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Relativistic deuteron-nucleus scattering in the Kemmer-Duffin-Petiau formalism
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We present a description of the spin-1 Kemmer-Duffin-Petiau equations and make an application
to deuteron-nucleus scattering. Comparison with d + *®Ni elastic scattering data at 400 MeV shows
that the Kemmer-Duffin-Petiau model reproduces experimental spin observables quite well.

The success of the Dirac equation in describing
intermediate-energy proton-nucleus scattering' ~* en-
courages the use of relativistic wave equations in treating
other nuclear probes. Recently, the Kemmer-Duffin-
Petiau (KDP) formalism,’~7 which yields first-order
equations for both spin-O and spin-1 particles, has been
applied to pion-nucleus and kaon-nucleus scattering.®
The KDP approach has so far yielded results which are
very similar to those obtained from standard treatments
of meson-nucleus scattering. It should be remembered,
however, that the most dramatic differences between the
Dirac and Schrodinger approaches to proton-nucleus
scattering occur in the spin observables, which do not ex-
ist for the scattering of spin-O particles from spinless nu-
clei. For this reason, and for those mentioned in Ref. 8,
we now apply the KDP formalism to the scattering of
spin-1 probes. In this paper we will give a brief descrip-
tion of the spin-1 KDP formalism, followed by an appli-
cation to deuteron-nucleus scattering. We find that the
KDP-based deuteron-nucleus optical potentials are in
close agreement with those obtained by Yahiro et al.’ us-
ing the usual Watanabe!® approach to d-4 scattering.
The model is also used to calculate d + *®Ni scattering
observables at 400 MeV.

The free-particle KDP equation’ is

(if*9,—m)y=0, (1
where the * obey

B'BB"+B' BB =g"B" +8"B" . @
A 16X 16 representation for S which satisfies Eq. (2) is

=1 ®y5+y{’l,), (3)

where I is the 4 X4 identity matrix, the y* are the Dirac
matrices, and ® indicates an outer product. The numeri-
cal subscript indicates the space in which a given matrix
operates. The representation given by Eq. (3) is reducible
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and can be decomposed into three irreducible representa-
tions: a one-dimensional representation in which all
B*=0, a five-dimensional one which results in a set of
spin-0 equations, and a ten-dimensional representation
which gives a set of spin-1 equations. For the free-
particle spin-1 case, ¥ is a ten-component vector given by
(A* F*), where the A" satisfy the free-particle Proca
equation and

Fr=3tq"—3" A" .

As with the Dirac equation an interaction U can be in-
troduced into the KDP formalism yielding

(if“d,—m —U)p=0 . @)

Like the spin-0 case, the most general form of U contains
two scalars and two vectors.!! In addition, there exists a
pseudoscalar, which is omitted because parity invariance
is assumed, and tensor terms, which are not considered
because they may produce noncausal behavior.!! The
two scalars are given by the 10X 10 identity matrix I and
the ten-dimensional projection matrix,
P =diag(1,1,1,1,0,...,0). The two vectors are * and
B*=Pp*—pB*P. The form for U, assuming rotational in-
variance, is

U =S(r)+S,(rP+B°V(r)+BV,(r)P . (5)

The spacelike parts of the vectors do not contribute to
elastic scattering and have been left out of Eq. (5).!? Us-
ing a specific representation'? of the B*, Egs. (4) and (5)
can be combined and written in time-independent form as

iV:E=m ¢, (6a)
0, E—iVXB=m, A, (6b)
—iVX A=m,B, (6d)
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where w,(r)=E —V(r), (7d)
my(r)=m +S(r)+S,(r), (7a) and Y=(4, A,E,—B) in obvious analogy with electro-
dynamics.
m,(r)=m+S(r), (7b) In order to obtain elastic scattering amplitudes it is
sufficient to consider the solutions for the three-
o(r)=E —V(r)=V,(r), (7c)  component equation for A. This equation is
J
1 m 1 1 1 mpm, m, 1
0, A+V | —V- [—A | |+V!{—V- | —VX | —VX A ————A-——VIX [—(VXA)|=0. (8
m 1 (L)z m 1 (1)2 m (05) wz m 2

It is clearly preferable to use the linear equation. Howev-
er, at this point we use Eq. (8) to investigate deuteron-
nucleus elastic scattering in order to use existing comput-
er codes. The form of this equation depends on the in-
teraction chosen in Eq. (4). In the following we argue
that the physics of the problem dictates a particular form
for this interaction U.

It is possible to use the procedure of Ref. 8 to formu-
late a relativistic impulse approximation for the spin-1
KDP equation. However, the loose structure of the
deuteron makes it likely that its constituents interact
with the nucleus nearly independently of each other.
This makes a straightforward application of the impulse
approximation questionable for this case. Physically, it is
more appropriate to relate deuteron-nucleus scattering to
the scattering of two independent nucleons from a nu-
cleus.

To implement the above-mentioned physical picture,
we go back to the 16-dimensional reducible KDP equa-
tion and note that the structure of the 8* is suggestive of

f
a system of two noninteracting spin-J particles. We can

carry this analogy further by introducing an interaction
V of the form

V=U1®12+I|®U2 (9)

which describes two noninteracting particles in the exter-
nal fields U, and U,. In our model of deuteron-nucleus
scattering the U, are taken to be nucleon-nucleus optical
potentials at half the incident deuteron energy. This
treatment is motivated by the usual nonrelativistic mod-
el.1%13 For the usual scalar-vector Dirac optical potential
we write

U/(E)=I,SME/2)+y*VI(E/2), (10)

where the superscript N denotes a nucleon-nucleus poten-
tial and SM(V%) is the scalar (vector) part of that poten-
tial. Assuming U,=U,, the 16X 16 matrix equation for

Yis

(U1 8 v4+7iel)p, —2VN(E/2)]—,81,)[m +2SME /2)]}$=0 . (11)

Here, twice the nucleon vector potential is subtracted from the derivative term and 2S™(E /2) appears as a “correction”
to the mass The preceding argument suggests that an appropriate choice for the deuteron-nucleus optical potential for
use in Eq. (4) is

UPE)=2SME 2)+2VNME/2)8°, (12)

and that the terms in Eq. (5) containing the projection operator P do not occur. We stress, however, that our approach

is one which treats the deuteron-nucleus many-body interaction is an effective one-body framework. The above argu-

ment simply makes use of the KDP algebra to give some physical reason for the choice made in Eq. (12). We note that

this choice is of the same form as the usual Watanabe model when zero-range deuteron wave functions are assumed.
With this choice, Eq. (8) can be used to derive an effective second-order equation of the form'?

(P?+2E4[ Ucent + Uso(L*S)+ Uparyin (1-P) + UrSy Ro(r,1) + UES, Ry(1,p) ] A=k A 13)

(

with E3=k3+m2 where E, is the deuteron energy in
the c.m. frame, m is its mass, and S,-R, (a,b) are tensor
of the form discussed by Satchler.!* The third term on
the left-hand side of Eq. (8) has been neglected since it is
of order m33. The expressions for the central and spin-
orbit potentials are given by (suppressing energy depen-
dence),

2E UL, =4[m SN+ (SN 4+ E VN—(VN)?],

1B, U= — L L in(my 25 (14b)
r or
where small terms involving derivatives have been
neglected in Eq. (14a). Those terms and the forms of the
other potentials in Eq. (13) will be given in Ref. 12.
Relativistic deuteron-nucleus scattering has also been
considered by Shepard, Rost, and Murdock'> employing

(14a) the Breit equation, and Santos and collaborators, who use
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FIG. 1. Calculated elastic scattering observables for d+**Ni at 400 MeV using the effective KDP central and spin-orbit potentials

of Eq. (14). The data are from Ref. 18.

the Proca and Weinberg equations.!®!” In each of these
studies parameters were varied in order to fit the
deuteron-nucleus data. Our KDP-based calculation, in
contrast, is parameter-free in the sense that once the
nucleon-nucleus potentials have been fixed by fitting
proton-nucleus data, no other parameters are varied.
This provides a clear test of the validity of a relativistic
description of deuteron-nucleus scattering data and indi-
cates that the model has predictive power.

The scalar and vector nucleon-nucleus optical poten-
tials, chosen to fit p+ *’Ca data at 200 MeV, are scaled to
represent p+>¢Ni as was done in Ref. 9. The nuclear
parts of the neutron and proton potentials are assumed to
be identical and a Coulomb potential is added to the nu-
clear proton potential. The scalar and vector deuteron-
nucleus potentials are large and opposite in sign, and as
in the case of proton-nucleus scattering, these large po-
tentials ‘“‘cancel” to produce an effective central and
spin-orbit potentials of reasonable size.

The effective KDP central and spin-orbit potentials are
used in the Schrodinger equation with relativistic kine-
matics as described in Ref. 9, and the d+*Ni elastic

scattering observables are calculated. The results are
shown in Fig. 1 along with the data of Ref. 18. The spin
observables are reasonably well represented, and are quite
similar to the results of Ref. 9. The deviation of the cal-
culated cross sections from the data at larger angles is an
expected feature of the model as it contains, for example,
no contribution from breakup.

In this paper we have described the spin-1 KDP for-
malism and used it to calculate deuteron-nucleus optical
potentials. We have also found good agreement with
deuteron-nucleus data for *®Ni at 400 MeV with the spin
observables being well represented. It appears promising
that the KDP formalism can provide a relativistic frame-
work in which to analyze deuteron-nucleus scattering,
and investigation of other cases is underway.'?
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