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A systematic procedure that allows for corrections of arbitrary order to the time-dependent
Hartree-Fock approach is presented and illustrated with reference to an exactly solvable U(3)
model. Substantial improvements over the uncorrelated picture are obtained.

I. INTRODUCTION

The temporal evolution of an antisymmetrized un-
correlated many-body wave function in a nonlinear mean
field has been the subject of careful study over many
years, having engaged the attention of many nuclear
theorists.! The time dependent Hartree-Fock method
(TDHF) has thus been extensively (and rather successful-
ly) applied to a variety of many fermion problems, yield-
ing interesting insights into the intricacies of nuclear dy-
namics. !~

Of course, several difficulties plague the TDHF ap-
proach that are inherent either to the smgle particle ap-
prox1mat10n or to a determinantal picture.*~® Compar-
isons of TDHF with exact Schrodinger solutions have
been made that shed much light upon the inner work-
ings of this popular technique.’'®

Attractive theoretical considerations regarding higher
order approaches have also been formulated.>!® They
deal with the inclusion of collisional kernels in the equa-
tions of motion and special relaxation time approxima-
tions.

An excellent review of mean field and higher order ap-
proaches is given in Ref. 11, where interesting new ap-
proximations are also developed from a general statisti-
cal viewpoint based on information theory and on so-
phisticated projection techniques (see also Ref. 12).

However, it is our intention here to attempt to go
beyond the uncorrelated particle model by examining
some critical aspects of the TDHF description that allow
for a natural, tractable, and simple way of extending its
scope, the central idea being to establish a connection
between the temporal evolution of observables and the
closure of some particular semialgebras. Numerical re-
sults are presented in an exact, but not trivial, solvable
model.

The paper is organized as follows: Section II recasts
the TDHF approach in a manner compatible with the
considerations just outlined, which allow for a systemat-
ic way of introducing corrections to the single-particle
picture. Application to a U(3) model is thoroughly dis-
cussed in Sec. III and some conclusions are drawn in
Sec. IV.

II. FORMALISM
A. A TDHF review

Let 5a (a= .,q) be the operators representing
the observables we are interested in. The time evolution

37

of these relevant operators is given by Ehrenfest’s
theorem,

—i#%d{(0,),/dt=([A,0,]), , 2.1)

where H stands for the Hamiltonian of [ the correspond-
ing system. Assume now that the set [0 } closes a par-
tial Lie algebra under commutation with b ,

o~ q o~
[A,0,1=i% 3 Opbg, , 2.2)
B=0

the bg, being ¢ numbers (structure constants). Recourse
to (2.2) allows one to recast (2.1) as

A 9 A
d(0,),/dt=—"3 bg,(0p), , 2.3)

B=0

which provides us with a set of coupled (linear)
differential equations that completely determine the time
evolution of the relevant expectation values (O )., pro-
vided one knows the corresponding initial values
(O ).—o- The entire dynamics of the problem is embed-
ded in the value of the structure factors bg,, as long as
we confine our interest to the temporal evolution of the
set {(0,)}.

The closure of such a partial Lie algebra of Eq. (2.2) is
not, in most instances an attainable goal (in the case of a
many-body system). Commutating an n-body operator
with an m-body one yields, in general, (n +m —1)-body
operators. In principle, we will succeed only in those
situations for which the Hamiltonian is of single particle
(s.p.) character. An approximate, self-consistent descrip-
tion is, however, always at hand if one restricts the
relevant wave function (w.f.) to be, at all times, of a
given prescribed form. A nonlinear closure results as a
consequence (see below).

The TDHF method can be viewed in this particular
light. The w.f. here is restricted to be a Slater deter-
minant, and expectation values of those relevant opera-
tors that do not belong to our semialgebra are evaluated
by recourse to_ Wick’s theorem. The time evolution of
s.p. operators O ! is thus given by

—i#d(0V) sdt=([A,0

(”]>HF ([ﬁ (l)])

(2.4)
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where the subscript HF tells us that self-consistent ex-
pectation values, obtained by recourse to Wick’s
theorem, are being referred to. Of course, k is the mean
field, effective s.p. Hamiltonian,

h=3 (3(A)xe/3(0 V)0V, 2.5)

and it is quite obvious here that we are closing the O !’
algebra in a nonlinear way.

This renowned approach, that locally extremalizes the
quantum action and is exact in the classical limit, !> can
be regarded, within the present context, as being charac-
terized by two operational features. If we cast A in the
usual fashion,

A=A,+V, (2.6)
where ﬁo is of s.p. nature and P is (in most cases) the
two-body interaction, the prescription (2.4) entails: (i)
closing a semialgebra with A 0, and (ii) including in it, in
addition, all those s.p. operators that appear, via Wick’s
theorem, in ([ 7,0 ] yp.

The mean field treatment is the one that yields, at the
(initial) time ¢ =0, the correct first-order temporal
derivative of the (0 ().

On the other hand, for two-body operators O 2 (nth
body operators O (), Ehrenfest’s theorem does not, in
general, hold within the mean-field framework,

—i#d (0 ") yp/dt==([A,0 " Dyr 2.7

and, as a consequence, first-order temporal derivatives of
the (O () are not the correct ones at t =0.

B. Going beyond the TDHF approach

We shall attempt to “improve” the mean field treat-
ment by forcing (O (') expectation values, 1<n <M,
to fulfill Ehrenfest’s prescription. The two operational
features (i) and (ii) of Sec. II A will be retained for
n =M, and a nonlinear closure will be effected in which
the relevant nth-body operators that arise out of the cor-
responding commutations with ¥ will be included. Our
proposal can be succinctly casted as follows:

—i#d(0 V) /dt=([A,0]), j=1,...,M—1
(2.8a)

—ifid (O M) /dt = ([Ay,0 1) +{[P,0 ] yre .
(2.8b)

Starting with the observables of interest, the semialge-
bra with A is exactly closed up to (M —1) body opera-
tors, while in the last step prescriptions (i) and (ii) are
used to attain an approximate closure. One can appreci-
ate the fact that up to (M —1) correlations are taken

into account within this scheme. Moreover, correct
Mth-order temporal derivatives of the (O {I’) are ob-
tained at ¢ =0 [indeed, correct (M —n + 1)th-order tem-
poral derivatives at ¢ =0 are attained for nth-body
operators]. The TDHF approximation is recovered for
M=1.

Of special interest is, of course, the case M =2, and
we shall restrict our attention to this particular case, so
that our equations will read

—i#d{(0 ") /dt =([H,0]) , (2.8¢)

—lﬁd(a(BZ)>/dt=<[ﬁO)6(BZ)])+([?)6(Bz)]>HF y
(2.8d)

where the 6};2’ belong to the set {[P,0 ']}. Notice
that Wick’s theorem is employed only in the last com-
mutator on the right-hand side (rhs) of (2.8d). As a
consequence, the unperturbed temporal evolution of
two-body operators is not affected. More explicitly, if

ﬁoz 3 eic,-lrc,- (2.9)
and

A (2 t

o /(3 )=0i112i4iacilci2cfaci4 ’ (2.10)
we have

[A,,0P]=wz0 & (2.11)
and

—i#d {0 §») /dt ={[P,0 }*Dyr , (2.12a)
where wp=¢€; -1—«5,~2—(e,-3 +e,-4) and

0 jP=exp[ — (i /Awpt]0 P, (2.12b)

so that the Wick’s theorem evaluation is applied only to
the “perturbed” temporal evolution. The nonlinear
character of the closure is a consequence of the term
(7,0 Py

The most suitable s.p. unperturbed Hamiltonian [to be
employed in (2.6)] is the static Hartree-Fock Hamiltoni-
an obtained via (2.5) using stationary mean values
(O L’). In this way, P becomes the (static) residual in-
teraction, without s.p. contributions.

The TDHF evolution takes our system along trajec-
tories that lie on surfaces of constant Hartree-Fock ener-
gy (A Yur and occupation numbers. The approach we
are putting forward here, instead, yields s.p. trajectories
that, as in the exact picture, are not constrained in such
a fashion.

It goes without saying that the present approach is
not restricted by the necessity of starting, at ¢ =0, with a
Slater determinant (a pure state), and can thus accom-
modate initial conditions that require a “mixed” s.p.
state for its description.
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C. Alternative closures

The approach introduced in the preceding subsection
has as its recurring theme the (nonlinear) closure of a
semialgebra in a rather peculiar fashion. By analysis of
alternative ways of closing the corresponding algebra,
one can hope to shed some additional light on the prob-
lem discussed here.

A possibility is to replace the full Hamiltonian by a
suitable, effective s.p. Hamiltonian at a given step [a
given j in Eq. (2.8a)]. The simplest thing to do, in this
vein, is to discard ¥ along the way, namely, to work
with the system

—i#d(0 V) /dt=([A,091), j=1,...,M—1
(2.13a)
—ifid{(O ) 7dt =([H,,0 1) , (2.13b)

whxch entails omitting the mean-field evaluation of
[7,0 #]. This procedure is seen to be equivalent to a
series expansxon in V; that is, we discard, in evaluating
the time evolution of (0(”) the Mth power of the
operator ¥. The method is a linear one, but one needs
to go up to M =n +1 (nth order) in order to get the
right nth-order temporal derivative of (O ') at r =0.

Still a different way of closing our partial Lie algebra
is to replace ﬁo by the dynamic mean field s.p. Hamil-
tonian A on the rhs of (2.13b). This is tantamount to
working with a series expansion in the residual interac-
tion f>,es A—h and yields, once more, a nonlinear
problem.

In this case the M =2 situation is still equivalent to
the TDHF one if no correlations are present in the ini-
tial state (i.e., when this is a pure state). This property,
which ultimately refers to the stationary character of the
TDHF trajectories, can be straightforwardly derived as
follows. We write the expectation value of a two-body
operator in the fashion

(O =0 P up+(0 ), , (2.14)
where the subscript ¢ denotes correlations, and evaluate
the temporal evolution of the first term on the rhs,

—ifid(0 P Vyp/dt =([h,0 PDup+85, (.19

with

AB_2<[ﬁ D3¢0 P ypracod) . (2.16)

By inspection of (2.13b) (with H, replaced by 4) it fol-
lows that

—i#d(0 @) /dt=([h,0 1), — g, 2.17)

so that, if no correlations are present at ¢t =0, they will
vanish for all ¢.

The idea of replacing A o With k thus seems to be par-
ticularly suited for dealing with those situations in which
correlations are initially present, and are thus not amen-
able to a TDHF treatment.

As a final remark, we conclude this section by men-
tioning that if we replace ﬁ by k in Eq. (2.8d) one ob-
tains the relationship

—i##d(O P /dt=([h,0 P]). —Ag
+<[Vres’ )])HF ’

which is to be compared to the corresponding result that
one would find in the preceding subsection, namely

—i#d(0 ), /dt =([A,,0 P1), — g
+([ﬁo—ﬁ,0}3)])m¢
+<[t>a6;(32)])HF’

In both instances one clearly appreciates the fact that
correlations possess a nonvanishing initial derivative.

(2.18)

(2.19)

III. APPLICATION
A. The model

We shall illustrate the techniques introduced in Sec. II
with reference to a well-known, exactly solvable model. *
N fermions are distributed among three 2Q-fold degen-
erate s.p. levels and, for the sake of simplicity, we shall
take N=2Q. The ket |p,i) denotes the s.p. states with
I1<p<2Qand 1<i<3.

The s.p. operators

G,= 2 chepyy j=1,2,3 3.1)
p=1
obey U(3) commutation rules,
(6, Giu1=Guby —Gi;8y (3.2)

and with them we shall construct our Hamiltonian, '

with a monopole interaction term

A=H,+V= 26@,,+22V G2

ij »
i#j

(3.3)

with €, <€, <€; and V;;=V;. This model represents a
very simplified scheme of a nucleus, with two different
collective modes of excitation that interact with each
other and with the ground state.

With the help of Wick’s theorem, one easily finds,
with the definitions

g,j=<@,]>/N ,
(3.4)
vij = VU(N - 1)
the results
(A)=N Eeg,,+2 S v,8l (3.5)
i#j
and
ﬁ 26 @u + 2 U,]g,] ij . (3.6)

i%j

A given Slater determinant (SD) built up with the help
of the generators @,-j belongs to the completely sym-
metric representation of U(3), namely (N,0,0). Its basic
states are
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| ny,ny)=(n,!/Nnyln;0'26 326 31 |0) , 3.7

where

O<n,+n3<N,
(3.8)
n1+n2+n3=N

are the requirements which the occupation numbers n;
obviously fulfill and |0) is the unperturbed ground state
(u.g.s.) for which n;=N and n,=n;=0. The exact
ground state (g.s.) of A belongs to this representation,
within which any SD can be written as

| W) =(x,Vexp(h,Gy +h,G3)|0)

172,71 "2 "3
= 3 (NVUnnyn )% 'x 32 3% | ny,ny)

ny.ny
=n§3€n2n3(0)ln2,n3>z | w(0)) , (3.9)
with
hy=x,/x,, hy=x3/x,,
fx1|2+|x2|2+jx3;2=1, (3.10)
The s.p. density matrix can be easily shown to be
Pp0 = Caicy ) =8N ~1(Gyy) =x1x; , (3.11)

while the exact time dependent evolution of (3.9) is
found by diagonalizing A in the basis |n,,n;)
[(N +2)(N +1)/2 is the dimension of the corresponding
energy matrix which can be blocked in four submatrices
due to the particular structure of the interaction in
(3.3)]. The relevant matrix elements read

G, [ninjng)=n; |nning ), ni+n;+n =N (3.12a)
Gy |mnin Y =[n;(n;+ 11" n;+1,n,—1,n, ) , (3.12b)

where for the sake of clarity the redundant quantum
number n, has been explicitly cited.
The w.f. (3.9) at time ¢ will be given by

| W(2)) =exp[ —(i /#)At] | W(0))

= 2 Cn2n3(t)ln27n3> ’ (313)
nz,n3
with
— L L*
C"z”s(t)_E 2 A"2n3Am2m3
L my,m,
X exp[ — (i /RE1]C,y 1, (0) . (3.14)

The matrix Aann, in (3.14) connects the eigenstates

L) of A [1<L <("#?)] with the basic states |n,,n;)
of the (N,0,0) representation

Ag, =(nyny|L), (3.15)
while E; are the corresponding eigenvalues
A|L)=E_|L) (3.16)

[the coefficients C,,Z,,J(O) have been defined in (3.9)].

The exact expectation values, evaluated at the time ¢,
of the generators @,-j, are easily computed with the help
of (3.12). As an example we have

(@ij )o=3 [nj(ni+1)]l/2

n,»,nj
XCostn —tm, (Co (1), i)
(3.17)
(aii Y= 3 m annJ(I) 12,
"2,"3

in self-explanatory notation.

B. TDHF treatment

Within the present context, the TDHF equations of
motion read

—itidg,; /dt =(1/N){[k,G;])
=(€;—€;)8;;+v;8;(8;; — &)

+ 3 (0xi8ki8kj —Vjk8k8ik)
kzi
ks£j

(3.18)

thus yielding a system of nine (real) coupled equations.

Of course, in the “pure” case discussed here these
could have also been written in terms of the two com-
plex quantities x, and x; (the phase of x; being ir-
relevant). Notice that, when written in terms of the Vijs
the number of particles N does not explicitly appear in
(3.18).

The TDHF equations of motion are nonintegrable for
n >2, as opposed to what happens in the SU(2) situa-
tion, in which the conservation of (A) and (J?2)
renders the system one dimensional. Accordingly, the
temporal evolution displays a more complex character,
so that this model constitutes a more challenging test for
the approximations developed than the SU(2) one.

A few words about the time scale would be appropri-
ate here. Our “characteristic time unit” here is of the
order of t =#/(€;,—¢€,). If the denominator is of the or-
der of 500 keV, one would have r =1.31x107%! s, which
is large enough compared with the nucleon transversal
time (~10~%s).

Going back to the system (3.18), this is solved with
the help of initial conditions provided via (3.11). The
TDHF equations are easily seen to conserve the expecta-
tion values C,,C,,C; of the three Casimir operators
entering into this, namely

Ci=au (3.19)
Co=28i8ji » (3.20)

ij
(3.21)

C;= zgijgjkgkl ’
ijk

which have the value 1 in the pure case considered in
this work.
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It is to be stressed that the solutions of the system
(3.17), i.e., the g;(#), yield the exact (intensive) ex-
pectation values (@,-j)/N in the thermodynamic
limit (N — o0 ).

For finite N, however, we do not obtain accurate re-
sults. These in turn, to make the situation even worse,
strongly depend on the initial conditions.

Of special interest are the stationary solutions of the
system (3.17) (that is, the static HF solutions). Taking,
for simplicity,

vy =v(1=8;), Vij (3.22)
these can be classified into several types, according to
the number of s.p. levels that play an active role in the
ensuing situation. In this work we shall concern our-

selves with solutions of the type
x;=1, x;=0, j#i (3.23)

where just one of the available s.p. levels is occupied. In
this situation there exists just one self-consistent static

Hamiltonian A, , which coincides with A o- These solu-
tions are the unique ones for
v | <Min(e; —€;)=1, i#j (3.24)

(in the following we take €,=0, €,=1, €;=2).
C. Higher order approaches

1. Corrected mean field approach (CMFA)

We first translate Eq. (2.8) into the present context,
employing the useful definition

.
(G
1.50,
0.75
0.00
-0.75

-1.50

03)=[6u, Gy1,=0¢, (3.25)

for the only two-body operators of interest here. We
have

_iﬁd(@ij)/dt=(€,-—6j)<é,'j>
+1S V(O @) =V, (62
k

(3.26)
and
—i#d(0 2)) /dt =(2¢;, —€,—€;)(O ¥
+3 3 (ﬁlkij YHF » (3.27)
I
where
ﬁlkiszlk([a 2,61, +10 }}ﬁ,@kih)
_Vil([6 gizkﬁ’akj]+_ jl[()\ 5,'2k”r@ki]+) , (3.28)

the sums over k,/ being restricted by the condition
V=0, Vi.

2. Perturbative treatments

We next turn our attention to the “perturbative” ap-
proaches of Sec. IIC. The first one, if we go up to first
order (M =2), leads to a set like that posed by (3.26)
and (3.27), but with ﬁ,kij=0. When going up to second
order, the following additional equations must be incor-
porated, in addition to (3.26) and (3.27), (with the exact
value of <ﬁ1kij > ):

FIG. 1. Temporal evolution of (a) Re{G;,) and (b) (G,,) for N =10. Initial values are x}=0.4, x3;=0.3 (all x; real). The

coupling constant is v = —0.5. Exact results,
ment, — — —; second order perturbative treatment, —--—-- -

; TDHF results, - -

- -; CMFA results, —. —. —.; first order perturbative treat-

The time in all figures is given in units of #/¢, e=¢€,—e€, (see Sec.

III B) and expectation values are in units of N /4. In (a), the CMFA results cannot be distinguished from exact results on the scale

of the figure.
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FIG. 2. Temporal evolution of (G, ) for the stationary initial values x,; =1, x,=x;=0, and v =—0.5 (N =10). The same con-
ventions as Fig. 1 are used. Exact, CMFA, and second order perturbative treatments are shown. Both TDHF and first order per-
turbations predict a constant evolution. Nondiagonal operators vanish in all treatments.

—ifid([0},G;1, ) 7dt ={[A,,[0 2,G\;1. 1)
=(2¢;—€;,—,X[0 7,61,
(3.29)
and
—i#d{[0 ,8\ 1, ) /dt
=[2e—€)+€;— KO XG,1.) . (3.30)

The resulting system is a linear one and can be trivial-
ly solved. Three-body expectation values oscillate, as ¢
grows, with the unperturbed frequencies. Of course, for
the remaining observables, terms arising from the two-
body component of H have an effect in their temporal
evolution although the corresponding frequencies are in-
dependent of the coupling constant.

Finally, if we replace IS o With k in the system of equa-
tions just discussed, we get a nonlinear and much larger
system, as the closure of the semialgebra with k (3.6) in
the last step involves the addition of new operators.

IV. RESULTS

A typical situation that serves to illustrate the various
methods discussed up to this point is depicted in Fig. 1.
The coupling constant is v = —0.5, while the initial con-
stants are of the real kind, with x?=0.4 and
x3=x%=0.3. For the case of nondiagonal operators,
the TDHF results soon fall out of phase with the exact
ones, their behavior being of a sinusoidal character. In
the case of (G, ), which exhibits a highly nonlinear be-
havior, the TDHF approach fails to provide correct am-
plitudes even in the course of the first temporal oscilla-
tion. On the contrary, the results obtained with the
method introduced in Sec. II B (CMFA) are quite accu-
rate, even for M =2 (first order). Neither of the two
perturbative techniques described in Sec. IIC match
these CMFA results, although the corresponding values
constitute an improvement upon the TDHF ones. No-
tice that second order perturbative figures are inferior to
the first-order ones provided by the set of equations
(3.26) and (3.27). Of course, for sufficiently long periods,
all approximations will deviate from the exact evolution.

See, however, the remark concerning time units in Sec.
III B.

The static s.p. mean field Hamiltonian ﬁo [Eq. (3.3)]
has been used in all cases as the unperturbed Hamiltoni-
an. The use of the dynamic s.p. Hamiltonian (3.6) in
place of ﬁo does not improve appreciably the accuracy
of the results in all treatments, and in some cir-
cumstances the results are even worse, in spite of the ap-
proaches becoming much more involved.

The situation in which the initial conditions corre-
spond to a static HF solution (Fig. 2) deserves special at-
tention. In this case the TDHF approach predicts no
evolution at all, contrary to what happens in the exact
instance (these HF solutions do not provide us, of
course, with exact eigenstates of A). Our approach
yields, instead, a nonstationary temporal evolution (even
for M =2). On the other hand, the perturbative ap-
proaches will not take us out of the stationary situation
if we stop at first order, forcing one to go at least up to
second order. The CMFA results of Fig. 2 are rather sa-
tisfactory ones.

Still a different type of circumstance is illustrated in
Fig. 3. Although the TDHF approach gives the right
initial tendency of the system when the number of parti-

(&)
420 7N PN
4100 /! \ ' \

!
400} ; \

FIG. 3. Mean value of {(G,;) vs time for x2=0.9, x3=0.1,
N =10, and v = —0.95. Details are similar to those of Fig. 1.
The initial trend of TDHF differs from that of the exact behav-
ior.
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FIG. 4. The greatest eigenvalue of the s.p. density matrix (f,;) vs time for the same conditions of Fig. 1. Exact results (

)

and CMFA results (—. —. —.). f, remains equal to 1 in TDHF (. . . .), reflecting the idempotent character of this approach.

cles N is large, it may not be so if N is sufficiently small
(but not necessarily too small). In the example con-
sidered, the initial values of (@ij) are all real and, con-
sequently, all the first time derivatives of real parts of
(3,-,-) vanish initially for Hamiltonian (3.3). Since the

second time derivative is not guaranteed by the TDHF
approach, we cannot assure in this case the correct ini-
tial behavior.

For instance, the second initial time derivative of
( 6.':‘ ) in the mean field approach is given in this case by

d* (G Yyup/dt? | ,_o=—a /(N#)'S, ({81 Yol [R,Gri1)o)

ki

=—4/(N#?) 3 (G )} [(ex —€)+v/N{(—Cy +Gii))]

ki

(0 denotes initial value), whereas the exact value is

dX(Gy) exaer/dt? | (—o=—2V /3 (([H,G } 1))

ki

=—2V/#3 (2Ae,—, XG0+ 3 V/2([G L,

ki

Thus, for N =10 and x}=0.9 and x2=0.1, (G,, ) in-
creases initially if O>v > —1.250 according to (4.1a),
and 0>v > —0.568 according to (4.1b), and, consequent-
ly, there is a range in which the TDHF approach fails to
give the correct initial tendency.

The power of the CMFA, which allows for the right
Mth time derivative, is in this instance amply demon-
strated (already in first order). The perturbative treat-
ments give also the correct answer here, but one needs to
g0 up to second order.

Moreover, the CMFA is able to detect effects appear-
ing at (considerable) later times, which indicates the fact
that this technique is not a mere “parabolic” estimate of
the time evolution (the first two time derivatives are
correct).

Figure 4 depicts the behavior of the largest eigenvalue
of the s.p. density matrix (the largest occupation num-
ber), which is constant in the TDHF treatment. The
CMFA s.p. density matrix will cease to be an idempo-
tent one for ¢ >0. Indeed, its eigenvalues (i.e., the occu-
pation numbers) will not be constant as ¢ grows, con-
trary to what happens in the TDHF instance. This
reflects the influence of the correlations we are including
in this treatment. Once more, this fact provides us with

(4.1a)

210 (4.1b)

I£=m

fresh additional evidence in favor of the CMFA.

Of course, the accuracy of both the CMFA and the
TDHF approach decreases as the coupling constant in-
creases, but does so in a slower fashion for the former
than for the latter.

V. CONCLUSIONS

We have introduced and illustrated a new method for
the description of the temporal evolution that allows for
a systematic way of improving the renowned TDHF ap-
proach.

This method is not more difficult to handle than the
TDHF one, and can be applied, consequently, to a wide
class of physical problems. It is quite accurate [at least
within the U(3) framework here discussed] in those in-
stances in which TDHF works fairly well, and is still re-
liable in circumstances not tractable within the TDHF
scope.

The central idea governing our extended treatment is
that of closing (albeit in nonlinear fashion) a partial Lie
algebra under commutation with the Hamiltonian. Al-
ternative ways of effecting this closure have also been
discussed and illustrated. A novel feature of these
methods is that the approach yields the desired order of
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accuracy just for those operators we are interested in,
whereas ordinary methods deal with the corresponding
wave function or density operator, making them much
more difficult to apply (and to extract the desired expec-
tation values). The present technique is based directly
and explicitly on expectation values.

We do not assume any relaxation time approximation.
Our methods are based on a suitable truncation of the
corresponding semialgebra formed by the Hamiltonian
on one hand, and the observables we are interested in on
the other.

An essential feature of the CMFA is the self-
consistent evaluation of those terms that are discarded in
a perturbative treatment. This evaluation is seen to pro-
vide a degree of accuracy similar to that obtained in go-
ing up one step in the perturbative series. Accordingly,
the correct Mth-order initial time derivative of s.p. mean
values is attained. Of course, we do not pretend to offer
an approach that may replace the TDHF one, but a
technique that may complement it in some special cir-
cumstances that ask for increased accuracy.
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