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Differential cross sections for the 'P(p, po), (p,p, ), (p,ao), and (p,a&) reactions were measured in
the range Ep =1.00 to 4.01 MeV with an overall resolution of about 400 eV. The resonance pa-
rameters were extracted for 143 levels with a multilevel, multichannel R-matrix code. These pa-
rameters include resonance energy, total angular momentum, parity, partial widths, channel spin
or orbital angular momentum mixing ratios, and, for some resonances, the relative signs of width

amplitudes. Eight isobaric analog resonances were identified in ' S. Proton resonance strengths
were compared with shell model predictions. The "P(p,ao) data were used to obtain the reaction
rates for the inverse reaction Si(a,po).

I. INTRODUCTION

The structure of S below E =11 MeV has been well
studied, although there have been few measurements
since the compilation by Endt and Van der Leun' in
1978. An extensive study of S was performed by Kali-
fa et al. with the 'P( He, d) S reaction. In the region
from E„=11MeV to the ' 0+' 0 threshold at 16.54
MeV, there is little information. Above this threshold
many experiments have been performed with heavy ions.

In the present experiment, S was studied by proton
scattering from 'P. This measurement is part of a pro-
gram investigating odd-mass target nuclei in the 2s-1d
shell. Previous targets studied include 2 Si (ground state
J"=—'+) Al ( —,'+), Mg ( —,'+), and Na ( —', +). Al-

though the resonance analysis is much more complicated
than for zero spin targets, a wealth of spectroscopic in-
formation is obtained. These results are important for
such topics as stretched states, astrophysical reaction
rates, analog states, and spin-spin interactions, as well as
for comparison with nuclear structure calculations.

The present high resolution measurement fills an im-
portant gap in the existing data on S. There is a shell
model calculation for the positive parity levels in S up
to E„=14.60 MeV. In the lower energy region (E„&11
MeV), the shell model works very well. However, there
were no data at higher energies to compare with these
calculations. The 'P(p, ao) channel is open throughout
the entire energy range of the present experiment. Reso-
nances with strong alpha decay in S are interesting,
since information about resonances with large alpha
parentage provides a test for cluster models. For astro-
physics, the resonance parameters for the 'P(p, ao) reac-
tion can be used to evaluate thermonuclear reaction
rates for the inverse reaction by use of the principle of
detailed balance.

The high resolution system, experimental equipment,
and the data acquisition procedures are described in Sec.
II. Analysis of resonances in the 'P(p,x) reactions and
a discussion of level-level interference effects are given in
Sec. III. The new spectroscopic information for S in
the excitation energy range E =9.83-12.74 MeV is
presented and discussed in Sec. IV, and a summary is
given in Sec. V.

II. EXPERIMENTAL PROCEDURE

This experiment was performed with the KN Van de
Graaff accelerator and associated high resolution system
at TUNL. A detailed description of the system, includ-
ing recent improvements and modifications, is given by
Westerfeldt et al. The system provides an overall ener-
gy resolution of 300—400 eV for thin solid targets in the
range of proton beam energy E -1-4 MeV. Proton-
induced reactions were measured from E =1.00-4.01

P
MeV at laboratory angles 90', 127', 145', and 165' with
surface barrier detectors. In order to measure the
'P(p, a&) reaction above E =2.98 MeV, transmission

detectors were employed at 108, 135', and 165' to detect
a& particles; particle identification was required because
the a& particles generate the same pulse height in the
surface barrier detectors as protons elastically scattered
from ' O. In practice the (p,p, ) reactions were observed
above E =2.18 MeV and the (p,a&) reaction above
E =2.98 MeV. The solid angles for the detectors were
adjusted such that the counting rate for Rutherford
scattering at each detector is approximately equal.

Targets were prepared by evaporating Zn3P2 onto ul-
trapure Ni coated (-0.5 pg/cm ) carbon foils (4—5
pg/cm ). The targets contained 1 —3 pg/cm of 'P. Ni
was added to the backing because it enhances both tar-
get stability and uniformity. Targets prepared in this
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manner proved stable at 2—3 pA beam current.
The data acquisition was supported by a VAX 11/750

computer and a general data processing software
XSYStem. The yield curves for the 'P(p, po), (p,ao),
(p,p, ), and (p,a, ) reactions were obtained from the spec-
tra, which were monitored online and stored for more
detailed ofHine analysis. Data were measured in energy
steps of 100—400 eV, depending on the resonance struc-
ture. The counting statistics were better than 2%. Most
of the data in the present experiment were measured
twice to ensure reproducibility. Absolute energy calibra-
tion for the system was performed with secondary stan-
dards [ Ca(p, p) and Fe(p, p) reactions], which were
calibrated with respect to primary neutron threshold
standards: Li(p, n) at E =1.8804 MeV and ' C(p, n) at
Ez ——3.2357 MeV. The uncertainty for absolute reso-
nance energies is about 3 keV.

tion of channels with the same I value and different s
values is called channel spin mixing (s mixing), while the
combination of channels with the same s and different I
values is called angular momentum mixing (l mixing).
For an unpolarized beam on an unpolarized target, the
two channel spin contributions add incoherently. The
angular distributions of the reaction products are func-
tions of the s-mixing and I-mixing ratios. The channel
spin mixing ratio for elastic scattering is

where I, I is the proton laboratory width with orbital
angular momentum I and channel spin s. The I-mixing
ratio is

a=tan+=+(r, i 2/r, I)'

III. RESONANCE ANALYSIS

Experimental excitation functions for the four particle
channels were fitted with the multilevel, multichannel
R-matrix program MULTI6, which is based on the
differential cross section expression of R-matrix theory
given by Lane and Thomas. ' The code MULTI6 gen-
erates the theoretical excitation functions with a given
set of resonance parameters: resonance energies, J
values, and laboratory partial widths. The calculated ex-
citation functions are then compared with the experi-
mental data. The fitting is performed by trial and error,
with all resonance parameters adjusted to achieve the
best visual fit. A general description of the analysis pro-
cedure for nonzero spin targets was given by Nelson
et al. "

For a target of spin I and a projectile of spin i, the
two spins are coupled to form a channel spin s, and the
channel spin is then combined with the relative orbital
angular momentum I to form the spin J of the corn-
pound nuclear state. For a given J value and a nonzero
spin target, there are usually several channels with vari-
ous l, s combinations which can form the state. Cou-
pling a proton (spin —,') and a 'P target (ground state
spin —,

'
) gives channel spin values 0 and 1. The combina-

In practice, I mixing is usually small unless the com-
pound nucleus has a configuration which strongly
prefers I +2 partial waves. Since the laboratory width is
proportional to the penetrability P&, which decreases
rapidly with I, only partial waves with I &4 need be con-
sidered.

The analysis is simpler when the resonance widths are
larger than the energy resolution A. For a resonance
width I less than 6, both J and the s-mixing ratio usual-
ly cannot be uniquely determined. Such ambiguities also
occur for resonances with higher J values and small lab-
oratory widths. Thus good experimental resolution is
very important, not only for separation of overlapping
resonances, but also for determination of the resonance
parameters.

Interference between levels has dramatic effects on the
resonance shapes. Consider the two level, many channel
case. There are two kinds of interference, involving lev-
els with different J and levels with the same J . Al-
though the R matrix is block diagonal in J, the expres-
sion for the differential cross section is summed over all
J. Thus for overlapping resonances with different J
values, there is a two level interference term. With reso-
nance parameters J I

', J2, I„I', , I2, and l2, the interfer-
ence term in the cross section can be written as

( 1 )s —s'rl/zrl/2rl/zrl/2cos(5+5 5 )

z z z z &/2 Z(1~J,12Jz,sL)Z(II J,12J»s'L)PL(cose„),
2k,' (2s+1), , [(E, E) + ,'I', ]' [(E— E) —+-,'I ]'—

where 5=car +~, ~I —~ +PI +0 PI 0, , with
1 I1 2 l2 2 12 1 I1

co the Coulomb phase shift and P the hard sphere phase
shift, 52 ——tan '[I &/2(E& —E)] is the nuclear resonance
phase shift, and c = I as!} is the channel label. From the
symmetry properties of the Z coelcients, the selection
rules for the interference term are I I +12—L =even
and/or I', +I2 —L=even. For states with opposite pari-
ties the interference term contains only Legendre poly-
nomials with odd L values, while for states with the
same parity (but different J) only Legendre polynomials
with even L values occur. The interference effects are

I

dominated by the largest terms in the product of partial
width amplitudes I '„ I'„ I z, I 2, with specific
Is,s', l, , l', , lz, lz} values. The overall sign of the product
is important: the interference effects can be maximized
or minimized by changing relative signs of these partial
width amplitudes. (A different level-level interference
effect arises for two levels with the same J . An exam-
ple in Ref. 11 illustrates that relative signs can have
large effects for that case. )

In the present experiment we observed interference
effects which were sensitive to the relative signs for reso-
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TABLE I. Level interference sects in 'P(p, ao).

Resonance 1 (J =1 )

r,' s r.
Resonance 2 (J =2+)

r, s' r.
)s —s'ga

(keV)2 Figure

8.50
—10.50'

—8.50'
10.50

8.50
10.50

8.50
10.50

3.00

3.00

3.00

—3.00'

0.15
0.03

0.15
0.03

0.15
0.03

0.15
0.03

0.14

0.14

0.14

0.14

0.73
0.36

—0.73
—0.36

0.73
—0.36

—0.73
0.36

1(a)

1(b)

1(c)

1(d)

aII r 1 /2r1/2r1/2r 1 /2
1c lc' 2c 2c' '

Resonance widths are in keV. For resonance 1, I =I'= 1 and for resonance 2, I =I'=2.
'Signs are associated with the resonance width amplitude r,'

nances with the same J and with different J . As an il-

lustration, we present results for two levels with different
J . Table I lists the partial widths and the product term
of the partial width amplitudes for two states in S.
Resonance 1 is a broad 1 state at E =2.0220 MeV,
which has a large ao width, while resonance 2 is a nar-

row 2+ state at E =2.0233 MeV. In the ao decay chan-
nel there is only one value of s' and I' for each reso-
nance. Thus only two terms in the partial width ampli-
tude products are left in the summation for the (p,ao) re-

action with target spin I =—,'. The two terms can be

both positive, both negative, or have opposite signs [to-
gether with the phase factor ( —1)' ' ]; these four com-
binations are listed in the next to last column in Table I.
Figure 1 illustrates these effects at 127 and 165' for the
four sign combinations. Only one combination [yanel
(a)] fits the data well at these (and other) angles. The in-

terference shape will be the same if the sign of the reso-
nance partial width amplitude is assigned to either reso-
nance. In Table I, the signs are associated with reso-
nance 1.

IV. RESULTS

A. Genera1

In the present experiment excitation functions were
measured in the range E =1.00-4.01 MeV, and a total
of 143 resonances were observed. Resonances above
E =2.05 MeV had not been analyzed previously except
for a 4, T= 1 state and a 0+, T=2 state near
E =3.285 MeV. The excitation functions for (p,po) and

{p,ao} in the energy range 1.00—2.00 MeV are shown in

Fig. 2; the excitation functions for (p,po}, (p,ao), and

(p,p, ) in the range E =2.00—3.00 MeV are shown in
Fig. 3; the excitation functions for 'P (p,po), (p,ao},
(p,p, ), and (p,a&) in the range E =3.00—4.00 MeV are
shown in Fig. 4. Typical uncertainties in the resonance
parameters are about 10% for small resonances. For
large resonances (1 ) 15 keV) the laboratory widths have
larger uncertainties (-20%%uo}, especially for resonances
whose inelastic widths are larger than their elastic
widths.

There is good agreement with the previous data com-

piled by Endt and Van der Leun' below E =2.050 MeV.
Due to small elastic widths, several resonances observed
below E =2.00 MeV in the {p,y }experiments are barely
seen in the present measurement. For these resonances
the laboratory widths have large uncertainties; their J
values are taken from Endt's compilation. The major
disagreements are the following: (1) the resonance at
E =1.643 MeV whose J value was assigned previously
as 1, is assigned J =0+ from the present data. (2} The
resonance E =1.796 MeV was assigned previously as
J =2+, with ao decay. In the present experiment the
resonance shape in elastic scattering is quite different
from that for a 2+ resonance, and no ao decay was ob-
served. This resonance is assigned J =1 . (3) The res-
onances at E =1.2SO, 1.724, and 1.740 MeV, which
were observed in the {p,y) reaction, are not seen in the
present experiment.

Five new resonances were observed in the region
E

p
1 900 2 050 MeV The J value for the resonance

at E =1.989 MeV was uncertain in the previous data;
the present experiment provides evidence for a 1 as-
signment. There are no resonance parameters available
for comparison above E =2.050 MeV. To avoid intro-
ducing spurious resonances, a level is assigned only if
there is clear evidence for its existence. Because of space
limitations, the extracted resonance parameters and the
relative signs of the resonance amplitudes are not tabu-
lated here. A complete listing is available from the au-
thors.

B. Analog states

Analog state identi5cation requires information about
the parent state. Such information can be obtained by
neutron transfer experiments, usually (d,p) reactions.
The strengths of the corresponding states in parent and
daughter nuclei are assumed to be equal:

I
sz ——s„=s =(2T+1)

S.p.

where s is the proton analog spectroscopic factor,
which characterizes the strength of the analog state j.

p
is the measured laboratory width of the analog state,
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Interference Ef fects in s'P (p, a )
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FIG. 1. Two level interference efFects in the 'P(p, ao) reaction at 127 and 165'. There is a broad 1 resonance with a narrow 2+
resonance superimposed. The dots are the experimental data and the solid curve in (a) is the fit with the s=O proton partial width
amplitude positive, the s= 1 proton amplitude negative, and the alpha amplitude positive. Only relative signs between the two reso-
nances matter; the signs are arbitrarily assigned to the 1 resonance. Resonance parameters are listed in Table I. The dashed lines
in (b), (c), and (d) represent the calculated cross section with the same resonance parameters except for signs of the partial width
amplitudes. The sign combination used in part (a) is the only solution which fits the data at both angles.

sdp s„ is the neutron spectroscopic factor, I, is the
single particle width of the proton resonance, and T is
the isospin of the states.

The identification of analog states and the calculation
of analog spectroscopic factors is described by Bilpuch
et cl. ' The proton single particle widths for the analog

resonances were calculated with the ZDH (Refs. 13 and
14) method. To facilitate comparison with (d,p) data,
the potential well parameters are those used in the (d,p)
analysis.

Previous experiments' identified the T=1 analog reso-
nances below E ( S)=10.977 MeV; these correspond to
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Ep =3.00-4.00 MeV. The solid curve is the R-matrix fit.

proton bombarding energies up to 2.181 MeV. In addi-
tion, a 4 analog resonance was identified at E„=12.044
MeV (Ep=3.282 MeV). For the excitation energies of
parent and daughter states of the well-studied T=1 ana-
log resonances in S below the proton separation ener-

gy, the average difference in excitation energy
E„( S)—E„( P) is about 7.00 MeV. For resonances
above E„( S)=11.09 MeV, only a few resonances are
identified as analog states, mainly because of the lack of

(d,p) data corresponding to this energy region.
The results for the analog states observed in the

present experiment are listed in Table II. The agreement
between the analog and parent state spectroscopic fac-
tors is excellent.

(1) The analog of the E„( P) =3.320 MeV, 3 state is
a resonance at E„( S)=10.223 MeV. Previous measure-
ments suggest that this resonance may be mixed with a
3, T=O resonance at E„( S)=10.286 MeV.

TABLE II. T= 1 analog resonances.

32p

(MeV) sn ( sdp) (Mev) (MeV)

32S

r,
(keV)

I, p /(2T+1)
(keV) sp

E ("S)—E„("P)
(MeV)

3.260

3.320

3.443

0.44

0.44

0.78

3

10.075

10.223

10.257
10.398

1.250

1.403

1.438
1.583

1.50

0.016

0.035
0.012

3.53

0.037

0.048
0.087

0.42

0.43

0.73
0.14

6.815

6.913

6.814
6.955

3I& fW 2+ 10.368 1.557 0.025 1.25 0.02 6.924

3.880 0.056 2+
2+

10.791
10.824

1.989
2.023

0.08
0.17

5.18
5.57

0.015
0.030

6.911
6.943

4.010 0.066 (1 =1)
0.124 (1=3)

10.977 2.181 6.60
0.10

55.00
0.64

0.13
0.16

6.967

3

4.040 0.43

4.150 0.026 3

10.823

11.092

2.022

2.300

19.0

0.03

42.00

1.03

0.45

0.029

6.782

6.942

'Endt and Van der Leun (Ref. 1).
Masked by the resonance at E„(' P) =3.443 MeV, see Ref. 2.
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(2) The analog of the E„( P)=3.880 MeV, 2+ state
was observed previously as a doublet in proton scatter-
ing. We observed two 2+ resonances about 30 keV
apart. The summed strength s agrees with the neutron
strength s„.

(3) The analog of the E„(i2P)=4.150 MeV, 3 state is
a narrow resonance which was not observed previously.

(4) Above E„( P) =4.20 MeV (corresponding to
E&

——2.41 MeV), there are no suitable (d,p) data for com-
parison.

The fluctuations in the energy difference E„( S)
—E„( P) listed in Table II can be qualitatively ex-
plained in terms of the Thomas-Erhman shift. ' ' For a
state in the parent nucleus, the relation between the ob-
served energy E,N and the energy eigenvalue E&N is

ErN E
A.N ~

A,N

where b&N yzz[S——~(E„~)—8] is the energy shift, yz~
is the neutron reduced width, and 8 is the boundary
condition. There is a similar relation for the state in the
daughter nucleus. Assuming that the reduced width y&
and the boundary condition 8 of the states in the two
nuclei are equal, and subtracting the expression for E„N
from that for E„z, yields

E,p —E N
——(Eip Ei~ )+ [S—~(E„~) Sp(E„p—)]7'i .

E„(MeV) J'

11.092 3

10.997 2

10.368 2'

10.280 4

10.223 3

10.075 2

10.823
10.813 2'

T=1 STATES

32S

J' E (MeV)

3 4. 150

1 4.040
P 4.010

2' 3.880

2' 3.444
4 3.443

3 3.320
3.260

The second term on the right-hand side is the boundary
condition level displacement (hpz) between the state I,
in the parent nucleus and its analog in the daughter nu-
cleus. In proton scattering experiments, the shift func-
tion Sp(E„p } is the real part of the logarithmic derivative
of an unbound state wave function. The excitation ener-
gies of low-lying resonances in parent nuclei are usually
lower than the last neutron separation energy; in these
cases S~(E,~) is the logarithmic derivative of a bound
state wave function. '

The shift functions Sp(E„p) and Sz(E,z) were calcu-
lated with Coulomb wave functions and the bound neu-
tron wave functions, respectively. ' The reduced widths

yi were obtained from y&
——I z~/2P. The term

E&z —EzN contains the "normal" Coulomb energy shift,
electromagnetic spin-orbit effects, etc. We assume that
this term is constant and equal to 7.002 MeV, the excita-
tion energy of the first analog resonance in S.

The relative shifts of the analog and parent states in
P and S are shown in Fig. 5. The fluctuations in the

value of E„( S}—E„( P} are directly related to the re-
duced widths of the states. If two states are close in en-
ergy, and one is much stronger than the other, the posi-
tion of the stronger resonance can be moved so much
that the order of the resonances in the daughter system
is reversed with respect to the order in the parent sys-
tem. For example, the analog of the E„( P)=4.010
MeV, 2 state is identified at E„( S)=10.977 MeV
(y =37.5 keV, b,pN= —44.6 keV), while the analog of
the E„( P)=4.040 Me V, 1 state is identified at
E„( S)= 10.823 MeV (y = 153.4 keV, hp~ = —173.6
keV). This simple approximation accounts for about
70%%uo of the observed relative shift between the parent

FIG. 5. Comparison of T= 1 states in the parent nucleus ' P
and the daughter nucleus "S. For fragmented states, the cen-
troid energy positions are plotted. Note that the order of the
1 and 2+ states is different in the two nuclei. The strong 1

state has a very large Thomas-Ehrman shift.

and daughter states, providing additional evidence that
the analog state assignments are correct.

C. Proton strength

Since the resonance laboratory width I =2Py con-
tains the kinematic factor P, which usually varies several
orders of magnitude for the energy range of our experi-
ments, it is more reasonable to examine the reduced
width y . In Fig. 6 the reduced widths, cumulative re-
duced width, and positions of the resonances are plotted
versus incident proton energy, for each I and J value.
In Fig. 7 the same quantities are plotted for each s andJ" value. The reduced width y (E) plot gives the
strength of the resonances and the strength distribution.
The cumulative reduced width Xy (E) shows the
smoothness of the strength distribution. Any large fluc-
tuation in strength is easily seen in this plot, which
makes it useful in the identification of analog reso-
nances. '

The top part of Fig. 6 shows the s-wave and d-wave
strengths of ten 1+ states. The cumulative reduced
width strongly suggests that there is an analog resonance
near E =2.340 MeV. A 1+ state was found in the (d,p)
reaction at E„( P)=4.200 MeV. The energies also sug-
gest that this resonance is an analog, but there is no reli-
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able neutron strength information for comparison.
The 2 resonances are shown in the bottom part of

Fig. 6. The states are evenly distributed both in position
and strength for I=1 and I=3. The I-mixing ratio is
usually small. The resonance at E =1.250 MeV is a
known analog resonance, and the resonance at
E =2.181 MeV is identified as an analog in the present
experiment.

Figure 7 (top part} shows the strength of thirty-three
1 resonances for channel spin s=0 and s=1. Many of
these states have ao decay. The shape of a 1 resonance

in elastic scattering, and the ao angular distribution for a
1 state, are both very sensitive to the channel spin mix-
ing ratio. Thus the strengths for di8'erent channel spins
are better determined for 1 resonances than for states
with other J". The strengths are evenly distributed ex-
cept for the analog resonance near 2.00 MeV.

The strength distribution for thirty-six 2+ levels is
shown in the middle part of Fig. 7 for the two channel
spins. Since there is some ambiguity in determining the
s-mixing ratio for 2+ levels, the strengths for diS'erent s
values are more uncertain than for 1 states. The reso-
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FIG. 7. Proton reduced widths vs energy for 1, 2+, and 3 resonances in ' S. The reduced widths are plotted for different
channels spins.

nances around E =2.00 MeV are identified in the
present experiment as fragments of an analog state.
There also may be an analog state near E =3.23 MeV,
but there are no (d,p) data for comparison.

The strength information for twenty-five 3 reso-
nances is shown in the bottom part of Fig. 7. The
strengths are again presented for the two channel spins.
There are some uncertainties in the s-mixing ratios, espe-

cially for small resonances. The strong resonance at
E = 1.403 MeV is an analog state.

D. Alpha strength

The energy region of the present experiment is above
the a+ Si threshold at E =6.95 MeV and below the
' 0+' 0 threshold at 16.54 MeV. The a decay widths
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provide important information on the a-cluster struc-
ture. The alpha reduced widths for 1,2+, and 3 res-
onances are shown in Fig. 8. It is convenient to consider
the a strength in units of the Wigner limit:
y~=3h /2ma, where m is the reduced mass and a is
the channel radius. In the present experiment, the aver-

age a strengths are small (about 0.02 y~), although
several strong resonances are observed with widths
about 0.10 y~. The strongest resonance with ao decay
(at F. =1.516 MeV) has a reduced width of 0.27 y~.

Since the a particle and the ground state of Si have
T=O, the analog resonances (T=1) should have zero a
decay width if isospin is strictly conserved. However,
the 2+ analog states near Ep 2 00 MeV have a decay.
The resonance at E =2.022 MeV has a reduced width

y =0.04 y~. The energy and proton strength of this
resonance agree well with the value obtained by Kalifa
et al. This state appears to have appreciable isospin
mixing.

E. Comparison with shell model

Consider the states produced when a proton is added
to a shell model orbit nlj. For a target nucleus with pos-
itive neutron excess (N —Z}, the isospin of the target is

T, =(N —Z)/2. The addition of a proton to the target
leads to excited states with isospin T =T,+—,'. The rela-

tions between the total spectroscopic strength for a pro-
ton added to the target and the number of the neutron
and proton holes for the orbit nlj are'

Gz( T ) = ( neutron holes )„&&,
1

+
G (T )=(proton holes)„,,

1
(neutron holes)„~i,X —Z+1
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where ( holes ) „&z is the average number of holes in the
orbit nlj.

In the present experiment T, = —,', T =0, and T =1.
The spectroscopic strengths 6 are obtained from
G = I it, , where I is the observed laboratory width
and I, p

is the single particle width. The single particle
widths were estimated by I, =2P(R)5A' /(8mR ),
where P(R) is the penetrability of the Coulomb barrier
at the radius R=1.25(A '~3+1}. Since this approxima-
tion reproduced the single particle widths for a number
of resonances in this mass region, ' it should be reliable
enough for a qualitative comparison with the shell model
predictions.

The resonance parameters obtained in the present ex-
periment are in the LS coupling scheme, while the shell
model calculations are in the jj representation. In the
two schemes the same angular momenta —the spin of
the incident particle i, the spin of the target I, and the
orbital angular momentum l —are combined in two
ways (i+I =s, s+1=J and i +i =j, I+j =J).
Without complete information (including signs) about
the reduced width amplitudes, the transformation of the
reduced widths from one representation to the other
cannot be performed. However, if the signs of the am-
plitudes are assumed random, the reduced widths in the
two representations have the relation

y = g(2 +s1}(2j+1)W(IiJl;sj}y,&J,
slJ

FIG. 8. Alpha reduced widths vs energy for 1,2+, and 3
resonances in 32S.

where W(IiJl;sj) is a Racah coefficient.
Transformed strengths and shell model calculations

for the energy range of the present experiment are listed
in Table III. The shell model predictions were obtained
by diagonalizing in the complete d5/p s]/2 d3/2 basis
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TABLE III. Spectroscopic strengths.

nlj
Number
of levels'

Present work

Gp( T( + T) )

Shell model calculation'

Gp( T( ) Gp( T ) Gp( T +T )

ld5/2
+1/2

1d3n
2p3/2
if7n

45
21
48
46
26

0.106
0.046
0.109
0.691
0.385

0.032
0.002
0.001

0.100
0.050
0.084

0.132
0.052
0.085

Note that due to s and I mixing, a single resonance often contributes to more than one nlj.
G is the spectroscopic strength (=I ~/I, ~ ), T =0 and T, =1.

'From Kahfa et al. (Ref. 2).

space a Hamiltonian which reproduces the single-hole
spectrum of A=39 and simultaneously yields a root
mean square best fit to a selected set of well-known level
energies in the A =32-38 region. The spectroscopic
factors for the S resonances were calculated up to
E„( S}=14.60 MeV. The present experiment provides
data in the range E„=9.83-12.74 MeV. Analog reso-
nances are not identified for much of the energy range of
this experiment, which makes the comparison for
separate isospin questionable. We therefore compare
only the total strengths (summed over the two T values);
the experimental value agrees very well with the shell
model calculations.

F. s-wnve strength functions

The Bartlett spin-exchange force in the nucleon-
nucleon interaction would result in a potential term
which is dependent on the coupling of the spins of the
incident nucleon (i) and the target nucleon (I). For s-
wave resonances, this potential V' has the form'

V'=0. 5[J(J+ 1) I(I +1} i (i —+ 1)—]Vq/A,

where J is the spin of the compound nucleus, A is mass
of the target and V2 is a constant. This extra potential
term vanishes for zero spin targets. For nonzero spin
targets, two s-wave strength functions with dilerent J
values can be obtained. Previous measurements for s-
wave proton resonances in Si obtained a ratio
Sz z/SJ 3

——3.5, while the result for s-wave resonances
in Mg was SJ,/SJ 2

——0.61. Proton resonance data
on other odd-mass targets would be valuable to establish
the systematics of the spin-spin dependence.

The large variation in s-wave strength function may be
due to the small sample sizes. To determine the
significance of a strength function ratio, Lynn' esti-
mates the probability P(O, b) that the observed ratio for
two strength functions has a value equal to or larger
than b, if the two samples are drawn from a Porter-
Thomas distribution. [For b & 1, the probability is
1 —P (O, b). ] In the present experiment J =0 and
J =1. Measured s-wave strength functions Sz 0 and
SJ &

are 5.97X 10 and 1.25 X 10, respectively. The
strength function ratio SJ 0/SJ, is 0.48 and the es-
timated probability for this ratio is only 0.05. This large
difference in strength function is unlikely to refl.ect a true
spin-spin eEect, since there may be analog resonances
among the 1+ states. The (d,p) data provide energies

and spins for states in the parent nucleus P which cor-
respond to Ep )2.3 MeV, but there is no reliable
strength information. Thus the analogs can only be ten-
tatively identified. If these possible analog resonances
are eliminated, the s-wave strength functions are
SJ o ——5-97X 10 and SJ &

——7.70X 10; the ratio
Sz o/SJ &

——0.78 has an estimated probability 0.29.

G. Applications to astrophysics

Understanding nucleosynthesis and energy generation
during the oxygen burning phase of stellar evolution re-

quires information on reaction rates for many nuclear re-
actions in the A=32 region. During explosive oxygen
(and explosive silicon) burning, the reaction Si(a,p) 'P

plays an important role. The reaction Si(a,p) is crucial
for the final abundance of 'P and Si at the end of the
oxygen burning stage and the abundance of Si is clear-
ly important for the future silicon burning stage. Here
we use the present 'P(p, ao) Si resonance data and the

principle of detailed balance to obtain Si(a,po) 'P reac-
tion rates. A more detailed description of this analysis
will be published separately.

The reaction rates at astrophysically interesting tern-

peratures may be obtained by numerically integrating
the equation '

N„(ov}=f o(v)ug(v, T)dv

=3.734X 10' M' TQ

X f Eo(E)exp( —11.605E/T9)

)&dE cm mol 's
where P(u, T) is the Maxwellian distribution function, u

is the relative velocity of the interacting particles, X„ is
Avogadro's constant, cr(E) is the measured reaction to-
tal cross section in barns, M is the reduced mass, and E
is the center-of-mass energy in MeV.

Using the principle of detailed balance, the reaction
rates for the reactions 1+2~3+4+Q &p 34 and
3+4~1+2+Q34,2, where Q, z 3~ and Q34,2 are the re-
action Q values, can be written as

M, ~ (2J, + 1)(2J~+1)

M34 (2J3+ 1)(2J4+ 1)

Q 12,34
Xexp kT
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TABLE IV. Ground state thermonuclear reaction rates.

N„(o v &,.'
Present work Theory Previous work'

N„(ov ) ~'

Present work

Main

burning

1.0
1.5
2.0
2.5
3.0
3.5
40
45
5.0
5.5

2.54x 10'
1.59x 10
1.57x10'
6.43x 10'
1.64x 10'
3.20x 10'
5.26x10'
7.66x10
1.03 x 10
1.31x10'

2.50x 10'

4.88 x10'

1.24x 10-'
3.11x10-'
6.74x 10-'
2.04x10'
2.25 x 10'
1.36x 10
5.58x10'
1.76x 10
4.58x10'
1.03x104

3.92 x 10
4.14x 10-'
1.75 x 10-'
6.94x 10
8.11X 10'
4.28x 10'
1.74x 10
4.73 x 10'
1.08 x 10
2.09x 10

4.04x 10-'
1.01x 10-'
2.19x 10-'
6.66x 10'
7.33x 10'
4.43 x 10
1.81 x 10
5.67x 10'
1.46x 10'

HyC
HyC

ExC, HyOx
HyOx
ExOx

ExOx, ExSi
ExOx, ExSi

ExSi
ExSi

'N„(o)~ and N„(ou )~ are the thermonuclear reaction rates for "P(p,ao}2~Si and ~~Si(a,po}"p. Reaction rates are in units o
cm mol 's ', while T9 is in units of 10 K.
Woosley et al. (Ref. 21).

'Buckby and King (Ref. 23).
Hy is an abbreviation for hydrostatic and Ex for explosive; the notation is that of Clayton and Woosley (Ref. 22). For example,

HyC is hydrostatic carbon burning and ExOx is explosive oxygen burning.

where M is the reduced mass of the channel. The func-
tion o(u)uP(u, T}has a maximum at E =Ez for a certain
temperature T9, and there exists a "most effective" ener-

gy range (Ez &E'/2, E—z+AE/2) in which interacting
particle pairs make the main contribution to the ther-
monuclear reaction rates at that temperature. If the
temperature T9 is in the range 1.0-10.0, then the "most
effective energy" range for the Si(a,p) 'P reaction is
E' = 1.26-10.95 MeV. The thermonuclear reaction
rates can be obtained either by measuring the (a,pz) re-
action directly or by measuring the inverse reaction
(p,az) in the energy range E' =0.0—9.0 MeV. In the
(a,p) measurement at low energies, the reaction yields
are very small due to the large Coulomb barrier. The in-
verse reaction is easier to study. The integrated total
cross section was obtained for 'P(p, az) Si in the range

E~ =0.97—3.88 MeV. For ground state reactions, use
of the (p,a} cross section and integrating the product of
o (v)uP(v, T) gives the reaction rates at a particular tem-
perature. The values for N„(ou )~ and N„(o v ) v

are
listed in Table IV.

The present results agree with the calculations by
Woosley et ol. ' except at the lower end and upper
range of temperatures. This is probably due to the ab-
sence of resonance parameters outside of the rangeE' =0.98—3.88 MeV. The reaction at lower tempera-
tures may not be very important, since the Si(a,p) 'P
reaction is assumed to occur mostly at the stage of ex-
plosive carbon and explosive oxygen burning.

Buckby and King measured the Si(a,p} 'P reaction
directly; their results are also listed in Table IV. Their
reaction rates are lower than the present values by a fac-
tor of 2—3. However, the comparison is not direct, since
their (a,p) measurement was only performed at 250 keV
intervals with thin targets. Much of their energy region
(4.59&E' &10.5 MeV) is beyond the effective energy
range for T9=2.0—5.0 (2.0&E' &6.7 MeV}.

To determine Si(a,p) 'P reaction rates at the explo-
sive silicon burning (3.5 & T9 &5.5) stage, one needs ei-
ther to measure the (a,p) reaction directly at higher en-
ergies, or to measure the (p,a) reaction at higher ener-
gies than in the present experiment.

V. SUMMARY

Differential cross sections for the 'P(p, pv), (p,p&),
(p,av), and (p,a, ) reactions were measured in the range
E =1.00—4.01 MeV with an overall resolution about
400 eV. Resonance parameters were extracted for 143
levels with a multilevel, multichannel R-matrix code.
Level-level interference effects were discussed. Eight iso-
baric analog resonances were identi6ed in S; one of
them has a large Thomas-Ehrman shift. The spectro-
scopic factors are in excellent agreement with the (d,p)
measurements for the parent states. The resonance
strengths were compared with shell model predictions.
There is good agreement when strengths for the two iso-
spin values are summed. By using the principle of de-
tailed balance, the thermonuclear reaction rates for the

Si(a,po} P reaction were evaluated from the
'P(p, ao) Si resonance parameters obtained in the

present experiment. The reaction rates in the region
T9 ——2—5 are in good agreement with theoretical predic-
tions.
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