& lc'J, (pn 1~s)&-]M

1 k
1

k
2

n2

n —1

"+'TJ(P„JIJ2 ' J —1 l
l12.

X[lc'J„(~ 1Jk Jk — Jk„,» lMJ', «. 1J, »]M

—1 k k
1 2 n —1

"+'CJ(p„J,J2 J„]v„,J,v„,J, )

'(v. 1Jk1Jk2 Jk„1» l ~J, (v. 1J.»]M (6.1)

where we have introduced the following additional transformation coefficients:

1J.v. -1J.» =&+J(pn 1 2
' '

n ID-„,(Js)IIMJ" '(vn-1Jk, Jk, ' Jk„,)& (6.2)

and where g&, gz, and g3 give the number of different

[p„,), [a„1],and tv„1) combinations that we can
form with the Ip„] coordinates and where we have in-

troduced the

s" (n)= g s" (n —l, v„,)
V

n —1

on the basis of the

[+J„'(pn 1 k, k, Jk„,) @J,(pn 1J, ) ]M

[ J '(a„—1Jk Jk, ' ' ' Jk )™J(a„—1J.)]M

[MJ„(vn —1 k1 k2 Jk„1) AJ, (vn 1~s ) ]M

(6.7)

(6.8)

(6.9)

unit tensor operators defined by

s" (1)=[D (J, )D (J,')]"

where the

D-„(J )=
(1+g )1/2j.j. m. m.

J J J 1

(6.3)

wave functions, and diagonalizing the resulting matrices.
The expressions we derive are similar to the ones we
have for the matrix elements of the Casimir operators
(5.8), (5.9), and (5.10). The transformation coefficients

1JP.

TJ(P J1J2 J.
l ]~. 1J,t2. 1J,»

is an operator that destroys two holes with quantum
numbers I v, }.

The transformation coefficients of the nth kind for the
one-hole conjugation case are then calculated taking the
matrix elements of the Casimir operators:

and

'""CJ(pn J1J2 J.
l
]v. 1J,v.

are therefore defined iteratively in terms of the
pl J1Jk cx1J1Jk

L ' ' (1),M ' ' (1), and S ' ' ' (2) matrix elements.

ukn .uk n
k

Q (h "(n) h "(n)),
k

s n s n
k

(6.4)

(6.5)

(6.6)

VII. MATRIX ELEMENTS OF THE NUCLEAR
HAMILTONIAN: DIAGONAL TERMS

Using the transformation coefficients introduced in the
previous sections for the basis of the (5.1) and (6.1)
CMWF, we write for the matrix elements (2.20) and
(2.21) the following iterative expressions:



360 M. TOIVIASELLI 37

Q](a„J]Jz . J„J;P„J',Jz J„'J)=
a„,P„1J,J,

Jk Jk - - J
1 2 n —1

Jk
1 2 n —1

'"+'Ts«nJ]Jz ' ' J. I la. -]J.a»-]J. )

X "+'TJ(p„J',Jz . . J„'
~
Ip„]J„a„]J,)

X&] (a„]Jk Jk ' ' ' Jk J„p„]JkJk ' ' ' Jk,J„)

~n —1+n —1 s r
Jk Jk ' Jk

1 2 n —1

Jk Jk Jk
1 2 n —1

'"+'ZJ«. J]Jz ' ' ' J. I )P. ]J.P.-]J.)-

X&Z (Pn —]Jk]Jkz Jk„]Jr~an —]Jk]Jkz Jk„]Jr )

n —1~n —1 s r
Jk Jk 'Jk

1 2 n —1

Jk Jk Jk
1 2 n —1

X'"+'VJ(p.J']Jz ' ' ' J. I lg. ]J,k

X ~2 (Pll —1 k]Jkz k„] r&an —] k] kz Jk„]Jr )

and

Qz(P„J]Jz J„J;(J„J]Jz J„'J)= '""ZJ(P.J]Jz ' ' ' J. I Ip. ».P. ]J.)- (7.1)

Jk
1 2 n —1

' Jk
1 2 n —1

X'"+'ZJ(tr. J]Jz ' ' ' J' I Irr. ]J.P. ]J.)--
X +2 (Pn —]Jk

]Jk2 Jk„]Jr & an —1Jk
]Jk& Jk„]Jr )

a„1P„1J,J,
k k k

1 2 n —1

Jk Jk Jk
1 2 n —1

X'"+'TJ(an J']Jr ' ' ' J' I IP. ]J.an -]J.)-

~n —1~n —1JsJr
Jk Jk Jk

1 2 n —1

Jk
1 2 n —1

"+'C (p„J,J . J„ i Jv„,J,v„,J, )

X "+'CJ(a„J']Jz . J„'
~
)p„]J„v„]J,)

X+4 (v —]Jk,Jk Jk,Jr~Pa —]Jk,Jk ' ' Jk,J, ) ~

(7.2)

Co]nparing Eqs. (7.1) and (7.2) with Eqs. (2.22) and (2.23) we see that the coefficients of the 1inear expansions f, g,
hJ, and kJ are uniquely determined as function of transformation coefficients.
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VIII. MATRIX ELEMENTS OF THE NUCLEAR HAMILTONIAN: OFF-DIAGONAL TERMS

The off-diagonal matrix elements of the first kind, calculated between the one-particle (-hole) wave function and the
two-particle (-hole) —one-hole (-particle) CMWF

:-~'(PoJ a&J~J)—:& Az '(&o) IIHII@&( (8.1)

and

:-z'(poJ;ptJ& J)= &MJ '(Po)IIHII p J(piJi) ~ (8.2)

are considered the starting point of the iterative expressions we derive for the off-diagonal matrix elements of the nth

kind.
In general we write the following equations for the o8'-diagonal matrix elements of the nuclear Hamiltonian between

CMWF with a different number of particle-hole pairs:

'"«.—iJiJz ' ' J. iJ P.JtJz ' ' ' J.'»

'«. iJiJz ' ' ' J. i) II&Il@'z«.J iJz ' ' ' J.') &

'Tz(a Jn &Jrz Jn & l ja„zJ„a„zJ,) "+'Tz(pn JIJz ' J„'
l jp nJ a rnzJ )s

~. -z~.

j (a —2Jk Jk Jk J P —1Jk Jk Jk

+ g " 'ZJ(a„)J)Jz J„,I jP„zJP„zJ, ) "+'Z (P„J'&Jz J„'
l jg„,J P zJ )

~n —2~n —&

2 (Pn —2 k/ kz k„z r ~anlJk/Jkz Jk„

+ g '" 'Vg(an iJiJz '' Jn
l j&n zJrkn zJs)'""~—g(PnJIJ2 Jn

l jgn —1Jr~n —2Js

n —2 In —1

(~n ZJk, Jk, ' ' '-Jk„,Jr nn A', J'k, ' —' ' Jk„,Jr) (8.3)

In Eq. (8.3) and following the indices IJ,Jr~ Jk Jk Jk ,'Jk Jk Jk j have been, for simplicity, omitted from

the sums, and the terms

—ZJk) Jkz k„) r& Vn —I k) kz k„) r )

are the matrix elements of the nuclear Hamiltonian between three-particle states coupled, respectively, with (n —2)
particle-hole and the (n-1) particle-hole pairs.

The matrix elements of the nuclear Hamiltonian calculated on the basis of (6.1) CMWF with a different number of
particle-hole pairs are given by an expression similar to the one given in Eq. (8.3), where we introduce the extra terms

4 (Vn —2 k/ kz k„z r Pn —1 k/ kz k„/ r)

i.e., the matrix elements of the nuclear Hamiltonian calculated in the three-hole states coupled, respectively, with the
(n —2) particle-hole and the (n —1) particle-hole pairs.

IX. MATRIX ELEMENTS OF THE ELECTROMAGNETIC OPERATORS

Using the X" J J . . .J J amplitudes and the matrix elements of the electromagnetic operators calculated for the
n 1 2 n

n =1, n& ——2 case, we write the matrix elements of the electromagnetic operators on the basis of the (5.1) CMWF.
Two types of matrix elements occur.

(a) The diagonal
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& @J(a.J1J2 J. )IIMkll@J «.J1J2

~lf
n 1 2

ja —1J an —1J )
"+ TJ (p'nJ1J2 ' Jn

I j&n 1Jr'a—n —lJs
a Pn —1 n —1

XM1 '(a„ 1Jk Jk . Jk J„;p„ 1Jk Jk Jk J„')

Pn —1 n —1

"+'ZJ(a„J1Jz J„jp„,J„p„,J, ) "+'ZJ,(p„JIJ2 J'
I ja. 1J p -1J )

XM2 (Pn —1 k1 kz k„1 rsan —1Jkl kz Jk 1Jr )

+ & '""1'J«nJ1J2 ' Jn
I

j&n

n —1 In —1

XM3 '(&. 1Jk,Jk, ' Jk„ ,J. ri. 1'Jk, J—k,
' ' ' Jk„ ,

J' ) (9.1)

(b) The off-diagonal

& @J (a —1J1J2 J. )IIMk ll@J'(P.JlJ2
~n —1 ~7l

~n -1pn

'TJ(a„ 1J1Jz ' ' ' J.—1 I
ja„zJ„a„—zJ. ) "+'TJ(P„J'1Jz ' ' ' J

I jP. -1J.a -zJ. )

~. -2~. -1

XM1 '" '(a„ 2Jk, Jk, Jk ,J„;p„ 1Jk,Jk, Jk
,
J„')

Pn —2~n —1

jP. 2JrPn 2Js)'"+'Zz(~nJIJz ' ' J'
I ja. 1J'Pn-zJs)

X Mz '" '(P„ 2Jk, Jk, ' ' Jk J„;a„ 1Jk,Jk, ' Jk ,
J„')

+ & '" '1'J«n 1J1J2 ' ' J.-l
I
je. -zJ, &. 2Js)'""VJ(~nJIJ2 Jn

I jan
n —2 in —1

XM3 ' (6n 2Jk1JkZ
' ' ' Jk ZJr)'9n 1Jk Jk ' ' ' Jk J„) (9.2)

Ml"(alJ1J„ag,')=—f (JJ,')& jzllMkllj3) (9.3)

where the recoupling coeScients have been included in

Formulas (9.1) and (9.2) give the matrix elements of the
electromagnetic operators iteratively in terms of the al-
ready calculated M

&
M p M3 and M

&

M Q M 3
' matrix elements. For the hole

conjugation case we write expressions analogous to the
ones given in Eqs. (9.1) and (9.2) with the Y" J JP„J,J2
amplitudes and the corresponding matrix elements of the
electromagnetic operators.

Finally let us consider the following off-diagonal ma-
trix element: M,' (a,J1J„;aoJ„')calculated between the
two-particle —one-hole CMWF, and a single particle
wave function. We have

the {f j and where {jz j and {j3 '
j are the coordinates

of the particle-hole pair interacting with the valence par-
ticle.

Equation (9.3), restricted to selected particle-hole
pairs, gives the correction introduced by Arima et al.
to the single particle expectation values of the elec-
tromagnetic operators. The correction given by the
terms of Eq. (9.2) not included in the perturbation
theory gives important contributions to the electromag-
netic properties of odd-even nuclei, as pointed out in
Refs. 2 and 3.

X. CONCLUSION

The electromagnetic properties of the odd-even nuclei
are considered mainly from the standpoint of
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configuration mixing of the shell model. Iterative ex-
pressions introduced for the matrix elements of the nu-
clear Hamiltonian and of the electromagnetic operators
simplify the calculations. This new approach introduced
for the matrix elements enables us to calculate exactly
configuration mixing terms in all order.

The deviation of the valence particle dues of the elec-
tromagnetic operators from the experimental values is
then explainable in terms of a correct treatment of the
configuration mixing as we have proven in ' 0, Tl,

Tl, and Bi nuclei ' and references quoted therein.
The method will be generalized to include random-phase
approximation diagrams and extended to even-even nu-
clei in a further paper. Numerical application to light
and medium nuclei is presently under investigation.

lowing expressions:

M ' ' (1)= f(j,J,k) 5—, , gg(j, J,J„'k)

L ' ' (1}=g f (j,J,J„'k)

—&, , gg'(j iJ,J„'J,"k)

0 ' ' (1)=g f (j,JiJ„'k)—gg2(j& J&J'J"k)

(Al)

(A2)
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APPENDIX

The normalization constants for the @qM(aiJi ),

JM(p& J& ), and A&M( eiJi ) CMWF are given by the fol-

where f (j,J&k), g&(j&J&J„'k), f '(j,Ji J„'k),
g'(j&J&J„'J„"k),f (j i J,J„'k}, and g (j|J&J'J„"k) include
recoupling coefficients.

To compute the commutator relations for the unit ten-
sor operators u (n), h" (n), and p~ (n), consider the
following matrix element:

(@i(a„J,J~ J„)ii[u ' (n)u ' (n)]"ii@g(&„J|Jp ' J„))
kl mk (A4)

and operate on the right two times with the u 's. The same holds for the h 's and p 's.
k mk mk
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