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Impulse approximation and isovector pion-exchange current contributions to the trinucleon mag-
netic moments are calculated using wave functions generated from solutions of the configuration-
space form of the Faddeev equations for the Reid soft core, Argonne V,,, and super-soft-core C
nucleon-nucleon force models and the Tucson-Melbourne or Brazilian three-nucleon force models.
Numerical results for solutions with two-body partial waves having j <4 (up to 34 channels) are re-
ported. Agreement between theory and experiment appears reasonable for these nonrelativistic
Hamiltonians which are restricted to one-pion exchange currents.

I. INTRODUCTION

A variety of calculational techniques have been shown
to yield reliable results for the solution of the Faddeev
decomposition of the Schrédinger equation that describes
the trinucleon ground state.! Using the same two-body
interaction Hamiltonian, different authors have obtained
remarkable agreement’? for the triton binding energy as
well as for related physical observables such as the root-
mean-square (rms) charge radii and wave function asymp-
totic normalization constants,>* which are determined
primarily by the asymptotic (large radial distance) part of
the wave function. However, such widespread agreement
has not been seen in the case of the trinucleon magnetic
moments. This may be partially attributed to detailed
differences in the calculations of meson-exchange-current
contributions to the magnetic moment operators. The
status of magnetic moment calculations employing only
nucleon-nucleon (two-body) forces in the Hamiltonian
and truncating the three-body model space to five chan-
nels (two-body interactions in only the 'S, and 3S,-’D,
partial waves) has been summarized by Tomusiak et al.’

The rapid convergence in the calculation of trinucleon
bound-state observables as a function of the number of
two-body potential partial waves included in the Hamil-
tonian was demonstrated by Chen et al.! for a number of
contemporary nucleon-nucleon potential models. How-
ever, the inclusion of a three-nucleon force in the Hamil-
tonian (in order to remove the discrepancy between
theoretical and experimental values of the triton binding
energy occurring in these two-body force model calcula-
tions) requires that many more three-body channels be in-
corporated in the calculation in order to achieve a con-
verged result.>’ For example, converged binding ener-
gies for model Hamiltonians that include either the
Tucson-Melbourne (TM) or the Brazilian (BR) two-pion-
exchange three-nucleon force requires at least 18 three-
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body channels (all two-body partial waves with j <2) to
achieve a converged result and in several cases 34 three-
body channels (all two-body partial waves with j <4).
Our purpose here is to report the results of new trinu-
cleon magnetic moment calculations utilizing 34-channel
wave functions from fully converged calculations with
and without three-body forces in the model Hamiltonian.

The magnetic moment calculations described previous-
ly in Ref. 5 were based upon algebraic formulas which
showed explicitly how the various wave function com-
ponents contribute to the magnetic moment density.
While such a procedure may help provide insight when
only a few channels are involved, it is tedious and suscep-
tible to error. Thus, we use a completely numerical ap-
proach here, where wave functions with as many as 34
channels are utilized. In comparing results with our pre-
vious calculations, minor errors in Ref. 5 were discovered
and will be discussed at the appropriate junctures.

The material is organized as follows. We state the gen-

fr‘a’
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FIG. 1. Pion-exchange-current contributions: (a) seagull or
pair diagram, (b) pion (true exchange) current diagram, and (c)
A-isobar diagram.
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TABLE 1. Impulse approximation isoscalar and isovector magnetic moments.

RSC RSC+TM RSC+BR AV14 AV14+TM AVI44+BR
Number of channels P Us 'R P Uy Hs
5 0.4044 0.4042 0.4019 0.4062 0.4058 0.4033
9 0.4041 0.4030 0.4000 0.4060 0.4049 0.4018
18 0.4041 0.4011 0.4003 0.4060 0.4031 0.4024
34 0.4038 0.4009 0.3998 0.4058 0.4031 0.4020
Hy Hy Hy Hy Hy Hy
5 —2.1492 —2.1548 —2.1447 —2.1659 —2.1717 —2.1600
9 —2.1496 —2.1555 —2.1440 —2.1660 —2.1719 —2.1587
18 —2.1550 —2.1549 —2.1500 —2.1724 —2.1712 —2.1660
34 —2.1549 —2.1537 —2.1489 —2.1722 —2.1706 —2.1647
eral formulas and values of the relevant parameters in 1 1+75(i)
Sec. II. The numerical methods are summarized in Sec.  Jimp(T)= M. 2 2 [p;8(r—x;)+38(r—x;)p;]
ITII. The numerical results for separate terms of the mag- P
netic moment operator are presented in Sec. IV for 5-, 9-, 1475(i)
18-, and 34-channel wave functions. Finally, Sec. V pro- +Vx ¥ T He
vides a summary of the new results of this paper. i
1 —73(i) )
+Tyn o(i)d(r—x;) . (3)
II. GENERAL FORMALISM
The nuclear current density at the point r is denoted by ~ 1t Edq. (3) we use values of p,=2.793uy and

J(r). The static magnetic moment operator is then given
in terms of the current density by

p=1[dr(IM | [rx3(D)], |IM) , (1)
where M =J. The current
J(0) =T (D) + T (1) + AX(r) ¥)

comprises a one-body or impulse approximation contri-
bution, a two-body or conventional pion-exchange
current contribution, and an additional many-body con-
tribution. The one-body current is composed of the stan-
dard convection and magnetization currents:
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FIG. 2. Trinucleon isoscalar magnetic moment plotted vs the
binding energy.

Mn=—1.913puy, where py =e#i/2M ,c is the nuclear mag-
neton. The exchange current term J(r) is comprised of
the usual “pair+ pion+isobar” pieces detailed below.
Any nucleon-nucleon interaction based upon the ex-
change of charged quanta will lead to two-body exchange
current contributions to the electromagnetic operators
describing the system. Similarly, when a two-pion-
exchange three-nucleon force is included in the Hamil-
tonian, corresponding three-body exchange-current terms
[AJ(r)] arise in the electromagnetic current. However,
such three-nucleon currents should contribute in the
same order as the relativistic corrections to the two-
nucleon currents which we neglect. (We also omit effects
from heavy meson exchange, which are estimated to be a

6.0 ' 7.0 8.0 9.0 10.0
Eg (MeV)

FIG. 3. Impulse approximation trinucleon isovector magnet-
ic moment plotted vs the binding energy.
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TABLE II. Pair diagram contributions to p, (A=5.8m ).

Potential
Number of channels RSC RSC+TM RSC+BR AVi4 AV144+TM AV144+BR
5 —0.2820 —0.2848 —0.2955 —0.2878 —0.2958 —0.3062
9 —0.2864 —0.3034 —0.3228 —0.2904 —0.3114 —0.3293
18 —0.2835 —0.3155 —0.3161 —0.2877 —0.3227 —0.3201
34 —0.2859 —0.3135 —0.3186 —0.2896 —0.3194 —0.3220
10% correction to the dominant one-pion-exchange Fo(r)= 1 [e T - Ar] )
term). Therefore, to be consistent we omit specific contri- 0T, )

butions to the magnetic moment operator from three-
nucleon exchange currents at this time.

The terms which we retain in our calculation of the
isovector pion-exchange-current contributions to the
trinucleon magnetic moments are®

T =T (D) +T(0) +T (1) . @)

(Isoscalar terms are corrections of relativistic order.’)
The pair term results from the seagull diagram shown in
Fig. 1(a). That current operator is

2
Jpair(r)=_—2— 2 [T(i)XT(j)]ga(i)S(r—x,-)

Mo ixj

X[e(j)V,]ho( | r—x; ), (5)

where the pion-nucleon form factor is assumed to have
the monopole form

m3

—Ar_ Ar
_ -

2

—Ar

ho(r)=% e " e 6)

Similarly, the pion current or true-exchange current
operator depicted in Fig. 1(b) is given by

_f£2

J.(r)= " 3 > [ X7(j)s[oi)-V, ho( | r—x; )]V,
TM 2 jxj
X[o ()9, kol | =%, )] , ™
where
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FIG. 4. Trinucleon pair current contribution to the isovector
magnetic moment plotted vs the binding energy.

We note here that the tilde symbol in A,(r) was inadver-
tently omitted in the corresponding Eq. (16) of Ref. 5.
The A or isobar current shown in Fig. 1(c) is given by

8 f*  Hp—Ha
Nn=—lo——t g
8= S n? 20, (MM, "

X 3 8(r—x,){[o()XV, [[7D) X )]s
i#j

—4m3(j)V,}o ()Y, hol |t —x; | ) .

9)

The uncertainty in this last term is the largest, due to
various allowed prescriptions for choosing the yNA cou-
pling constant and for treating the A propagator.

We have used in these calculations a value of
f2=0.078. The mass values were m_,=140 MeV,
M,=938.9 MeV, and M, =1232 MeV. For the mono-
pole form factor cutoff, we use A=5.8m,, as current
practice suggests.!® However, we will exhibit the depen-
dence of the exchange current contribution to the mag-
netic moments upon the parameter A.

III. SUMMARY OF NUMERICAL METHODS

The magnetic moment is given in Eq. (1) in terms of
the matrix element

(Q)=(IM | [rxI(D)],|IM) . (10)

Using the Wigner-Eckart theorem one can rewrite that
matrix element in the form

(Q)=(IM10 | IM){J|[[rxI(D)]|IT) , (1n

where we have used the conventions defined in Brink and
Satchler.!! For J=M =1, the Clebsch-Gordan co-
efficient has the value 1/V'3. The calculation reduces to
the numerical evaluation of the reduced matrix element
e IO ).

For three particles with coordinates r; in the center of

mass we introduce the Jacobi variables
X;=T;—T; , (12a)
and

yi=%(rl’+rk)—l’; ) (12b)
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TABLE III. Pion current contributions to u, (A=5.8m ).

Potential
Number of channels RSC RSC+TM RSC+BR AVi14 AV144+TM AV144+BR
5 0.0851 0.0882 0.0906 0.0917 0.0988 0.1002
9 0.0873 0.0975 0.1041 0.0930 0.1073 0.1122
18 0.0857 0.1020 0.1033 0.0914 0.1113 0.1068
34 0.0868 0.1005 0.1015 0.0922 0.1091 0.1076

with i, j,k cyclic. Using these coordinates the operator in
the reduced matrix element can be written in the form

Q=TKQ[Tqul(r,X1,y1), Tk2q2(01’02’03)]

Xqu(T[7727T3) (13)
for each of the various current operators, where the T,
are tensor operators. Given the operators in Eq. (13) we
have to evaluate the reduced matrix element

JIex IO =)o)

using the total wave function generated by our
configuration space Faddeev program. This wave func-
tion is given in terms of a bicubic spline expansion'? and

J

(14)

(PlQ¥)=3 3 [(2J + DK + DL+ 128, + D)L L ky KWEIT, [[WE)S,lI Ti, Tilldn) -

n LL'

’

n

The reduced matrix element of the spin-isospin operators
may be evaluated analytically using standard Racah alge-
bra. The reduced matrix element of Tk1 must be evalu-

ated numerically. To evaluate this integral we use the re-
lationship

(WEIT, 91 LMk,q, |L'M")

1
T 2L +1 %(
"

XAWEae | Ta g, | Wing) -

17)

The six-dimensional integral over x; and y, can be re-

the angular momentum-spin-isospin channel functions.
Given the numerical solution to the Faddeev equations
for the trinucleon system, it was shown in Ref. 13 that
the total wave function could be written in the form

Vixpy)=32 3 3 (LM, S, Mg |JM)‘I’2ML("1:Y1)¢'1 )
n L M,

Mg
(15)

where the ¢, are the spin-isospin functions defined by
Gibson and Schiff'* with total spin S, and total isospin
T,. Using this form of the wave function, the reduced
matrix element in Eq. (14) can be written as

J J K
(16)
S, S, k,

f
duced to a three-dimensional integral by using the pro-
cedure originally suggested by Balian and Brezin.!> This
procedure uses a convenient coordinate system to numer-
ically evaluate the integral. Since the reduced matrix ele-
ment is independent of the orientation of the coordinate
axes, we can choose these axes so that the numerical cal-
culations are simplified. Following Ref. 15 we choose the
axes so that y, is along the z axis and x, is in the x-z
plane. Now all of the vectors x; and y; will lie in the x-z
plane. All of the current operators except for the pion
current have a 8(r—x;), and the vector r will also be in
the x-z plane. For these cases the integral is reduced to a
three-dimensional integral over x,,y,, and the angle be-
tween x; and y;. For the pion current operator, it was
shown in Ref. 5 that the integral of the operator over r
could be expressed in terms of x,, y,, and X,-y,. Using

TABLE IV. Isobar contributions to u, (A=5.8m ).

Potential
Number of channels RSC RSC+TM RSC+BR AV14 AV14+TM AVI144+BR
5 —0.0978 —0.1017 —0.1063 —0.0976 —0.1046 —0.1092
9 —0.0998 —0.1100 —0.1189 —0.0988 —0.1111 —0.1194
18 —0.0994 —0.1167 —0.1157 —0.0983 —0.1174 —0.1146
34 —0.1007 —0.1153 —0.1174 —0.0994 —0.1151 —0.1158
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TABLE V. Isovector magnetic moments.

Potential
Number of channels RSC RSC+TM RSC+BR AV14 AV14+TM AVI144+BR
5 —2.4439 —2.4531 —2.4559 —2.4597 —2.4732 —2.4753
9 —2.4485 —2.4714 —2.4816 —2.4622 —2.4871 —2.4953
18 —2.4521 —2.4851 —2.4815 —2.4670 —2.5000 —2.4939
34 —2.4548 —2.4821 —2.4834 —2.4690 —2.4961 —2.4950

this expression the contribution of the pion current to the
total magnetic moment can also be reduced to a three-
dimensional integral. For a more detailed discussion of
numerical calculations similar to those outlined here, the
dissertation of Chen'® should be consulted.

IV. RESULTS

To nonrelativistic order (f 2/m f, ), the isoscalar
currents are given solely by the one-body terms.” That is,
the exchange terms contribute to the isoscalar currents
only through relativistic terms which we have neglected.
Thus, the nonrelativistic isoscalar magnetic moments are
determined solely by the impulse approximation current
of Eq. (3). As discussed in Ref. 5, an approximate formu-
lais

+Hq,
ysz”"z“ [1—2P(D)]+LP(D) (18)
~0.44—0.38P(D) , (19)

where P (D) is the trinucleon wave function D-state prob-
ability.!” For contemporary nucleon-nucleon (NN) po-
tentials which yield a value of P(D) between 7% and
10%, one finds a value of p; between 0.41 and 0.40. The
addition of a three-body force of the Tucson-Melbourne'®
or Brazilian'® type to the nuclear Hamiltonian leads to an
enhancement of P (D) of about 1%, which reduces slight-
ly the corresponding value of u,. This is illustrated by
the results of our calculations for 5-, 9-, 18-, and 34-
channel wave functions as summarized in Table I. In
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FIG. 5. Trinucleon isovector magnetic moment plotted vs
the binding energy.

combination with the Reid-soft-core?® (RSC) NN force
model, both the TM and BR three-body force models
lead to an isoscalar magnetic moment estimate of
ps~0.40. A similar conclusion holds for the Argonne
V4 (AV14) (Ref. 21) NN potential model. Calculations
have also been performed using various combinations of
two-body forces [RSC, RSCC (including a Coulomb in-
teraction between the two protons), AV 14, and super soft
core C (SSCC) (Ref. 22)] and three-body forces (TM and
BR) and with varying numbers of channels. That ‘“data
set” provides a basis for an analysis of the dependence of
the various components of the magnetic moments upon
the binding energy. In Fig. 2 we present a scatter plot of
the calculated isoscalar magnetic moments versus the
model trinucleon binding energies. The calculated values
of u, lie between 0.40 and 0.41. Little correlation with
binding energy is exhibited, because Eqgs. (18) and (19)
demonstrate that u, depends principally upon the D
state. Including three-body forces and varying the num-
ber of channels alters the relationship between P (D) and
the binding energy. Furthermore, the quoted experimen-
tal value of p,=0.426 clearly lies outside the range of
theoretical values, indicating the need for a correction of
order 5-6 %.

With this understanding of the isoscalar approxima-
tion, we turn to the trinucleon isovector magnetic mo-
ments. As was discussed in Ref. 5, the impulse term con-
tribution is given approximately by
po=— TR 4P(S)—1P(D4LP(D) . (0)
For typical model probabilities of P(S')=1% and
P(D)=10%, we obtain u,~ —2.15. Indeed, as one can
see from the values quoted in Table I and the larger data
set plotted in Fig. 3, the impulse approximation to the
isovector magnetic moment ranges in value from —2.14
to —2.18. As was observed for pu,, the impulse approxi-
mation for p, appears to have no strong correlation with
the binding energy.

As noted previously, the first-order corrections (the
two-body exchange currents) to the isovector impulse ap-
proximation are not of relativistic order. They yield, in
fact, approximately a 20% enhancement of the magni-
tude. It was shown in Ref. 5 that the pair diagram [Fig.
1(a)] term proyides the dominant exchange current con-
tribution to u,. Unfortunately, there was a slight error in
the values of p,;; given in Ref. 5, which changes the total
magnetic moment u, by 2-3% for A=5.8 m;?
corrected values are given along with the new results in
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TABLE VI. Variation of isovector magnetic moments with A
for the 34-channel wave function, RSC model.

A(mﬁ) .u'pair MK Ha Hy
2.0 —0.077 +0.0365 —0.010 —2.205
4.0 —0.228 +0.0811 —0.059 —2.361
5.8 —0.286 +0.0868 —0.101 —2.455
8.6 —0.318 +0.0830 —0.143 —2.533

17.2 —0.332 +0.0733 —0.180 —2.594

Table II and Fig. 4. The correlation with binding reflects
the enhanced overlap as the wave function is pulled in.
The pion current contributes to u, at the 5% level.
Specific contributions for the potential models listed
above are detailed in Table III. As was the case for the
pair current, including either the TM or BR three-body
force in the Hamiltonian enhances the magnitude of u,,
by about 10% compared to the pure nucleon-nucleon
force model results. Although the two-body force results
presented here agree with those given in Ref. 5, we note
that the statement there that the D-D matrix elements
vanish identically is erroneous. The D-D matrix elements
are tiny but are, in fact, nonzero. Our results for the iso-
bar contribution to u, are listed in Table IV. As de-
scribed in Ref. 5, there is a large cancellation between p,
and p,, which can be seen here by comparing Tables III
and IV. Again, including a three-body force produces a
10% effect. The results for the 5-channel RSC and AV14
models differ from those in Ref. 5 by about 3% due to a
phase error involving the P states in the u, calculation.?*

The total isovector magnetic moment (for A=5.8m )
is the sum of the impulse approximation and the ex-
change current contributions contained in Tables I-1IV.
These are summed explicitly for the RSC and AV 14 mod-
els in Table V. In Fig. S we plot u, versus the trinucleon
binding energy for all models studied. Again, the in-
crease in p, with increased binding reflects the enhance-
ment of the overlap in p,; as the size of the system
shrinks. Our model value for u, ranges from —2.44 to
—2.50. The experimental value of p,=—2.5532 does
does not lie within this range. However, relativistic and
heavy-meson exchange corrections of a few percent could
easily account for the discrepancy.

More important than the small corrections omitted is
the variation with the value of the cutoff A used in the
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model calculations. This is illustrated in Table VI for the
RSC potential model 34-channel wave function. (Results
for the 5-channel wave function differ by only a few per-
cent.) Clearly, this is the parameter to which the model
calculation is most sensitive.

Using the currently favored'® value of A=5.8m_, we
summarize in Table VII our results for u, and yu, as well
as u(*He) and u(*H) from the RSC and AV14 potential
models with and without the TM and BR three-body
forces. The discrepancy between our model results and
experiment is clear. We reiterate that we have included
no relativistic or heavy-meson corrections and that the
model results are sensitive to the value of the cutoff A
used in the exchange current operators. Furthermore, in
keeping with our neglect of terms of relativistic order, we
have neglected all three-body current contributions to the
magnetic moments.

V. SUMMARY AND CONCLUSIONS

We have calculated the isoscalar and isovector magnet-
ic moments of the trinucleons using model Hamiltonians
based upon contemporary nucleon-nucleon potentials and
those also including two-pion-exchange three-nucleon
forces of the Tucson-Melbourne and Brazilian type. The
difference in model results for u; and p, between the 5-
channel and full 34-channel wave functions, when only
two-body forces are included, is less than 1%. The intro-
duction of a three-body force improves the agreement be-
tween the calculated value of u, and the experimental
value by enhancing the meson-exchange current contri-
bution. (The value of u, is modified only slightly by the
introduction of a three-body force.) Using the preferred
value of the cutoff (A=5.8m ), one sees a difference be-
tween experimental and theoretical values for p, of about
0.06 and for p, of about 0.03. The dependence upon the
model binding energy is very weak: a 2% variation in the
magnetic moments for a 15% change in the binding ener-
gy. Conversely, the calculations are clearly sensitive to
the value of the cutoff A used. Increasing it by a small
percentage would produce exact agreement for u,. How-
ever, all relativistic corrections have been ignored in
these calculations, as well as heavier meson exchanges.
The discrepancy in p, between theory and experiment
may be a reasonable indication of the size of these omit-
ted corrections, which are expected to be a few percent.
Neglected heavy meson exchange contributions are es-

TABLE VII. 34-channel trinucleon magnetic moments.

Ly Wy u1(*He) uCCH)
RSC 0.4038 —2.4548 —2.0510 +2.8585
RSC+TM 0.4009 —2.4821 —2.0811 +2.8830
RSC+BR 0.3998 —2.4834 —2.0836 +2.8832
AV14 0.4058 —2.4690 —2.0632 +2.8748
AV144+TM 0.4031 —2.4961 —2.0930 +2.8993
AV144+BR 0.4020 —2.4950 —2.0930 +2.8970
(Expt.) 0.4257 —2.5532 —2.1275 +2.9789
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timated to be 10% of the one-pion-exchange meson
current corrections included. The fractional discrepancy
between our model results and experiment is similar for
both p, and u,. In view of the nonrelativistic basis of the
model Hamiltonians used and the restriction to two-
pion-exchange operators in the one-body current sector,
we view the agreement between theory and experiment
reported here to be very reasonable.
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