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Calculations of the trinucleon S- and D-wave asymptotic normalization constants, with and
without Coulomb effects, are extended to include all two-body partial waves up to j &4 (34 three-

body channels). Wave functions were generated with configuration-space, Faddeev-type equations
for Hamiltonians based upon the two-body forces of Reid and the Argonne group, plus the Tucson-
Melbourne and Brazilian model three-body forces. Comparison with previously published results is
made. Results for Cs, C&, g, and D2 are interpolated as a function of binding to extract best esti-
mates for 'H and 'He. In agreement with our earlier (j &1) calculations, we find that Coulomb
effects increase the S-wave asymptotic normalization of 'He by less than 1% over that of 'H and
that Coulomb effects decrease the D-wave asymptotic normalization of 'He relative to that of 'H by
about 6%. The distorted-wave Born approximation D-wave parameter D2 for 'He is almost identi-

cal to D2 for H. Finally, we predict the ratio of the the D-wave to S-wave asymptotic normaliza-
tion constants to be g( H) =0.046 and g ( He) =0.043.

I. INTRODUCTION

Asymptotic normalization constants for the trinucleon
bound states have become the subject of increased atten-
tion, in part because of the desire to utilize these physical
observables to discriminate among trinucleon wave func-
tions generated from various "realistic" models of the
nucleon-nucleon (NN) interaction. This goal has not
been achieved, because the experimental determination of
these observables has not been of sufficient precision and
the theoretical predictions were limited principally to
models in which convergence of the calculation with
respect to the number of two-body partial waves had not
been proven. Recently, the convergence question for H
was addressed by Ishikawa and Sasakawa. ' New mea-
surements relating to the ratio of the D-wave to S-wave
asymptotic normalization constants have recently been
reported. Our purpose here is to update the experi-
mental and theoretical situation since Ref. 6. We extend
our earlier calculations, which first estimated Coulomb
effects in all of the asymptotic normalization observables,
to models which include two-body partial waves up to
j &4 or 34 three-body channels from the 'So, S&- D&, or
five-channel, calculations possible at that time. We use
the Reid soft core (RSC) (Ref. 8) and Argonne V, 4
(AV14) (Ref. 9) two-body forces in this investigation plus
the two-pion-exchange three-nucleon force models of the
Tucson-Melbourne (TM) (Ref. 10) and Brazilian (BR)
(Ref. 11) groups. Special emphasis is given to the treat-
ment of Coulomb effects.

Physically, an asymptotic normalization constant
echoes the internal dynamics of the wave function
through the overall normalization. The S-wave asymp-

totic normalization constant is defined such that its value
is unity when the effective nuclear interaction in the
asymptotic channel of interest is a zero-range interaction.
This applies whether a Coulomb interaction is present or
not. The presence of a Coulomb interaction changes the
zero-range-comparison wave function from a simple ex-
ponential into an exponentially decreasing Whittaker
function. Because the zero-range limit is never achieved
in either case, due to the boundary condition on the wave
function at the origin, asymptotic normalization con-
stants differ from unity. The deuteron S-wave asymptotic
normalization constant is greater than one, while the D-
wave asymptotic normalization constant is less than one;
the former is determined primarily by the H binding en-
ergy and spin-triplet effective range, while the latter ap-
pears to follow from dispersion theory with only the H
binding energy and one-pion exchange as input. ' ' We
can offer no such fundamental explanation of the magni-
tudes of the trinucleon asymptotic normalization con-
stants. Instead, we accept their basic definitions and
their relation to the vertex constants which arise in
dispersion theory' and ask whether the best estimateh
from theoretical model calculations agree with the avail-
able experimental data.

H and He asymptotic normalization constants have
been obtained from experiments by several different
means: (1} forward dispersion relation analyses (FDR)
(Ref. 16) and partial-wave dispersion relation analyses
(PWDR) (Ref. 17); (2) FDR with Coulomb corrections
(FDRC) (Refs. 16 and 18); (3) extrapolation of the
3He(p, p)pd cross section to the pole (ECS) (Refs. 19 and
20); (4) distorted-wave Born approximation fits to tensor
analyzing powers for (d, H} and (d, He) reactions
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TABLE I. Experimental values for the H asymptotic nor-

malization parameters.

Quantity
extracted

cs

g)2 (fm )

Value

2.6 +0.3
3.3 +0. 1

0.048+0.007
0.051+0.005
0.050+0.006

—0.279+0.012
—0.288+0.011
—0.259+0.014
—0.16 +0.03
—0.22 +0.03
—0.20 +0.04
—0.25 +0.05

Method

FDR
PWDR
ETAP
ETAP
ETAP
DWBA
DWBA
DWBA
DWBA
DWBA
DWBA
DWBA

Reference

16
17
27
28

5

24
25
25
26
26

3
4

(DWBA): ' ' and (5) extrapolation of tensor analyz-

ing powers to the poles in the (d, H) and (d, He} reac-
tions (ETAP). ' ' The first two rely upon the relation
between asymptotic normalization constants and the ver-

tex constants of dispersion theory to extract absolute
magnitudes of the S-wave constants Cz and Cz. The
fourth procedure provides a direct measure of the
distorted-wave Born approximation D-state parameter

D2, which is approximately related to the negative of the
ratio of the D-wave constant C~ to the S-wave constant

Cz. Finally, the empirical analytic continuation of the

product of the differential cross section and the tensor
polarization [to the neutron or proton transfer poles in

the (d, H) and (d, He) reactions] can be directly related
to the ratio of the D-wave to S-wave asymptotic normali-
zation constants.

In Tables I and II we list what are considered to be the
most reliable and latest values for H and He, respective-
ly. Several points should be emphasized. First, the abso-
lute values of C& and C& are not well determined experi-

mentally. The existing values are not consistent, even

when the quoted uncertainties are taken into account. It
is perhaps time to rethink the determination of the S-
wave normalization constants —the method of extraction
and the means of measuring precision data. It is not even

possible to check the theoretical prediction of Ref. 6,
which is confirmed here, that C& -Cz. Second, the mea-

sured value of D2 (and D2 ), clearly establishes the ex-

istence of the D state in the triton wave function and that

C~ is positive relative to Cz. The apparent lack of agree-
ment among the experimental measurements deserves
comment. The more recent analyses have included a
complex tensor potential in the deuteron channel which
improves the overall DWBA fit to the data. The larger
experimental uncertainties take into account all sources
of error. Third, the asymptotic D-wave to S-wave ratio
rl=Cn/Cs (and r) =Cn/Cs) is, in principle, directly
measured by extrapolating the tensor polarization to the
nucleon transfer pole. However, the accuracy of the
technique has been called into question in the case of the
deuteron. It is claimed by Londergan, Price, and
Stephenson to be limited by knowledge of the model

amplitude required for the extrapolation. Furthermore,
the Coulomb effects exhibited by the most recent data,
from a simultaneous measurement using the
He(d, H) He [or He(d, He) H] reaction, are far larger

than the theoretical model can accommodate.
In Table III we give a synopsis of the theoretical situa-

tion with respect to Faddeev calculations based upon
realistic models of the NN interaction. ' (We re-
strict the table to entries for which at least five three-
body channels were included, so that the binding energies
are close to those of the full Hamiltonian. ) The last two
entries are variational results for the full potential models
(no partial wave expansion). Previous studies have ex-
plored the question of convergence of the binding energy
with respect to the number of two-body partial waves in-
cluded. 3 Thirty-four channels (all two-body partial
waves for j & 4) are needed when three-body forces are in-
cluded. A recent study has shown that the omitted
higher partial waves (j & 4) would contribute at most
about 10 keV to the binding energy in the absence of a
three-body force. It is clear from the results in the
table that there is a strong dependence upon the binding
energy. We have pointed out this previously for other
trinucleon observables. ' It was noted explicitly for g
in Ref. 1. We will use this relation to interpolate, from
the numerous model calculations that we have per-
formed, a best estimate of the theoretical values for each
of the asymptotic normalization parameters. All previ-
ous model calculations comparable to those in Table III
which addressed the question of Coulomb effects were re-
ported in Ref. 6 and are not repeated here as Coulomb
effects will be explored in detail below.

With the above background in mind, our objectives in
this paper are twofold: (1) To present complete results
for the RSC and AV14 models of the NN interaction plus
the TM and BR three-body force models, and (2) to make
a best estimate of the theoretical values of the trinucleon
asymptotic normalization constants and compare with
the experimental data. To achieve this, we have struc-
tured the paper as follows. Section II contains a review
of the formalism, Sec. III comprises our numerical re-
sults, Sec. IV covers our comparison with experiment,
and Sec. V concludes with a brief discussion and sum-
mary.

II. FORMALISM

Integral relations for calculation of the triton asymp-
totic normalization constants were first derived in Ref. 40
(see also Ref. 41). This was generalized in Ref. 6 to in-
clude the Coulomb interaction and therefore the asymp-
totic normalization of He. The relationship to the
distorted-wave Born approximation D-wave parameter
D2 (see Refs. 42—45}was explored numerically in Ref. 45.
We brieAy summarize the relevant relations here, em-
phasizing the modifications that arise due to the presence
of the Coulomb force acting between the two protons in
He.

We begin by defining the S- and D-wave asymptotic
normalization constants for H and He. Recall that the
trinucleon bound states have J"=—,

'+ and the deuteron
has J =1+. The H asymptotic normalization constants
are defined by
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TABLE II. Experimental values for the 'He asymptotic normalization parameters.

Quantity
extracted Value Method Reference

(Cc)2

D c (fm2)

ECS
ECS
ECS

(reanalysis of
published data)

ETAP
DWBA
DWBA
DWBA
DWBA
DWBA
DWBA
DWBA

3.24 +0.19 FDRC
(average of 3.3+0.4 and 3.19+0.24)

2.40 +0. 18
2.50 +0. 18
3.5 +0.2
2.8 +0.4
2.8 +0.4
0.036+0.006

—0.37
—0.22
—0.339
—0.17 +0.04
—0.21 +0.04
—0.25 *0.05
—0.24 +0.04

16,18

19
19
20
20
20
5

21
22
23
26
26
3
4

—Pyi

[[Y,(y, ) XX'"(1)]'"]&&e ' (x, )][
yi ~oo

—13y ie+CD&z~
3')

1+ + [[Y2(y1)XX"'(])]""]X@"](x,)]"/2] "3 3

Py p2 2 1

w ere Cs and Cn are the triton S- and D-wave asymptotic normalization constants, respectively. The Y, (y) is a sphert-
cal harmonic (m suppressed because of the coupling [)& ][ ), g'/2 is a spin- —,

' function, @ ' is the deuteron wave func-

tion, and q' is the isospin- —,
' function with projection ——,

'
( H) for three nucleons in which nucleons 2 and 3 (of the

deuteron) are coupled to isospin 0. The Jacobi coordinates x, =(r.—rk) and y;=r, ——,'(r +rz), which delineate the
distance between the interacting pair (j,k) and between the pair and the spectator nucleon with (ij,k) taken in cyclic
order, are illustrated in Fig. 1. The SzR is the normalization constant for the zero-range function describing the spec-
tator relative to the interacting pair and is defined by

—2Py iNza = d3'1e (2a)
0

or

Nz1t =+2p

where p =4M [B( H)-B ( H)]/3 is 0.2012 fm for the experimental binding energies.
The He asymptotic normalization constants are defined analogously by

lim 4, (y1, x1)—+ CsN~ ' [[Yo(y1)X+' (1)][' ]&(4['](x )]['1/2 C
~—,1/2(2&1 )

y He

~-., 3/2(2p» )+( CN " [[Y ( ))(yl/2(1)][3/2])(C [1]( )][1/2] 1

2

(2b)

(3)

TABLE III. Theoretical values for the H asymptotic normalization constants.

Model

RSC5
OBE
RSC5
RSC5
RSC18(TM )700

AV34(TM )700

P34(TM )qoo

TRS34(TM )700

AV(UR)
UR(UR)

83 (MeV)

6.96
7.38
7.1

7.02
8.21
8.42
8.32
8.47
8.37
8.48

Cs

1.776
1.706
1.76
1.758
1.83
1.87
1.84
1.85

CD

0.065

0.065
0.0658
0.0769
0.0829
0.0794
0.0812

0.0421
Q (jkAA

0.0431
0.0439

D2 (fm )

—0.243
—0.219
—0.223
—0.220
—0.219
—0.23

'

0 27 1

D

Reference

31
32
33
6
2
2
2
2

34
34
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i~a, =

FIG. 1. Example of Jacobi coordinates as used in the text.

where C& and CD are the He S- and D-wave asymptotic
normalization constants, respectively. Here, g' is the
isospin —,' function with projection + —,

'
( He). The

W „J(z) is a Whittaker function that behaves irregularly
at the origin and decays exponentially for z —+ 00, and K is
defined in terms of the fine structure constant (a= », ) by

Schrodinger equation. There are, however, alternative
ways to include the Coulomb interaction and three-body
forces along with the usual short-range two-body forces
in the former. ' Although these alternative formulations
are all equivalent in principle, they differ in practice when
the Faddeev equations are truncated in terms of the num-
ber of partial waves or three-body channels. Because the
Coulomb force is long ranged, care should be exercised in
treating it. We use here a prescription corresponding to
p =1 in our previous study. That is, the term corre-
sponding to the interaction of one proton with the center
of mass of the remaining neutron-proton pair in He
enters only the asymptotic normalization integral, not the
Faddeev equations per se. We ignore the coupling to the
isoquartet channel due to the Coulomb interaction and
the small charge dependence of the strong interaction.
%'e employ a point Coulomb interaction in calculating
our He wave functions. In treating the three-body
force, we use the 8', prescription of Ref. 7. That is, we

decompose the three-body force in a manner analogous to
the natural decomposition of the sum of the two-body
forces.

The Schrodinger wave function for He can be written
in terms of the Faddeev amplitudes as

(y„x,)=(1+P +P+)f (y„x,),

2MK= Q,
3

where P is given by

P =4M[B( He) —B( H)]/3=0. 1766 fm

(4)

and

P f (y„x,)=1( (y2, x2) (9a)

(9b)

where P and P+ are the permutation operators that
yield

The normalization constant N~ is defined by

Nw'= f ~»[W ., ir2(2Pyi)]'

and is related to N«by

The Faddeev amplitude is written as a sum
N

v=1
(10)

1'(3+a.)I'(2+@ )

23F2 (a, 2, 1+z; 3+a, 2+ a-, 1 )

=NzR&(2+ )/[3F2(1 K;2+ 2+K; 1)]

(6a)

(6b)

over
~

v) states containing spin, isospin, and orbital an-

gular momentum.
The integer N numbers the three-body channels

comprising a given model: N =5 corresponds to includ-

ing all two-body partial waves with

(1+ ( lg '3g 3D )

Clearly, when a~0 (as the Coulomb interaction is turned
off) one finds N~~Nz„. Also, we have

—Py(e —Py(lim W „,&2(2Py&)~ ~ e
y)~oo (2Py) )"«-0

We emphasize that it is not correct, nor is it a valid ap-
proximation, to use the asymptotic form of the Whittaker
function in Eq. (3). 6

The Faddeev equations are exactly equivalent to the
I

N =9 corresponds to j"&2+, N =18 corresponds to

j (2, and N =34 corresponds to j &4. Convergence for
various physical observables as a function of N was ex-
plored in Refs. 35 and 7. The convergence study of Ishi-
kawa and Sasakawa for the triton asymptotic normaliza-
tion constants' and the results below for He demon-
strate that N =34 provides a reliable result, even when
three-nucleon forces are included.

Our Faddeev amplitudes satisfy equations of the form

[Ho+ V(x, )+ Vc(x„x2,x3)+ W, (y„x, ) —E]g (y„x,)= —[V(x, )+ W, (y„x,)][/ (y2, x2)+f (y3 3)],
where

Vc(xl x2 x3) Pc +Pc' +Pc'
Xg Xi X2

(12a)
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I'c~ = ,'(—1+~3)(1+7',),
N

V(x;)= g i
v) V „(x;)(v'

i

v'=1
v=1
3

V2aF = X V(xi )

(12b)

(13a)

(13b)

N

W, (y, ,x, )= g ~

v) W, „~(y„x,)(v'~
v'=1
v=1

(14a)

and

3

W3s~ ——g W; (yi, xi ) . (14b)

Following the procedure outlined from Eq. (41) of Ref. 6, the integral relations that yield CL (L =S,D) in terms of pro-
jections involving the deuteron S-state and D-state functions coupled to the spectator nucleon ( d, L;y i ~

are

C
CL ———

L

g (1+@/n) f'(1+&)
4M

3 &~2 + P(2L+1)!!

y1 y1M „L+1~2 2 y1
0

X (d, L;y,
~

V(x, )
~ g (y, , x, )+lt (y3 x3))

+(d I. 'yi
~

lVi(y»xi) I 0 (y»xi)+0 (yz xz)+0 (y»*~~&+(d I. 'yi &c — 0 ~ye *i~)
V1

where M „J(z) is the Whittaker function that vanishes at the origin and diverges exponentially as z~ ~. The terms
that appear under the integral are the terms that remain on the right-hand side of Eq. (11)after converting the left-hand
side to the form required to obtain the needed Green s function. The non-Coulomb or H integral relations follow im-
mediately by taking the limit ~~0. Because

(2L + 1)!
MOL, +i~2(2z)= v 2mzIr +i~2(z), (16)

where IJ(z) is the modified Bessel function, we obtain

2M &7T
CL 3—-y-, dy, IL+il2(py 1 )

0

X [(d L yi ~
V(xi )

~ I//(yz xz)+it(y3 x3) )

+ &d L yi l Wi(yi»i) I 4(yi xi)+4(y2 x2)+4(y3 x3) &] .

The quantity g is the ratio of the D-wave to S-wave asymptotic normalization constants:

r!=CD/Cs

and

(18a)

g =CD/Cq . (18b)

(19)

The g's may also be thought of as the ratios of coupling constants for H~nd( He~pd) vertices. Experimentally they
can be determined from an analytic continuation of T2O measurements in He(d, He) H and H(d, p) H experiments to
the appropriate pole. ' Because of the diSculty in making these extrapolations, more attention has been given the
distorted-wave Born approximation D-wave parameters D2 and D z, which are both defined by

oo 4„dyiy i&Z(yi )
0

15f dyiy iuo(yi )
0
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The uI(y, ) are the efFective wave functions in the spectator coordinate of the N-d system, the Fourier transformations
of the N-d momentum distribution amplitudes. They are given by the projections

(y,X';4(')
~

4(' )(i) ) = uo(y, )( —,'m~ lmd Pm ) Yoo(y, )

+u2(y, ) g ( —,'mNlmd
~

—'M) g (2m' ,'M —~ —,'m ) Yz (y, ) .
M ml

(2O)

These definitions hold for both H and He and are
consistent with the asymptotic normalization constant
definitions given in Eqs. (1) and (3). The two cases are
distinguished by i = H,

e
uo(y i ) Cs&zR

yl ~00

uz(yi) ~ CD&zR
y&

—+ 00

—Py)

—Py)
3 3

(21a)

(21b)

andi = He,

n(2P» )
uo(yi ) Cs&w

y& ~00 3'&
(22a)

CD&g
yl ~00

(22b)

To the extent that the y, in the integrand of the numera-
tor and the y &

in the integrand of the denominator justify
replacing the uI(y, ) functions by their respective asymp-
totic forms, one can derive

and

CD
D2 ———

&'Cs

C
CD

D2 = —
2 cf(K)

13'C,'

(23a)

(23b)

where

2Fi (2) K —2;5+K; —1)f (K)=6
(4+K)(3+K)2F, (2,K& 3+K&

—1)'
89 —112 ln(2) 2=1——"x+

30 60
K +

(24a)

(24b)

9=@D2=p D2 (25)

has been demonstrated to be excellent for the deuteron.
It was found to be acceptable for the triton in a separable
potential study and in Ref. 2. We also recall that we
demonstrated previously that

The D2 and D2 are proportional to the experimental
spectroscopic factors extracted from (d, t) and (d, He)
transfer reactions. They are also the ratio of the ampli-
tudes in moinentum space (Ref. 45), —uz(q)/q uo(q)
evaluated at q =0. We emphasize the sign difference be-
tween q and D2. We also note that the approximation

because the decrease in the trinucleon binding energy be-
tween H and He is almost exactly compensated for by
the decrease in CD compared to CD and the factor f (K).

III. NUMERICAL RESULTS

Results of our numerical calculations are summarized
in Tables IV and V for the RSC and AV14 models. The
third decimal is retained in order that one can examine
the convergence with respect to the number of three-body
channels included. Comparison of the RSC five-channel
results quoted here with those in Ref. 6 shows a slight
difference in the third decimal due to the use of different
meshes in the numerical solution of the configuration-
space differential equations. Here we have used the
smaller mesh (14 p points and 14 8 points), so that
differences among the various entries in Tables IV and V
are not due to the use of different meshes. The parameter
A in the three-body force models was selected to be 5.8
m; see Ref. 7.

In the course of investigating the convergence proper-
ties of the Faddeev equation solutions we used diverse
combinations of two-body and three-body potentials as
well as numbers of channels, which resulted in a wide
range of eigenvalues. The corresponding wave functions
were used to calculate physical observables and form a
type of theoretical data base. Many of these observables,
when plotted versus the corresponding binding energy,
exhibit scaling with that energy. That is, the observables
exhibit a simple behavior as a function of the trinucleon
binding energy 83, with only a small spread of values for
a given 83. Such is the case for the asymptotic normali-
zation parameters. Fits to these distributions, extrapolat-
ed to the experimental binding energy, probably provide
the best theoretical estimates of the trinucleon observ-
ables, providing that scaling is valid. (Some caution is
warranted, however, because data sets limited to models
which do not include the correct physics can lead to false
conclusions. } We have employed this technique previous-
ly to estimate charge radii, Coulomb energies, etc.
Sasakawa and Ishikawa' have used it to estimate the tri-
ton asymptotic normalization ratio g. We shall use it
here to predict asymptotic normalization parameters for
H and He.

In Figs. 1 —4 we present plots of our calculated
Cs(Cs ), CD(CD ), i)(rt ), and D2(Dz ) versus the H( He)
binding energy. It is from the best fits to these results
that we make our estimate of the values that these pa-
rameters should exhibit for the physical trinucleon sys-
tems. From our numerical results shown in Fig. 2 we find
best-fit values at the experimental binding energies of

D2-D2, (26) Cs=1.850 and Cs =1.854 .
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TABLE IV. Asymptotic normalization results for the RSC model.

B( H) B('He) Cs Cc Cg Cc Dp (fm ) D (fm )

RSC
5
9

18
34

RSC-TM
5

9
18
34

RSC-BR
5
9

18
34

7.02
7.21
7.23
7.35

(A=S.8 m. )

7.55
8.33
8.92
8.86

(A=S.8 m )

7.66
8.77
8.70
8.89

6.37
6.55
6.58
6.70

6.88
7.64
8.22
8.16

6.99
8.06
8.00
8.20

1.752
1.768
1.766
1.774

1.791
1.833
1.860
1.862

1.795
1.848
1.847
1.861

1.757
1.770
1.778
1.787

1.796
1.837
1.875
1.877

1.800
1.852
1.862
1.876

0.0670
0.0694
0.0689
0.0707

0.0728
0.0818
0.0881
0.0895

0.0756
0.0879
0.0867
0.0904

0.0628
0.0647
0.0652
0.0672

0.0688
0.0772
0.0848
0.0862

0.0714
0.0832
0.0833
0.0871

0.0382
0.0393
0.0390
0.0398

0.0406
0.0446
0.0474
0.0480

0.0421
0.0476
0.0469
0.0486

0.0357
0.0367
0.0367
0.0376

0.0383
0.0420
0.0452
0.0460

0.0396
0.0449
0.0447
0.0464

—0.248
—0.242
—0.242
—0.242

—0.237
—0.227
—0.220
—0.225

—0.241
—0.226
—0.226
—0.226

—0.259
—0.254
—0.253
—0.253

—0.247
—0.234
—0.228
—0.234

—0.250
—0.232
—0.234
—0.235

Thus, Coulomb effects increase the S-wave asymptotic
normalization constant by less than l%%uo. To a very good
approximation, the H and He S-wave asymptotic nor-
malization constants should be the same, as was found
earlier. (For a detailed discussion of the Coulomb effects
in Cs, see Refs. 6 and 50.) Our values of Cs agree with
those of Ishikawa and Sasakawa in the sense that even
their values for potential models other than those which
we have investigated lie close to our best fit curve. [Note
that their three-body force cutoff (see Table III) is 700
MeV whereas ours is 5.8 m„( =810 MeV). ] Also, our Cs
calculations for the RSC and AV14 NN force models
alone (with no three-body force) appear to agree with
theirs (not shown in Table III) at the level of +0.01. Of
the models quoted in Table III, only the OBE calculation
of Ref. 32 appears to disagree with our results; from our
best-fit curve we would predict C& ——1.786 based upon
that model's binding energy instead of the quoted 1.706.

Unfortunately, it is not possible to make a definitive
comparison with experiment for either H or He, be-

cause the experimental values for Cz and C& disagree
among themselves. Our value of C& ——3.42 would favor
the early PWDR evaluation of Ref. 17. Likewise, our
value of (Cs ) =3.44 would favor the FDRC value of
Ref. 18 as well as the larger of the value from Ref. 20.
However, the group using the former procedure (FDRC)
disagree with our prediction for C& and the latter group
offer three values in their reanalysis of older data, two of
which agree with one another and disagree with our pre-
diction. Thus, we urge that a definitive measurement of
the S-wave asymptotic normalization constants for H
and He be made, to test the model prediction from these
benchmark Faddeev solutions of the trinucleon bound-
state problem.

From our numerical results plotted in Fig. 3, we find
best-fit values at the experimental binding energies of

C~ ——0.0849 and C~ ——0.0803 .
For the D-wave asymptotic normalization constant,
Coulomb effects are not insignificant, being some 5.5%.

TABLE V. Asymptotic normalization results for the AV14 model.

B('H) B( He) cs Cc Cc D2 (fm ) D (fm )

AV14
5

9
18
34

AV14-TM
5
9

18
34

AV-14-BR
5

9
18
34

7.44
7.57
7.57
7.67

(~=5.8 m. )

8.26
8.94
9.49
9.36

(~=5.8 m. )

8.32
8.27
9.06
9.22

6.78
6.90
6.92
7.01

7.57
8.24
8.78
8.65

7.62
8.55
8.36
8.51

1.813
1.825
1.815
1.821

1.859
1.892
1.909
1.908

1.859
1.901
1.888
1.899

1.816
1.826
1.827
1.833

1.866
1.898
1.925
1.924

1.866
1.906
1.904
1.915

0.0723
0.0741
0.0735
0.0750

0.0824
0.0901
0.0961
0.0969

0.0849
0.0955
0.0930
0.0963

0.0681
0.0692
0.0698
0.0715

0.0785
0.0857
0.0929
0.0938

0.0808
0.0907
0.0896
0.0930

0.0399
0.0406
0.0405
0.0412

0 0AAA

0.0476
0.0503
0.0508

0.0457
0.0502
0.0492
0.0507

0.0375
0.0379
0.0389
0.0390

0.0421
0.0452
0.0483
0.0487

0.0433
0.0476
0.0470
0.0485

—0.238
—0.236
—0.235
—0.235

—0.229
—0.221
—0.215
—0.221

—0.233
—0.222
—0.224
—0.225

—0.248
—0.244
—0.245
—0.245

—0.237
—0.227
—0.222
—0.229

—0.242
—0.227
—0.232
—0.233
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Thus, CD is smaller than CD, as was discussed previously
in Ref. 6. In this case, our values of CD appear to be
some 3—5% larger than those of Ref. 2, where direct
comparison can be made for the NN force Hamiltonian
without a three-body force. At most 1/o of this can be
attributed to our use of the smaller mesh here as com-
pared to our previous study. The difference is larger in
the case of the RSC potential model, where short-range
repulsion is greater, than for the AV14 model. So far, the
trinucleon D-wave asymptotic normalization constants
have not been directly extracted from experiment. Only
their ratios to the S-wave constants have been measured,
which we discuss next.

From our numerical results shown in Fig. 4, we find
best-fit values for the ratios of the S-wave to D-wave
asymptotic normalization constants at the experimental
binding energies of

0.10

0.09

O~ 008—

0.07

0.06

D-wave Asymptotic Norms

8

Bs (MeV)
10

g=0.0458 and g =0.0432 .

The difference refiects the measurable Coulomb effect in
the D-wave asymptotic normalization constants discussed
above. Thus, g is smaller than ri by about 6%. Our best
estimate of g differs from the value of 0.0432 quoted by
Ishikawa and Sasakawa' by some 6%. In fact, the slope
of our fit (0.0471) differs significantly from theirs (0.0416),
and results primarily from differences in the predictions
of CD. (We noted above that our predictions for Cs agree
very well. } Thus, the two model calculations disagree
slightly on the predictions of CD and g for unknown
reasons, since the model values for the binding energies
and Cs agree within expectation. The experimental
values for the g parameter are in reasonable agreement
with one another (see Table I), and they agree within er-
rors with our prediction. Such is not the case for g .
Here there is a single measured value, which indicates a

FIG. 3. Trinucleon D-wave asymptotic normalization con-
stants calculated for diverse two-body and three-body force
models plotted vs binding energy.

much larger Coulomb effect than our model predicts.
The experimental value of ri =0.035+0.006 lies as far
below our theoretical prediction of 0.043 as the corre-
sponding experimental value of g =0.051+0.004 (see Ref.
5 for this average} lies above our theoretical prediction of
0.046. Theory and experiment agree upon the sign of the
Coulomb effect, but there is a clear question about the
magnitude.

Based upon the investigations of Refs. 2 and 45, we
concluded that it is reasonable to use Dz as an approxi-
mation to D2. From our numerical results shown in Fig.
5, we find best fit values for the distorted-wave Born ap-
proximation parameters at the experimental binding en-
ergies of

2
S-wave Asymptotic Norms

0.055
Asymptotic D/S Ratio

0.050

1.9
0.045

1.8
0.040

0.035

P

17 I I I I I i I I

7 8

Bs (MeV)
10

0.030 I I I I I I I I I I I I I I I I I I I

7 8 9

B& (MeV)
10

FIG. 2. Trinucleon S-wave asymptotic normalization con-
stants calculated for diverse two-body and three-body force
models plotted vs binding energy.

FIG. 4. Ratio of D-wave to S-wave asymptotic normalization
constants calculated for diverse two-body and three-body force
models plotted vs binding energy.
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0.25

0.24

CV

O 023

0.22

0.21

DWBA D2 Parameter

8

B3 {MeV}
10

Our results agree essentially with Refs. 1 and 2 con-
cerning the triton values for C& and Dz. However, our
predictions for Cz and g appear to be about 6% larger
near the experimental H binding energy. The slope of
our g versus B3 differs significantly from that of Ref. 1.
We agree with Ref. 34 on the value of D2 for the AV14
model but predict a value for their UR model some 15%
smaller than they obtain.

Our best estimate for the values of the asymptotic nor-
malization parameters at the experimental binding ener-
gies are

Cs = 1.85+0.02, Cs = 1.85+0.02,

C~ ——0.085+0.001, C~ ——0.080+0.001,

g =0.046+0.001, g =0.043+0.001,

D2 ———0.229+0.005 fm, D2 ———0.238+0.005 fm

FIG. 5. Distorted-wave Born approximation parameters D2
and D 2 calculated for diverse two-body and three-body force
models plotted vs binding energy. Units of D2 are fm .

D2 ———0.229 fm and D2 ———0.238 fm

That is, we predict Dz -D2, as we did in our previous in-

vestigation. Our estimates of D2 appear to be about
2-3 % larger than those of Ref. 2. At the same time, the
variational wave function result of Ref. 34 for the AV14
(plus three-body force) model appears to agree exactly
with our best-fit curve while the result for the UR (plus
three-body force) model disagrees with our prediction by
about 15%%uo Unfortunately, the scatter in the experimen-
tal data makes a comparison between theory and experi-
ment difficult. Most of the more recent measurements,
which quote larger uncertainties, are consistent with the
theoretical predictions. However, one would like to see a
more definitive test of these detailed model calculations.

IV. CONCLUSIONS

We have confirmed the conclusions of our original in-

vestigation of Coulomb effects in the asymptotic normal-
ization constants of the trinucleon systems. We find here
the following. (1) Coulomb effects lead to less than a l%%uo

increase in Cs over Cs. (2) Coulomb effects lead to an

approximately 6%%uo reduction in Cn relative to Cn and

correspondingly in rl relative to g. (3) Coulomb effects
lead to a very small difference between D2 and D2. (Note
that D2 is negative while g is positive. ) Our results here

supercede those of Ref. 6 for absolute magnitudes, be-
cause we have been able to include a sufficient number of
partial waves to establish convergence for each parame-
ter.

It is clear that improved experimental precision is needed
in order to fully test these predictions. In the case of the
S-wave asymptotic normalization constants, improved
measurements are needed to resolve the present conflict
among the various data. A direct measurement of the
D-wave constants does not exist. While the Coulomb
effect exhibited in the measured g compared with g can
be said to be consistent with our prediction at the level of
one standard deviation, the large spread in the nominal
values of the measurements compared with the near
equality of the theoretical values is disturbing. Although
the two most recent measurements of D2 and D2 appear
to be consistent with the predicted values, comparison
with the entire database is not so encouraging, and a
clarification of the experimental situation is needed.

Finally, it was originally proposed that the trinucleon
asymptotic normalization constants be accorded the same
status as the binding energy and charge radii. ' The
strong correlations of these normalization parameters
with binding energy has been established. They, there-
fore, have no greater status than the charge radii and
Nd doublet scattering lengths. ' It remains to be seen
whether precision experimental measurements of these
parameters will be in agreement with the extrapolated
values of contemporary models.
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