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The electromagnetic properties of ground and excited states of nuclei with an odd number of
particles and holes outside the closed shells are described in the j-j coupling shell model. The re-
sidual interaction between the valence particles and holes causes two different configuration mix-
ing: (a) one where the valence particles and holes are scattered to higher shell model states, and
(b) ones where the valence particles and holes excite particles out of the core. The electromagnetic
properties of odd-even nuclei are sensitive to the correct treatment of both types of configuration
mixing. In this paper the matrix elements of the nuclear Hamiltonian evaluated using the basis of
configuration mixing states of types (a) and (b), and the resulting eigenvalue equations, have been
exactly calculated. The matrix elements of the electromagnetic multipole operators calculated
with the resulting eigenvectors of type (b) are then related to the deviation observed between the

experimental and valence expectation values.

I. INTRODUCTION

The importance of configuration mixing in studying
the electromagnetic properties of odd-even nuclei with
one valence particle (hole) has been pointed out by
several authors.! The residual interactions between par-
ticles in different orbits are taken as the cause of
configuration mixing and the correction to the single
particle matrix elements of the electromagnetic opera-
tors has been calculated introducing selected particle-
hole configurations.

The importance of introducing configuration mixing
diagonalizing the nuclear Hamiltonian, in a nonrestrict-
ed @}y (aJ;) and ¥}\ (p,J,) basis, has been pointed
out in Refs. 2 and 3. In the present paper we generalize
the calculations, including in the model configuration
mixing modes where the single particle (hole) excite out
of the closed j-j core n particles. The calculation is then
extended to odd-even nuclei with valence particles and
holes interacting with the core via particle excitations.

In Sec. II we calculate the commutators of the nuclear
Hamiltonian with the configuration mixing modes, re-
taining only the Tamm-Dancoff (TDA) diagrams. The
matrix elements of the nuclear Hamiltonian calculated
with the configuration mixing wave functions (CMWF)
of the nth kind are then grouped in terms of the matrix
elements calculated with the CMWF of the (n —1) kind.

In Sec. III we expand the ®3%,(a,J,J,) (three
particle—-two hole) CMWF in linear combinations of
state vectors coupled

[®] (/Do @ (@J,)],

(v .llr(PlJl )® Ags(ﬁl-’s ),
and
[A) (e, )@Mg (&J)Y .

In Sec. IV we derive an iterative expression for the
transformation coefficients. In Secs. V and VI we gen-
eralize the method expanding the ®7(a,J\J, - J,)
and ¥ %, (p,J,J, - -+ J,) CMWF and deriving the trans-
formation coefficients iteratively. The general expres-
sions for the matrix elements of the nuclear Hamiltonian
in the basis of the ®(a,JJ, " "J,) and
Uhh(paJiJ, - - - J,) CMWF are given in Secs. VII and
VIII. And finally in Sec. IX we calculate the matrix ele-
ments of the electromagnetic operators.

The coupling of the valence particles and holes to
complicated doorway states is exactly taken into con-
sideration in the present paper. The nuclear Hamiltoni-
an is then calculated in the full basis of CMWF. The
ground and excited state wave functions are therefore
showing contributions of perturbation terms to all order.
As shown in Refs. 2 and 3 these contributions play an
important role in studying the electromagnetic proper-
ties of odd-even nuclei.

II. CONFIGURATION MIXING
AND LINEARIZATION METHOD

Odd-even nuclei with particles and holes outside the
closed shells, interacting with the core via particle exci-
tations, are characterized by wave functions of the fol-
lowing forms:
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A. CMWEF for n particles—(n —1) holes

| @@, - J,)) =N a‘J‘J]E JXZ’I’J}J;‘. NIJJI ,:JI‘I’;M(C!,],J{J;-"J,}))
n’172 "
+a2 121;...12 Xaz IRy Naz St | ®gpelal T35 I3 )
ny 192 ny
+ 0+ X Xa" - Naz s eogn s | PSR TS T0)) 2.1)
a Sy I "
B. CMWEF for (n —1) particles—n holes
| O pad Ty - Jy)) =N plll;l JIY;}IJ}J;~--J,}JN:},J{J;. I‘VJM pud ity I4))
nd1Y2 g
+ > plz,zllg...JzJN;zlJ%JZ. J\‘I’JMP:.Jsz"'Jrgl)>
Pn szz ]31 n) n, n 7172
+o+ 3 Y: I ,Np" g g | UL TS T2 ) | @2)
p:nJ',’Jg --<J:n n
l
with {j2},{j7"'} and total spin J| to a final spin JM(J —M).

n, =n +one particle-hole pair ,

n,=n +two particle-hole pairs ,
and

n, =n +(n) particle-hole pairs .

Let us recall the results of Refs. 2 and 3, neglecting
the single particle component and the off-diagonal terms
that will be treated in Sec. VIII. The one-particle-
hole-one-particle-hole pair (n =1, n;=2) or the two-
particle (-hole)—one-hole (-particle) (n =2) components
of the (2.1) and (2.2) CMWF, both characterized by one
particle-hole pair, are

| @y la ) = 2 X‘, s ,N!

"11

— 1
=3 Xy, Nop, Al IM) | 0)

'J'J 1<DJM((ZIJ ))

ayJ
(2.3)
and
P
— 1 1 Py,
=3 YNy Aei 1 —M)10)
Py
(2.4)

where the operators A} (a}J};JM) and A,(p\J};J —M)
create, respectively, a particle (hole) in a shell model
state with quantum number {j,} ({j;'}) and coupled
then with a particle-hole pair with quantum numbers

To simplify the notation we use the following conven-
tions:

@ ay=py={nlj;;ny05j55n305)53

(b) The particle-hole pair {j, —j3 '} is coupled to the
intermediate spin J M ].

(c) The sum over all the projection quantum numbers
is not included explicitly in the formulas.

(d) The subindex {1} indicates the number of
particle-hole pairs we are considering.

(e) N! y are the normalization factors different

Chaia
l

from 1 if the coordinates of the single particle {j,} or of

the single hole {j '} are equivalent to the coordinates
of the {j,] particle or of the {j3; '} hole.

Calculating the commutators of (2.3) and (2.4) with
the nuclear Hamiltonian

t , t ot
szeaaaaa+'z“ 2 VaByéaaaBaZSay ’
apyd

where Vg, are the matrix elements of the effective re-
sidual interaction

Vagys =(aB | vef | y8)
and linearizing we obtain in the TDA approximation
[H, Al(a\J;0M)]='S Qla\J\J;B IV AT(BIY ;TM)
By
(2.5)
and
[H, A,(piJ 3] —M)]

=3 QipJJ;0 014
oy

(o3I —M), (2.6)
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with

Qi ;B I =( @M D H||PNBJIY))  @2.7)

and

Q0N =(Vp T D|H| Y (o)) . (2.8)

The single particle and single hole energies, the particle-
particle, the hole-hole, and the particle-hole matrix ele-
ments are contained in the Q}(a}J}J;B,J7J) and
Q(p\J'J;0,J{J) matrices.

Taking the expectation value of (2.5) and (2.6) between
ground and excited states we obtain the following equa-

tions for the amplitudes X!, ey and Y!, P
1 "
B§'Q a8 X " —Ea,JJXa,IJJ,
., | (2.9)
2 Qp ;o0 J DY "y = PlJJYPHJ .
alJ

We write then for the one-particle (-hole) and two
particle-hole pairs (n =1, n,=3) or the two-particle
(-hole) —one-hole (-particle) and one particle-hole pair
(n =2, n;=3) or the three-particle (-hole) —two-hole
(-particle) (n =3) components of the (2.1) and (2.2)
CMWEF, characterized by two particle-hole pairs, the fol-
lowing:

| @ (@zd 1 J3))
=3 X2 Nosy | PiulaitiJ3))

’ gt

a7}
T ’ ’ ’,
=2 XaZJ J'NZZJ A2 IM)[0) (2.10)
aZJ J
and
|§’3M(P2-’1]2))
- 2 2
- 2, , szJ'J'ZJNp'ZJ’J J | W o (pad 1J2))
PV
,2’ , szl W sz 7 JAZ(P’ZJ'IJ;.;J“M) ’ 0) ,
23T
(2.11)
where  the  operators Al(ayd\J5;JM)  and

QU abI 5T ;B (T4 T) =
a\BJ T

iivr

A,(p5J\J5;J —M) create, respectively, a particle (hole)
in a shell model state with quantum numbers {;,}
({jr'}) coupled with two particle-hole pairs and where
we use the following additional conventions.

@) ay=py={nlyj;;n205025n3l5)3n404)45 nslsjs}.

(b) The particle-hole pair {j, —j; '} is coupled to the
intermediate spin J{M; the particle-hole pair {j, —j; '}
is coupled to the intermediate spin J5M; the coupling
between J| and J) is not included explicitly in the for-
mulas.

(c) The subindex (2) indicates the number of particle-
hole pairs.

d) N2,
a0
)

from 1 if the quantum numbers of the particles (holes)

are all (or in pair) equal, and (or) the quantum numbers
of the two holes (particles) are equal.

are the normalization factors different

Taking the commutators of the nuclear Hamiltonian
with the Az(aleJz,JM) and A,(p3JJ5;J —M) opera-
tors between ground and excited states, and diagonaliz-
ing the resultmg eigenvalue equations, we obtain the

X2, a1 and Y2, amplitudes and the corresponding
a 2

energies.
We are therefore confronted with the calculation of
the following matrix elements:

JJJ

QST T 5T ;B (TS ) = (DY as (5| H || D2BI VTS ))
(2.12)

and

QUp '\ 5T ;00 TSN =W (3 WI)H |V 5o J TS ).
(2.13)

The treatment of the off-diagonal terms, connecting the
particle (hole) with the two-particle (-hole) —one-hole
(-particle), and the three-particle (-hole) -two-hole
(-particle) CMWF, or the three-particle (-hole) —two-
hole (-particle) with the two-particle (-hole) —one-hole
(-particle) CMWF, is given explicitly in Sec. VIII.

We simplify the calculation grouping the resulting two
body matrix elements accordingly to the following ex-
pressions:

S PHaJJ,J;BJ, )N, BT,)

+ 3 RYUpWIT000,Dp 000 0,)

ProIId,

+ 3 QeI T T NN e T, m\ )T,

ema Il

iivr

(2.14)
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and
Qpyl I 3T 30, 1T 5T)

= R 2(p'JJ J;O"J-'J,J)Q%(p'lJiJ,;a'lJ,-'J,)
1\Pivivr i
p;a'IJ,J’.'J'

+ 3 PYaiJ B DO BL)
allﬁll"i"z‘l"r
+ 3 SHWILTe T DT sud )
Vs,

(2.15)

The sums in Egs. (2.14) and (2.15) are extended over all
possible two-particle—one-hole, two-hole—one-particle,
three-particle and three-hole combinations that we can
form out of the f{a,}] and {p,] coordinates.
The PHa\JJ, ;BT T), Rp\JJ T ;00J1T,J),

eI\ JiT,J), and S} (vViJ.J,J ;1 \J}J,J) are recou-
pling coefficients, time 6 functions in the s.p. coordinates
in {@3,B,,p,0,} not active in {a},B1,p1,01,€1,71,V1,41}-
In Egs. (2.14) and (2.15) we have introduced the follow-
ing additional matrix elements:

Q3,1 ) = (A (€D H|AS (qJ])) (2.16)
and
QU T = (M) (VIDIH MG (wiT)) 217

where

J

Qla, Iy - W D3By YTy - I D= Q8 Nay Ty iy T JiiBa Tk Tk,
+8,(Q5 " pp 1Ty Ji, -

+hJ(Qg—l(en_lele2 A Jk

and

Qppd Ty - T 0, JVTY s T = Q5 Ty i,
+8,(QF " Nay _ i Ji, -+

+kJ(Q'2—1(Vn—1Jk1JkZ T

where f;, g5, h;, and k; denote linear combinations.

The calculation of the recoupling coefficients, due to
the high number of terms occurring in Egs. (2.22) and
(2.23), is, however, still too laborious. We apply, there-
fore, the expansions directly to the CMWF and we cal-
culate the expansion coefficients looking at the transfor-
mation properties of the CMWF under the group of fol-
lowing substitutions:

| A_IIM(EIJI )>= 2 VVl
’JI

1 1 'y
5’1",1"N€’1'Illj IAJM(€1J1)>

€171

=2 Wll ' Nv1

e -
N ey Bl 3IM)[0)

GA
(2.18)
| My (viJ )= zi,lj,]JNi,lJ,lJ | My (viJ 1))

Vil
=3 Z ;N BV 15IM) | 0)

v

i1
(2.19)

are the CMWF for three-particle and three-hole excita-
tions. Let us generalize the calculation to the nth com-
ponents of the (2.1) and (2.2) CMWF.

The solutions of the eigenvalue equations for the am-
plitudes and the energies depend upon the knowledge of
the matrix elements:

QUa, J Iy - 3B, IV Ty - T
=(DMNa,J\ T, - - TOH|PHB I VTS - - J,)))
(2.20)
and
Qp,J 5 - Iodso, 0705 - - T T)
=V p,J Ty - IDNH|Y o, J{Ty =T .
(2.21)
According to (2.14) and (2.15) we write
J,Ln_lJ,))
i, _Iron Ik Ik, Ik )
"_lJ,;'ry,,_,J,:lJ,;2 < J,:n'lJ,)) (2.22)
J,("_IJ,;U,,_IJ,;]J,:2 e -J,:n_lJ,))
2 ‘]k”_l'lr;Bn—IJILIJIL2 e Jl:n_l r))
Jkn_l‘lr;,u‘n-—lJl:lJl:2 e JI:n__lJr)) ’ (223)
l
| Doy, d Ty w2 T,))
=$’2(U)MM’|¢;M’(anJ1-,2 A Jn)) (2-24)
o
and
| q’;M(PnJIJz gy )
:Z(H)MM"QI;M'(anIJZ .t 'Jn)) ’ (2.25)
o
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where the matrices (U)yg, and (H)yy, are infinitesimal
generators of the SU,; , (n) group.

III. EXPANSION OF THE CONFIGURATION MIXING
WAVE FUNCTIONS

The matrix elements of the nuclear Hamiltonian cal-
culated with the ®2%,(a,J,J,) CMWF have been ex-

pressed in Eq. (2.14) in terms of the matrix elements cal-
culated with the @}, (a,J;), ¥y (pJ,), and Al (e,J;)
CMWEF. Therefore, we write the ®%,(a,J,J,) CMWF
in form of linear combinations of the ®},,(a,J,) coupled
to a particle-hole, of the ¥}, (p,J,) coupled to a
particle-particle, and of the A}, (e,J,) coupled to the
hole-hole CMWF; we write

Sl
| Diplar I = 3 °TiladJ; | e, @)l | @) (@) | F (@) i
a]"k"r"s
%3

+ 3 °ZjlaydJy | eI q’},(pljk)>® |A9:(»51Js))]‘1{4

pdid Y

%
+ 3 VilayJh | Jed, &0 IA},(‘Ele”@ iM.?S(gle))])’u )

éle JIJS

where 93, 93, and 93 give the number of different {a,},
{pi}, and {€,;} combinations we can form with the {a,}
coordinates, where we have introduced the following
transformation  coefficients  T,(a,J,J, | }aJ,&J;),
SZjlay \J,y | Y pid By ), and *Vy(ayd,J, | €J,€J;), and
where <I>3S(('1‘1JS ) A?x(ﬁle ), and MJOS(glJS) denote the
particle-hole, particle-particle, and hole-hole wave func-
tions, respectively. The indices {@,}, {p,}, and {&,} are
the indices complementary to the {a,}, {p,}, and {€},
so that {a,@}={a}, {pnpi}={p.}, and ([e,,&]}
={e,}.
The coefficients

ST (ayd J, | Jad,ad;) ,
Zjlay I,y | Jpidpuds)
and

SVJ(aleJZ [ }GIJ,glJS)

are called “transformation coefficients of the second
kind.” To calculate the transformation coefficients we
introduce unit tensor operators in the space spanned by
the ®3%,(a,J,J,) CMWF. The algebra of unit tensor
operators and their utility in calculating the coefficients
of fractional parentage for n particles (holes) in the same
{j}] shell is well understood.® We will define the follow-
ing sets of unit tensor operators: u,’,‘,k (n), if’,‘,,k(n), and

X . (n) with the following properties.

(a) They are generators of the SU,;  ,(n) group acting
on the basis of the (2.1) and (2.2) CMWF.

(b) The generators of the group of unitary substitu-
tions on the CMWF of the nth kind are

up (n)=3 u,’,‘,k(n —La,_ ),

a1

ﬁ’,‘"k(n)z X ﬁmk(n —Lp,_1),
Pn

-1

Pm, (M= pp (n—1l€, ;).

€1

(c) Because we are interested in the group of unitary
substitutions (2.24), we regard the u,’,‘,k(n), h f,,k(n), and

P . (n) as unit tensor operators defined by the following
equations:

u,’,‘,k(n) | @, Iy Ty s J,))

=§(u,’,‘,k(n))MM' | @Myl (T, T,))
h",;k(n) | @M, Ty J,)

=§(}7’,§,k(n))w, | %y Ty - T,))
and
P, (W) | @@y I Ty 0 T,))

=2 (Pp]ka("))MM' | @yl J 1Ty - J,)) .
oY

Let us begin with the introduction of the following ten-
sor operators for the n =1, n; =2, or n =2 components:

=k _ri7t 77 1k
u mk(l)—[Ual(J,-)®Ual(J,-)],,,k (3.2)
where the
— N j," _]]l J]’
U_(J)= _1yi™™ t
al( ;) m%} D [m,f —m; M| a!',-'af,"

L)
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is an operator that destroys a particle-hole pair with
quantum numbers {&,} and

=k _ k-—mk—k
R (D=(=1""" k%, (1)

gt T
=[H ;U Vo H ; (J; N, (3.3)
where the
M i J!
—_ , 1 ]] ]J i t ot
o=, 07 2 |mi om, |97
gt mmy

is an operator that destroys two holes with quantum
numbers {p,}. Applying the operators (3.2) and (3.3) on
the &}y, (a,J;) and ¥}, (p,J;) CMWF we get

(@il Jy) |7 fnk“) | ®pg(eyd )

J k
. aJ,Jk
=8, M (1) M m,

s, (3.4)

1

and

The coefficients M*"”'"*(1) and L”7” (1) are explicitly
calculable in terms of recoupling coefficients and are
given in the Appendix.

The expressions given in Egs. (3.4) and (3.5) are then
the reduced matrix elements of the irreducible tensor
operators

<q>}(a,1',>||z7k(1)1|q>}(a,11)>=M“"""(1)a,l,1, (3.6)
(W3 DIR HDIT S ) =L (8, (3
and the operators
. 7k (1)
uk (1)= o (3.8)
. R (1)
Rk (1)= (3.9)
S SO0

are unit tensor operators in the sense of Ref. 4. The

J ok 7 commutation relations of two u,l,‘,k(l)’s and two
=8,,, L% M om M l . (35 h f‘nk( 1)’s, calculated in the Appendix, are
171 k
J
ki k, k k, k k
k k k,+k,+1]71 T2 k +k,—k 1 2
[umil(l),umiz(l)]=(—l)1 2t l-’ g s|i==n ) ] my m, m u,’,‘,k(l) (3.10)
1 2
and
ki, k, k k k k
~k, ~k, _ ky+ky+1 01 2 ky+k,—k 1 2 ~
[A mkl(l),hmkz(l)]—(——l) [J s g [[1=(=D ] m, m, m h o (1) (3.11)
1 2
[
~ 9
The sets of alll up, (17s and A7, (1)s, except for the p,';,k(z)=23p,’;k“’€l) ’
ud(1)’s and h (1)’s, are therefore infinitesimal genera- €
tors of the SU,; (1) group and the wave functions where
®J(a,J;) and ¥ }(p,J,) carry irreducible representations X _— -
of this group. p mk(1)=[P El(']f )®Pgl(']i ) m, (3.15)
Going now a step further let us define unit tensor
operators for the n =1, n,=3 or n =2, n;=3 or n =3 and where the
components: _ , 1 jioJ I
2 T K2 VD=0 02 2 ml om, M|
<(I>J(a2J1J2 )”u (2)|I¢J(a2]IJ2)>=6J’1'118J;J2 N (3‘12) j’.jl.l mjimj'i ! ! !
2 PN k 2 _ is an operator that destroys two particles with quantum
2 =06, Ve 3.13 .
(@3] 12IIE 2|5 J2)) 81,8530, G-I umbers {&)]. The matrix elements of the p ,, (1) with

and due to the three particle CMWF we have introduced

(@) P )| (n) 1 J,)) =8, 8, (3.14)
191 Y2

with unit tensor operators

the three-particle CMWF are
(Alm(edY) |17£(nk(1) | A€ 1))

. J ok
=5, 0“1 { (3.16)
11

M my M’
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and the reduced matrix elements are

€7, Jk

(AMe D HD||ALeT)) =0

so that the

k, k, k
[om (1,py2 (1)]=(—1)f1+52 “{
ky ky

. (2)’s, of two Rk (2)’s, and
of two pmk(2)s are then expressed in terms of the

The commutators of two u

up (2s, k', (2)’s, and Pm, (2)’s by relations similar to
the ones given in Egs. (3.10), (3.11), and (3.19). We con-
clude, therefore, that the sets of all u"k( s, A ﬁk(Z)’s,
RY2)s, and
po(2)’s, are unitary generators of the SU,; ,(2) group
and that the ®%,,(a,J,;J,) CMWF carry irreducible rep-
resentations of this group.

and p,,, (2)s, except for the uJ(2)s,

IV. TRANSFORMATION COEFFICIENTS
OF THE SECOND KIND

To calculate the transformation coefficients of the
¢§M(a2J J,) CMWF we write for the unit tensor opera-

tors uX ( ), B K ,(2), and p,ﬁk(Z)the following relations:
9

up ()= uy (Lay), (4.1)
ay
1,2

ko (2)=3 k5 (Lp), 4.2)

P1

CTyad I, | yad,@d, ) 3Ty T, | Jad,ad;)

=(@(apd\J,)|| UL (

(OZ,(ayd 5 | }p i, B IN 32 and T, | Jpid B,
and

CVilay \J, | e, &NV (ad T, | ed,€J,)

=(¢5(‘12J1J2)”P31(Js)||A},(€1~]k)>(1\},(€1~]k)HP; ()| @F(axlJ2)) -

To prove the expressions (4.7),

P J][1—(—1)"‘+"2"‘]

P (D
Oe]Jle( 1)
are unit tensor operators in the sense of Ref. 4. The ma-

. €J,Jk . .
trix elements O (1) are calculated in the Appendix
and two of the p,’,‘,k (1)’s obey the following commutation

relations:

Pm, (D)= (3.18)

kv ko k]
e m my ug (1) (3.19)
[
93
Pm, (2)=3p (LeE), 4.3)

€

or equivalently, using the definitions of complementary
indices:

A
Uup, (D=3 [u,, (LapeL(La)];, , (4.4)
)
E[h 1,p)® 1( ,pl)]mk , (4.5)
P, (2 2[pm (Le)® 1(1,&)],, (4.6)

The transformation coefficients of the second kind are
then deﬁ~ned in terms of the matrix elements of the
u,’,‘,k (2), h f,,k(2), and p,’,‘,k (2) unit tensor operators by the

following expressions:

@} (@I )@Y (@ U, U@l J) s (@7)
||‘1’J(P1Jk NP Pl-’k)”H s)ll(D.ZI’(EZJlJZ)) , (4.8
4.9)

(4.8), and (4.9) let us calculate the matrix elements (3.12) using for the ®3,,(a,J,J,)



356 M. TOMASELLI 37

CMWEF the expansion (3.1); we get

(<D§(a2J1J2)”u"(2)|[<b3(a2.ll.]2))

J, J J
_ Jo+dotI+k sl s
=3 (=1 (k) [J Ik

aJ, J

CTy(ad T, | Jad,ad ) 3T (a T, | JaJ,&@Jd,) . (4.10)

On the other hand, using Eq. (4.1) and the definition (3.2) of the u ,’,‘,k (1,a;)’s, we calculate

J, T,
(D20 )| uk2)|| D2yt J,)) = 3 (—1)"”:*”"(1?)“2[] J kJ
al"r": i’

X @F(ayl 17, U:;l (Js )“q).l/,(al‘lk )< q).ll,(al']k Il U&I(Js @3 Jy))

(4.11)

From (4.10) and (4.11) we obtain the expression (4.7). Analogously we prove the expressions (4.8) and (4.9), taking the
matrix elements of the f‘,,k(Z)’s and p,’,‘,k (2)’s in the @7y (ayJ,J,) CMWF.

The problem of finding transformation coefficients of the second kind is now regarded as the problem of reducing
the SU,; , (2) representation carried by the

[®) (a/i)® <I>9S(&,JS )1 (4.12)

wave functions. To effect this reduction we calculate the matrix of the Casimir operator of SU,,  ,(2) in the basis
states (4.12) and then diagonalize it. According to Ref. 4 we can prove that

3 (uk(2)-uk(2))

k
commutes with all the u*(2), k =1, ...,2J, and therefore is the Casimir operator for SU,, +1(2). We calculate then
the following matrix elements:

[®] (adi )@ @) (@ J,)]||(u*(2)-u 2| @B )@ ®%.(BI)]T)

=T (ay] J, | }alJra_le))T(STJ(aZJIJZ [laJ,ady)) . (4.13)
On the other hand, using Eq. (4.4), we have
CI®) (a )@@ (@ J)]|[(u (1,a)-1(1,&)-u*(1,8)- 1 LB P} (BT )@ (BT

J, J JSHJ,’ J U,

=2(_1)"”'“<E)—3/2[J 5 ok(ls s k]<¢>}(a11k>uuk(1)”q>}(ale)><c1>;,<ﬁlJ,;)“uk(l)H@;,(ﬁlJ,;)).
k r ’ r r p f

(4.14)

Comparing the result obtained with the one of Eq. (4.13), we can write the following iterative formula for the transfor-
mation coefficients:

CTylad s | Jad, @, N Tyand T, | Yo, @)

! 2 ' ’ 3
=2 (1 I g g A P N A A P B U/ P A R VS M
_kJAJ.' rdd J, k J J k|| I k JJ ok

2,3
JYJI

XCTf (@i | o @ DT (| aol @ ICT S B | \BoiBI D TS B | 1BIiB) . (415)

The transformation coefficients depend upon the 3T,kr (@i | Jagl;@yJ?), i.e., the k components of the transformation
coefficients of the first kind we need to expand the CD}, m, (@ /i) CMWF in terms of a particle coupled to a particle-
hole pair, which are given by the following equations:



37 CONFIGURATION MIXING AND ELECTROMAGNETIC. .. 357

2
i

roJr a i J,k
J Tk

I+J +J, +K(£)1/2

> (-1

agliJ?

CTf (@i | Ja @) T (@ | Jaol a0/ ) =M (1). (416

The eigenvalues of the matrix defined in Eq. (4. 15) uniquely identify the SU,;  ,(2) transformation propertles The
procedure is thus an iterative one defining the T, (a,J,J, | }a;J,&J;) transformation coefficients in terms of the
known 3Tf (a,J; | JagJ;@,J?) transformation coefficients. To calculate the °Z,(a,J,J, | }piJ,5,J,) transformation

coefficients we have to diagonalize the Casimir operator:

3 (R )

in the basis states
[\PJ (P )® A (P M -

The expression we get is not given explicitly, but defines the *Z,(ay,J,J, | }p,J,p;J;) transformation coefficients in
terms of the *Zf (p.J, | }poJ BoJ2)-
The °V,(ay,J, | }€,J,&J,) transformation coefficients have to be calculated using the following relations:
J, J U
s (1)t R g [J

El"r"s

CVRad I, | Ve, e d N VHad T, | Jed,€J;)

r

az./l.lz.lk € Ik

=0 (2)=Z2f(k)-O" (). (4.17)

V. GENERALIZATION OF THE METHOD

In this section we generalize the method for the calculation of the transformation coefficients for the CMWF of the
nth kind. We write the following linear combination:
¥
| ®oyla,JyJy - Jy)) = 2 T and Iy o Ty | a1 d, @, _1Js)

a1

X[ [‘Dn_l ay i i, Jkn_l)>® |¢.(}S(an—l‘,s)>]‘1]b{

+ E 2"+‘ZJ(anJ1J2"'JnHPn—lJrﬁn—lJS)

XUG oy i i, Tk, )@ | A5y 1)) iy

9
+ E 2n+1VJ(anJ1J2”'Jn'}en—l‘]rgn—l',s)
IR A AN A
2 1
XL A; " New_ 1Tk Juy = Tk, )@ | M} (&, I ) i (5.1)
T —
where we have introduced the nth kind transformation N h I,i,k(n)
coefficients and where the 4}, 47, and 45 give the num- h ﬁk(n)= - Tk , (5.3)
ber of different {a, _,}, {p,_1}, and {€,_,} combina- M " (n)
tions we can form with the {a, } coordinates. The trans- ﬁ{‘n (n)
formation coefficients are then given by the matrix ele- p,’,‘,k(n) P X TR , (5.4)
ments of the unit tensor operators: 0% 2T
il—km (n) calculated in the basis of the ®j,(a,/\J,,...,J,)
Up, (M) = — 5y (52) CMWF.
L1727 0 It is easy to show that the unit tensor operators of the
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nth kind, (5.2), (5.3), and (5.4), have commutation rela-  the Casimir operators of the SU,;  ,(n),
tions of the forms (3.10), (3.11), and (3.19), so that they

k(). k

are unitary generators of the SU,,,(n) group. The %(u (n)-u™(n)), (5.8)
transformation coefficients of the nth kind are then cal- N _
culated reducing the SU,; , ,(n) representations carried 3 (A 5(n)-h Xn)), (5.9)
by the k

(@5~ Na, Ty Ji, - T, @@ (@, J)Y . (55 @and

- (pX(n)p*(n)) (5.10)
(W] on_1Jic Ji, - i, J®A] (BT (5.6) % pnrp

(A} Ney T Tk, - T JOM? (€, _J) 1y (5.7)  in the basis of (5.5), (5.6), and (5.7) CMWF. We obtain

’ b ot : the following  iterative  expression for  the

wave functions. AT (a, g I, d, | Ve, (T, &, _J,) transformation

To effect these reductions we calculate the matrices of  coefficients:

(2n+1TJ(anJ1.J2 te 'Jn ] }an—l‘lr&n—le))T2n+ITJ(anJ1‘]2 e Jn | ]an—vl‘lran—l‘,s)
J, J I\ (T g \od TR (g g
J J, k(T J k|| I k|| T Kk

r 1

J 4T 472403401 A 2 pa A
=3 (=1)" " (k) 3/ZJ,J;
kJ.J!
1l
2,3
JU

X[(Zn_lT}(’(an—lelez "'Jk | }an_ZJ,-(Y,,_ZJ,Z))TZ"‘IT}r(an_IJlikz "'Jk |}an_2J,~C_l,,_2Jr2)]

n—1 n—1

X[(Z"‘lT;("(Bn—lJILIJIQZ oo Jlé,,,l

| 3Ba—oiBy D TR B, T iy Tk 1By 2 TiBy D] -

(5.11)

The matrix elements

(@] Nay i Ji, Jknil)Huk(n —1)||<I>§,‘1(a,,_1Jk’Jk2 R A}

n—1

2
R N T dr I m 1
— _ r r n— k -
ai( 1) S P A Tr(an e, Ji |}y _odid@, 2!
J.J?

ir

><2"_1T1k,(0‘n.1-Ikl~1k2 e de e i@, )

can now be expressed in terms of the already known matrix elements

(<I>;r,72(a,,_2Jlik2 c T lukn —2)||<I>;r,72(a,,_21k11k2 e )

n—2

until we reach the matrix elements of the first kind, defined in Eq. (4.16).
The eigenvalues of the matrix defined in Eq. (5.11) identify uniquely the SU,; ,,(n) transformation properties, and
therefore the transformation coefficients. Analogous expressions can be derived for the

2"*’IZJ(anJlJ2 e Jn | }pn—l']rﬁn~l‘]s)
and
2n+]VJ(an‘]1JZ te 'Jn | }en—l',rgn—l']:)

transformation coefficients, taking the matrix elements of the Casimir operators (5.9) and (5.10) with respect to the
(5.6) and (5.7) CMWF, and diagonalizing the resulting matrices.
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The formulasjvyf obtainJagE iterative forlmju}%s fully defining the three sets of transformation coefficients in terms of
a .
the known M “"17°(1), L””17%(1), and 0" (2) matrix elements.

VI. ONE-HOLE CONJUGATION

The nth components of Eq. (2.2) for the one-hole conjugation states are expanded according to the formula

n

m

J,))= >

Prn—tTie Ty eI

s

‘qJ.'IlM(anIJ2 T

X[ q’y,_l(PnAlelez ok,

+ > T pd Ty

MHZypad Iy

'Jn | }pn—lJrﬁn—l‘Ix)
l)>® }q)gs(p-n—l'ls)XlJM

‘]n—l 1 }anfl‘]ranfl']x)

X[ ®F " Nay_ i Ji, -+ T, @ | M@, I ) Ty
73
+ E 2n+lCJ(an1J2 o 'Jn | }vnAl'IrvnAIJs)
n—te ey ks
XUIME = i i D@ A3, DY, (6D)
where we have introduced the following additional transformation coefficients:
CrHIC (pud Ty - T | }Vn—l-’rvn—le))+=(q’7(PnJ1Jz D _ ||M"wl anl‘,kljkz "'Jkn71)> ’ (6.2)

and where 717, 15, and 73 give the number of different
{Pn_1}> {a,_1}, and {v,_,] combinations that we can
form with the {p,} coordinates and where we have in-
troduced the

=3 sk Lv,_))
Yn—1
unit tensor operators defined by
sk _[D_(J )® D, (J) o (6.3)
where the
1 i Ji t
)= tal
vl( ) (1+8 ‘;)1/2 2: m; m; M,'I a‘,/aj}'
Il My !

is an operator that destroys two holes with quantum
numbers {V,}.

The transformation coefficients of the nth kind for the
one-hole conjugation case are then calculated taking the
matrix elements of the Casimir operators:

S (ukn)-ukn)), (6.4)
k
S (A Xn)-h Kn)) , (6.5)
k
S (sk(n)skn)) , (6.6)

[
on the basis of the

[‘I’J Npn_ 17 i,

(@]~ Nay e Ji, " Ik,

' Jkn —1 )®(D9S(:5n —IJS )]‘/]M ) (67)

1)®M;>S(a,,_115)];4 , (6.8)

P Y A AR AR L V VA AR ) (6.9)
wave functions, and diagonalizing the resulting matrices.
The expressions we derive are similar to the ones we
have for the matrix elements of the Casimir operators
(5.8), (5.9), and (5.10). The transformation coefficients

2n+lZJ(pr1'I1']2 o Jn | }pn—ljrﬁn—]']s) ’
2n_'—lTJ(anlJZ T Jn l ]an—lJran—le) ’
and

2n-*'ICJ(an]‘IZ e Jn 1 }anljrvnvl‘,s)

are therefore defined

U iterativeljy in terms of the
Lpl 1 (1)’Mal 1

k
(1), and P (2) matrix elements.

VII. MATRIX ELEMENTS OF THE NUCLEAR
HAMILTONIAN: DIAGONAL TERMS

Using the transformation coefficients introduced in the
previous sections for the basis of the (5.1) and (6.1)
CMWF, we write for the matrix elements (2.20) and
(2.21) the following iterative expressions:
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T BTy e )= > AT @, 0\ Ty Ty | Y, a1 )

ay, —IBn —IJer
e Tk, Ik

1 n—1
’

N
2 k

n—1

X2n+lTJ(BnJ'1J,2 te J;: I an—lJran—lJS)

XQ?_I(an—leleZ e Jkn—]‘,r;ﬂn—l'lliljlil T J’:n-—lJ’)
4 > M1z (@ J Iy Iy | 3Pn -1 Pr—1ds)
Pn-lan——l'l-"]’
Jkl"kz""k,,
lel',lzz ...J’:n

-1
-1

x2n+lZJ(BnJ'1J’2 Tt Jrll | }Un—lern—le)

X3 il i, Tk, Jron i Tk, Ik, T
+ > My (@, Ji Iy T, | Yen 1€ —1d)
€ 1M — 175,
Jk]sz Ik 1
TR
X2n+1VJ(BnJ'|J’2 Ce Jr; ] }nn-IJrgn—-l‘IS)
xQ&"'(pn_lellkz T Jk,,_l‘lr;an—l‘l’éx‘llzz I
(7.1)
TS0, 0y T )= > MHZypad Iy T [ 3Pn 1T Bn 1Y)
Pn—lan-l":J'
Jkl‘,kz '”Jk”_l
G
X2n+lZJ(0'nJ'IJ’2 e Jr: } }Un—ler_n—IJs)
XQQ"'(Pn—leIsz o Jkan’;a”‘lJ’:lJ’:z o .JI:"—' r)
" 2 2"+1TJ(an1J2"'JnHan—l']ran—l'ls)
an—lﬁn—l‘ls','
Jkl"kz ...Jk .
J‘:ljl: Ik _1
XL 3T Ty By )
XQT—I(an—le,sz e Jk,,_lj’;B"—ljéljéz T J’:"—l 2
+ s 2"+1CJ(p,,J1J2"'JnHV'I—IJ’V"_IJS)
Vn‘l#n—l',s‘]r
Jlik2 '”Jkn_l
Ggly
21 +ICJ(0'nJ’IJIZ v _]"l | },u,nﬂl-frvn_pfs)
XQ:—I(Vn—l-’likz T Jk,._l'l’;#"—lj’:l'l’éz v, I
(7.2)

Comparing Eqgs. (7.1) and (7.2) with Eqgs. (2.22) and (2.23) we see that the coefficients of the linear expansions f;, g;,
h;, and k; are uniquely determined as function of transformation coefficients.
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VIII. MATRIX ELEMENTS OF THE NUCLEAR HAMILTONIAN: OFF-DIAGONAL TERMS

The off-diagonal matrix elements of the first kind, calculated between the one-particle (-hole) wave function and the
two-particle (-hole) —one-hole (-particle) CMWF

201(Bol ;a0 )= AT Bo) | H @) (] 1)) 8.1)
and
23 pol 30101 9) =AM (o) | H||¥ j(pyJ 1)) (8.2)

are considered the starting point of the iterative expressions we derive for the off-diagonal matrix elements of the nth
kind.

In general we write the following equations for the off-diagonal matrix elements of the nuclear Hamiltonian between
CMWF with a different number of particle-hole pairs:

E1 e, Iy Ty BTy T)

=( @) Na,_J1Jy - Ty DIH|PRB, IS - T;)

= 3 " 'Ta, I\ Iy TV, 08, DT BITS T | VB T8, o))

n
a, —ZBn—l

XET T2 N ay ol Tk, Tk, JeiBa i Tk, Tk, I

+ 2 zn_lzl(an—l‘ll'll T Jn—l | }pn—2Jrﬁn—2js)2n+lZJ(BnJ’1‘,'2 e Jr: l }an-—l‘lrﬁn—l‘]s)

Pn—2%n -1

XES T2 oy ol i, oIk iy, Ik T

-1

+ 2 Zn_lVJ(an—llez"'Jn|}en—z-]rgn—213)2"+1VJ(BnJ'IJ,2"'J';HT'"—IJ’E"_ZJS)

€ —2Mn —1

XE’;,z’n_l(en—Z‘Ilikz oy Jr;nn—l"l:l‘]léz o 'Jlén

n—2

AN (8.3)

In Eq. (8.3) and following the indices {JSJ,;J,HJ,(2 cee J,("_I;J,;]J,é2 e

Jy ] } have been, for simplicity, omitted from
the sums, and the terms

{1}

g—Z,n—l(en —ZJk]sz . Jk J,;nn—l-’l;ljlzz ce Jlin-xjr)

n—1

are the matrix elements of the nuclear Hamiltonian between three-particle states coupled, respectively, with (n —2)
particle-hole and the (n-1) particle-hole pairs.
The matrix elements of the nuclear Hamiltonian calculated on the basis of (6.1) CMWF with a different number of
particle-hole pairs are given by an expression similar to the one given in Eq. (8.3), where we introduce the extra terms
ELP N, e S,k

Jr;.u’n—l"l:l‘llzz e Jl;n_ Jr) ’

n—2

i.e., the matrix elements of the nuclear Hamiltonian calculated in the three-hole states coupled, respectively, with the
(n —2) particle-hole and the (n — 1) particle-hole pairs.

IX. MATRIX ELEMENTS OF THE ELECTROMAGNETIC OPERATORS

Using the X Z" Iy d amplitudes and the matrix elements of the electromagnetic operators calculated for the

n =1, n;=2 case, we write the matrix elements of the electromagnetic operators on the basis of the (5.1) CMWF.
Two types of matrix elements occur.

(a) The diagonal
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(DM, J Ty )| M| @B Ty - T0))
ZaEB X:;"Jljz - .J"JXZII‘,’]JIZ T J,:J'
x| X
an—IBn—l

XMT_l(an_le,sz T

+ 2

Pn 191 -1

XMg_l(pn—lel‘lkZ T

+ 2

€n—1Mn -1

ng'*l(e,,_lelez R %

n—1

(b) The off-diagonal
(D Na, _J\ Iy -

— n—1 n
2 XanVIJIJZ o 'JnJXBnJ'lJ; R A

n
a

T M || 7(B, T35 -+ )

n—1Fn

x| X

a, —ZBn —1

2""1TJ(an_1J1J2 ct
XM?_Z’n_](an_zjlikz °

+ X 1z, Ty

Pn—2%n -1

xXM5=>""(p, ik,

Wi, Iy

+ 2

€n —2Mn -1

XMS'_Z’"_l(fn-z-Ilikz HR 3

Formulas (9.1) and (9.2) give the matrix elements of the
electromagnetic operators iteratively in terms of the al-
ready calculated M7} ‘1,M§ -1 M35 -1 and M1 —Zn—1
M5=2"=1 M%=2" =1 matrix elements. For the hole
conjugation case we write expressions analogous to the
ones given in Egs. (9.1) and (9.2) with the Y;njljz Sy

amplitudes and the corresponding matrix elements of the
electromagnetic operators.

Finally let us consider the following off-diagonal ma-
trix element: M }%(a,J,J,;a,J.) calculated between the
two-particle—one-hole CMWF, and a single particle
wave function. We have

M@ J,;a00,) = F (300G 1M s 9.3)

where the recoupling coefficients have been included in

Jknil',r;Bn—IJlilJliz e Jl:’n_

M ! ’ . .. ’
Ik, I Jie Ik, Ik

Jr;nn—IJlL]Jliz e Jl:'

’ Jkn_z‘]r;Bn—lJILIlez o
'Jk,l,

’ ’ ’
ZJr’an—leljkz o 'Jk"

2

2nJrlTJ(anJlJZ e Jn ! }an~lJran—le )2n+lTl’(Bn']’1J'2 e Jr: l }Bn—lj;an—ljs)

2n‘HZ.I(anJIJZ e Jn | }pn—l']rp_n—l‘]s )Zn +1Z‘I’(»BnJIIJIZ s d, } }Un—l']r'ﬁn—l‘,s)

n

2n+]VJ(an']1JZ e Jn [ }en——l‘lrgn~1‘]s )2n+1VJ’(BnJ'1J12 e JI; | }nn—lJr’En—le)

|- 9.1)

n—1

Jn—l | ]an—ZJran—ZJs )2n+1TJ'(BnJ'IJ'2 e Jr'l ] }Bn~l‘];an—2‘ls)

-J,;"_lJ,')

: Jn -1 l }pn —2Jrﬁn —ZJs )2n+lZJ’(BnJ’1JI2 e Jr: ; }Un —lJr,p—n—ZJs)

J)

-1

Jn—l | ]en—ZJrgn —2Js )2n+1VJ’(BnJ,1J’2 e Jr: ! }T’n~1‘l;€n—2']s)

Iita e Jie, Ik, IO | 9.2)

[

the {f} and where {j,} and {j;'} are the coordinates
of the particle-hole pair interacting with the valence par-
ticle.

Equation (9.3), restricted to selected particle-hole
pairs, gives the correction introduced by Arima et al.’
to the single particle expectation values of the elec-
tromagnetic operators. The correction given by the
terms of Eq. (9.2) not included in the perturbation
theory gives important contributions to the electromag-
netic properties of odd-even nuclei, as pointed out in
Refs. 2 and 3.

X. CONCLUSION

The electromagnetic properties of the odd-even nuclei
are considered mainly from the standpoint of
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configuration mixing of the shell model. Iterative ex-
pressions introduced for the matrix elements of the nu-
clear Hamiltonian and of the electromagnetic operators
simplify the calculations. This new approach introduced
for the matrix elements enables us to calculate exactly
configuration mixing terms in all order.

The deviation of the valence particle dues of the elec-
tromagnetic operators from the experimental values is
then explainable in terms of a correct treatment of the
configuration mixing as we have proven in 'O, 2%TI,
205T1, and 2%Bi nuclei®® and references quoted therein.
The method will be generalized to include random-phase
approximation diagrams and extended to even-even nu-
clei in a further paper. Numerical application to light
and medium nuclei is presently under investigation.
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APPENDIX

_ The normalization constants for the Dl (ady),
W ly(pJ,y), and Al (e,J,) CMWEF are given by the fol-

lowing expressions:

CtJJk . . ’
MO ) = [f(lelk)—SjljZz'g(lelJ,k) . (AD
J"
L =3 {f’(le,J,’k)
5!
=8; ;. X&' J1 I k) |, (A2)
J!
k
o (=3 (2,110 =3 82,7, 507K |
J; J!
(A3)
where f G k), g1 J k), Gk,

g\ JLIK), £ Jk), and g¥(j,J,J/J k) include
recoupling coefficients.

To compute the commutator relations for the unit ten-
sor operators u,’,‘,k(n), E,',‘,k (n), and p,’,‘,k(n), consider the
following matrix element:

(@3 d Ty - T (W@uy? (1@ apd T, < J,)) (A4)
1 2

and operate on the right two times with the u,ﬁk’s. The same holds for the & fnk’s and Pm,’s:
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