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H and He solutions for momentum-dependent potentials
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The configuration-space Faddeev equations for the trinucleon ground states are solved for the
Paris, Nijmegen, and (coordinate-space version) Bonn potentials, both with and without a Coulomb
interaction. These momentum-dependent forces are structurally identical, but have different func-

tional forms parametrizing their radial dependence. Our triton binding energies agree with some

previous results for the Paris potential and with all previous Bonn results, and our new Nijmegen
solutions exhibit binding commensurate with all other "realistic" potentials except the Bonn. Other
model properties are also calculated, including such observables as the rms radii, asymptotic nor-
malization constants, and charge densities.

The first triton bound-state solutions' of the Faddeev
equations for local potentials were obtained for model
central potentials which contained no tensor force com-
ponent. These were soon superseded by solutions for
"realistic" two-body potentials with strong tensor forces,
and were followed by the calculations of Kim and co-
workers. Approximately three years ago the first com-
plete solutions with errors less than 20 keV ( —,'%) in the
binding energy were obtained for such forces. ' These
calculations required the use of 34 channels (all nucleon-
nucleon partial waves with j&4). Subsequently, com-
plete solutions were also obtained for diverse combina-
tions of two-body and three-body force models. This
underscores the recent attention that the nuclear physics
community has focused on understanding the few-body
bound-state problem in quantitative terms. For example,
the first complete solution for the alpha particle' was re-
cently generated, made possible by the resolution" of the
"ghost state" problem in the Green's function Monte
Carlo (GFMC) method. '

In addition to investigating the effects of three-nucleon
forces, ' the effect of the charge dependence of the
nucleon-nucleon force on the triton' has been recently
examined. If one ignores the tiny isoquartet state in-
duced by any isospin dependence (known to be an excel-
lent approximation) the eff'ect of such a dependence is
given' by the '

3 3
rule. The effective force in T = 1

channels is —,
' VNN+ —,

' V„, where NN is nn (pp) for H

( He). (The prescription used in early separable potential
three-body calculations is similar to this. '

) Forces fit to
the (stronger) np data alone are too strong [i.e., the po-
tential generated in the ( T = 1) channel is too attractive];
conversely, forces fit to the pp data alone are too weak.
Each —,

' in the relationship above accounts for roughly
100 keV in the triton binding energy. ' ' Thus, using an
np ( T = 1) force could lead to roughly 200 keV too much
binding compared to using the appropriate combination
of ( T = 1 ) forces, while using a pp ( T = 1 ) force would
lead to roughly 100 keV too little binding. This predic-

tion has been confirmed by Ref. 17.
Most of the potential models which have been used to

generate solutions for the triton can be summarized as
having binding energies of Ez ——7.5+0.2 MeV. The
lowest binding corresponds to the Reid soft-core model, '

where Ez ——7.36 MeV, while the highest binding in this

group corresponds to the Argonne V,4 model, ' where

Ett ——7.68 MeV. The former is a pp (T =1) potential,
while the latter is an np ( T =1) potential; thus, when al-
lowance is made for the

3 3
rule discussed above, they

predict very similar triton binding energies. Folklore for
years has attributed special properties to nonlocal poten-
tials, which decouple the D-state probability in the deute-
ron from D-state observables such as the quadrupole mo-
ment and the asymptotic D/S ratio. ' It has long been
known that special relativity produces essential momen-
tum dependence in the potential, and to order (v/c)
there must be p terms (p is the nucleon-nucleon relative
momentum) and other momentum-dependent terms.

Contemporary potentials of this type include the
Paris, ' Nijmegen, and (coordinate-space version)
Bonn potentials. All of these models contain a sin-
gle momentum-dependent component of the form
Ip, g(r))/M, in addition to more conventional terms,
where M is the nucleon mass and P is a spin- and
isospin-dependent (central) radial function. In the case of
the latter two potentials such terms arise from relativity,
while in the case of the Paris potential the origin is more
obscure. We will subsequently see that the force com-
ponent of this form is much stronger for the Paris than
for the other two potentials.

The value of the triton binding energy for the Paris po-
tential is somewhat controversial (see Table I). A hybrid
momentum-space, configuration-space calculation
produced a binding energy of 7.64 MeV for 34 channels,
7.56 MeV for 18 channels (j &2), and 7.48 MeV for 5
channels (positive parity j & 1); the momentum space cal-
culation of Hajduk and Sauer produced E~ =7.38 MeV
for 18 channels, while the 5-channel approximation yield-
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TABLE I. Summary of triton binding energy results (EF in

MeV) for the Paris potential model for n, Faddeev channels.

Ref.

Sendai'

Hanno ver

Osaka'

Bochum

Grenoble'

Graz'

Los Alamos-Iowa

n,

34
18

5

18
5

18

34
18

5

7.64
7.56
7.48

7.38
7.30

7.31

7.33

6.83

7.05

7.47
7.39
7.31

'References 6 and 24.
Reference 25.

'Reference 26.
Reference 27.

'Reference 28.
'Reference 29; PEST1-6 with tensor.

ed 7.30 MeV. Our own results for this potential are 7.47
MeV for 34 channels, 7.39 MeV for 18 channels, and 7.31
MeV for 5 channels, confirming those of Ref. 25. Our re-
sults also agree well with Refs. 26 and 27, but less well
with Refs. 28 and 29. [We note that this potential con-
tains a pp ( T =1) force. ]

More recently, Sasakawa found a much enhanced tri-
ton binding energy for the Bonn potential. This potential
in its detailed publication comes in three different ver-
sions: (1) the full potential (which is energy dependent),
(2) a momentum-space, energy-independent potential,
and (3) a coordinate space (CS), energy-independent po-
tential. The latter two forms are approximate parame-
trizations of the first. Sasakawa's complete (34-channel}
triton result was Ez ——8.33 MeV, for an unpublished ver-
sion of the CS potential. Subsequent calculations using
the momentum-space version of the potential have agreed
quite closely with that large value of the binding. " W' e
find 8.32 MeV for the Sasakawa version and 8.29 MeV
for the published version of the Bonn CS force. [This po-
tential has an (np) T = 1 force component. ]

A mechanism for achieving a large triton binding ener-

gy is quite simple and has been well known for at least
two decades: a reduction in the strength of the tensor
force. Models with realistic low-energy S-wave scattering
parameters and no tensor force produce an overbound tri-
ton. ' The parametrized Bonn potentials have been criti-
cized recently ' since they do not reproduce the proper
energy dependence of the S&- D, mixing parameter E),
and this could account for the large triton binding energy
of these models.

In addition to the Paris and Bonn (CS) potentials, the
Nijmegen potential model is momentum dependent and
has heretofore not been used to generate a solution for

the triton. We find that Ez ——7.63 MeV for this model
with a pp (T =1) force. [We use twice the np-reduced
mass for the nucleon mass in various pieces of the force. ]
This result agrees with the lower range of triton binding
energies.

The Paris potential proved to be (by far) the most
difficult potential model that we have investigated. It has
an almost pathological behavior at small nucleon-nucleon
separations. The p -term in the central force is excep-
tionally strong and accounts for about half of the poten-
tial energy. This strong momentum dependence means
that the wave function and its first two derivatives must
be modeled very accurately. Consequently, the mesh in
configuration space must be finely spaced for small values
of x (pair separation) even for large values of y (spectator
coordinate). Our final results were checked by using the
wave functions from the Faddeev solution in the
Raleigh-Ritz variational procedure. The other two
models were much less sensitive. The fraction of the total
potential energy generated by the p term was 49% for
the Paris potential, 18%%uo for the Bonn potential, and 11%
for the Nijmegen potential.

By working in configuration space, we can easily in-
clude a Coulomb force to model He as well as H. In
addition, we have calculated various model properties
and physical observables. Some observables are indicated
in Table II, together with the Faddeev eigenvalues (EF}
and the variational upper bound for the channel Hamil-
tonian ((H ) ): the point-nucleon rms charge radii for
He and H, the point-nucleon (Ec) and dipole-modified

(Ec ) Coulomb energies, the S-wave asymptotic normali-
zation constant (Cs), and asymptotic D/S ratio (ri). The
D-state percentage for each model is also given. The sub-

script "C" on the number of channels indicates that a
(point-nucleon) Coulomb interaction has been added to
the strong interaction. In addition, a prime for the Bonn
potential indicates the model uses Sasakawa's unpub-
lished version of the Bonn potential. The relatively large
(10 keV) difference between (H) and EF for the Paris
case is a reflection of our difficulty in obtaining an accu-
rate solution for this model.

These results are much more meaningful when placed
within the context of previous model calculations. The
calculated observables for a specific triton model depend
on the binding energy for that model. This has been am-
ply demonstrated by the "scaling" analysis of the
momentum-independent potential model calculations
performed by the Los Alamos-Iowa group. ' By plot-
ting (and fitting} the calculated values of observables
versus the model triton (or He, in the Coulomb case)
binding energies, one can predict values of these observ-
ables at the physical trinucleon binding energies.

The first quantity we consider is the asymptotic S-wave
normalization constant Cs, which agrees well with the
fits for all the models. The asymptotic D/S ratio for
the Nijmegen and Bonn models, contrariwise, are some-
what lower than the best fit to all models; the fit agrees
rather well for the Paris model. In addition, the rms
charge radii of H and He agree well with the fits (both
with and without a Coulomb interaction), and the fits
pass through the experimental data.
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TABLE II. Model results for H and He. The number of Faddeev channels is n„EF and (H ) are the Faddeev eigenvalues and

variational upper bound in MeV, (r2) '/' is the point-nucleon rms charge radius in fm, Eco and ECD are the point-nucleon and dipole-

modified Coulomb energies of He calculated in perturbation theory, PD is the D-state percentage, Cs is the S-wave asymptotic nor-

malization constant, and g is the ratio of D-wave to S-wave asymptotic constants.

Model

Paris

Nijm

Bonn

n,

5

9
18
34
34c

5

9
18
34
34c

5

9
18
34
34'

34c

E

7.308
7.416
7.388
7.467
6.817

7.489
7.597
7.541
7.625
6.967

8.228
8.317
8.236
8.288
8.319
7.592

7.302
7.408
7.378
7.457
6.809

7.485
7.594
7.537
7.620
6.964

8.226
8.317
8.234
8.286
8.317
7.592

(p2)1/2
H

1.68
1.67
1.68
1.67
1.70

1.67
1.67
1.68
1.67
1.69

1.59
1.59
1.60
1.60
1.59
1.62

( 2)1/2
He

1.87
1.86
1.86
1.85
1.89

1.85
1.83
1.84
1.83
1.87

1.74
1.74
1.74
1.74
1.74
1.77

E

648
651
651
654
643

657
660
659
662
651

696
699
698
699
697
689

ED

617
620
621
623
614

624
628
627
629
620

657
659
658
660
659
651

PD

8.43
8.46
8.41
8.46
8.43

7.87
7.91
7.85
7.89
7.87

7.02
7.05
7.01
7.03
6.80
7.02

cs

1.798
1.809
1.797
1.802
1.812

1.810
1.821
1.809
1.814
1.824

1.828
1.839
1.823
1.825
1.829
1.836

0.0381
0.0387
0.0382
0.0389
0.0367

0.0384
0.0390
0.0384
0.0391
0.0369

0.0422
0.0427
0.0424
0.0429
0.0422
0.0407

Next we consider the Coulomb energy. It has long
been known that this energy can be predicted accurate-
ly (at the 1% level) by the hyperspherical formula.
This approximate relationship between the trinucleon
charge densities (or form factors} and the Coulomb ener-

gy allows one to use the experimental values of the form
factors to predict the Coulomb energy. This procedure
yields a value of approximately 640 keV. By calculating
both E& and its hyperspherical approximation for the
three momentum-dependent potentials, we find the same
(1%) discrepancy as was found for potential models with
no p dependence. The first order (in perturbation
theory) Coulomb energies for the Paris and Nijmegen
models agree well with all other models, while the Bonn
result is approximately 10-12 keV higher than the best
fit. The second-order Coulomb energy is also higher for
the last model. This immediately suggests that the He
charge density of the Bonn model (and consequently the
charge form factor) is different from the others.

Another quantity we calculate is the D-state percen-
tage, which is not an observable. The ratios of the triton
D-state percentage to that of the deuteron are 1.47 for the
Paris model and 1.46 for the Nijmegen and Bonn models,
which agree well with previous results. Counting T =0
pairs leads to the naive estimate of 1.5. (The ratio for the
D-state percentage reported in Ref. 17 for the
momentum-space Bonn model is only 1.40, which might
be related to the differences between our asymptotic nor-
malization results. }

The charge densities for the Reid soft-core model and
the three momentum-dependent models are shown in Fig.
1, together with the quasiexperimental data (i.e., the
Fourier transform of the point Coulomb form factor).
The "hole" in the latter generates a lower (hyperspheri-
cal) Coulomb energy than any of the potential models ex-
trapolated to the physical triton binding energy. * The

1.25 l I I I
i

1

He Charge Density

Reid Soft Core

Paris

E 0.75

~0.50

0.25

0 I I I I i I

0 05
v

I i I I I I I i } I 1 I I I i I I I T' H- ~

1 1.5 2 2.5 3
r (fm)

FIG. 1. He point-nucleon charge densities for the RSC,
Paris, Nijmegen, and Bonn potential models, together with the
quasiexperimental data. The calculations were performed
without a p-p Coulomb interaction, which changes p(r)
insignificantly.

obviously larger overall size of the Bonn result inside 1

fm is due entirely to the larger binding energy and the
correspondingly compressed size. The negative slope in-
side 1 fm is greater than that of the other models, in
disagreement with the data. In momentum space this
more negative slope results in a smaller secondary max-
imum in the form factor; the experimental data require
just the opposite. One finds that the diffraction minimum
of the point-nucleon He form factor occurs at
q

2= (14.3,14.4, 16.5) fm for the (Paris, Nijmegen,
Bonn} potentials with no Coulomb interaction, while the
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corresponding values of the secondary maximum are
( —6.5, —6. 1, —5. 3))& 10 at q =(21.5, 21.5, 24. 4)
fm . Including the Coulomb interaction lowers the q
value where the minimum occurs by roughly 0.1 fm
and the absolute value of the form factor value at the
secondary maximutn by 0.2&(10 . The smaller (nega-
tive) values of the Bonn form factor in the region of the
secondary maximum account for that model's larger
Coulomb energy; the Bonn form factor does not agree as
well with experiment as the others. (Although the pres-
ence of meson exchange currents in uncertain
amounts ' ' can alter this argument somewhat, they also
will contribute to the Coulomb energy. ) The charge
densities are little affected by the Coulomb interaction.
The shapes remain the same, while p(0) is lowered by
3%%uo. The form factors of H have a difFraction minimum
at q =(15.9, 15.7, 17.9) fm for the same models and
have a secondary maximum of ( —6.7, —6.4,
—5.6) x10

In summary, we have solved the configuration-space
Faddeev equations for the eigenvalues and wave func-
tions of H and He corresponding to the Paris,

Nijmegen, and Bonn potential models. Using these wave
functions we have calculated the rms charge radii, the
asymptotic normalization constants, the Coulomb ener-
gies, and the charge densities. Our triton results agree
quite well with those of the Sendai group, although our
Paris model binding energy is about 200 keV smaller.
Adding the proton-proton Coulomb interaction to the
Hamiltonian to calculate He yields results that are in
line with expectations based upon our earlier work. Most
of the calculated H and He observables agree well with
our previous fits to calculations for potential models hav-
ing no p term, although the Bonn results for g and Ez
are slightly anomalous.
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