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The multiphonon method based on K =0 and K"=0+ phonons is applied to heavy mass de-

formed even nuclei, such as Th, U, and Pu isotopes. Special emphasis is put on the location and

properties of the "two phonon" states. Relative to an harmonic situation, the calculated energy

spectra are systematically dilated. The octupole vibrations with K =0 present larger anharmoni-

cities than the vibrations K =0+ which, in these nuclei, are found to be mainly of pairing nature.
The two modes appear to be weakly coupled. The "two phonon" states are predicted to have an en-

ergy of about 1.7 to 2.0 MeV and keep some collective character through their electromagnetic
transitions to the "one phonon" states. These conclusions are at variance with those of the quasi-

particle phonon nuclear model of Soloviev et al.

I. INTRODUCTION

In even-even deformed actinides, intrinsic states with
E =0 appear at an energy smaller than the two quasipar-
ticle gap. Those with negative parity are known to arise
from octupole correlations which play an important role
in these nuclei, while those with positive parity may be
due to pairing and/or quadrupole interactions.

In even Ra and Th, with mass number 222( A (228,
the lowest level with j: =0 appears very low in energy
and well separated from the first excited E =0+ state.
The multiphonon method (MPM), using only the
K"=0 octupole phonon as the building block (hereafter
noted as MPMl), has been successfully applied' to these
nuclei. Using a basis with reflection symmetry it was
possible, among others, to explain the lack of E"=0+
two phonon states of octupole nature in the region of
twice the energy of the one phonon state E =0

In heavier isotopes of Th, in U and Pu the first excited
E =0 states of both parities appear with energies of the
same order. The quadrupole, octupole, and pairing
correlations are therefore to be treated, a priori, on an
equal footing. In the rnultiphonon method one has there-
fore, to introduce two building phonons characterized,
respectively, by the quantum numbers E =0 and
E =0+. Such a version of the multiphonon method
(hereafter noted as MPM2) has been tested in a simple
model allowing an exact solution. Furthermore, an appli-
cation to the realistic case of U has been published. It
allowed us to study the coupling of the two I( =0 modes
with different parities and the anharmonicities of the cor-
responding vibrations in the nucleus. It was found that
the anharmonicities obtained in U were smaller than in
the light Ra and Th isotopes studied' within the MPM1,
and that these anharmonicities are not significantly al-
tered by the coupling with the E"=0+ mode.

In the present study we apply the MPM2 to a series of
Th, U, and Pu isotopes with 230& A (240. A special
emphasis is put on the properties of the first members 0~+,

0), 02+, 03 02 and 04+ of the family of the intrinsic lev-
els with E =0.

The general aim of this work is not to search for a fine

agreement between the calculated and observed proper-
ties, but rather to study the general qualitative behavior
of the lower collective vibrational states with E =0, when
going from one nucleus to the next.

In Sec. II a brief summary of the principles of the mul-
tiphonon method is given and the main ingredients of
the MPM2 are recalled. Our results are discussed in Sec.
III and compared to those of the quasiparticle phonon
nuclear model (QPNM) of Soloviev et al. in Sec. IV. Fi-
nally, some conclusions are drawn in Sec. V.

II. BRIEF SUMMARY OF THE MPM

where the operators a~ and a are relative to ferrnions and
where the matrix X has to be antisymmetric. Note that,
with this choice, the phonon vacuum

~

0) is identical to
the quasiparticle vacuum. The originality of the MPM
lies in the fact that the full commutation rules

[Q, , Q2]= ——,'Tr(X, X2)+ g (X~X, ) „a a„, (2)

of the phonons (I), are taken into account. This means
that the entities (I) are not approximated by bosons or
quasibosons as in the Tamm-Dancofff approximation
(TDA) or the random phase approximation (RPA). The
multiphonon states

The MPM is mainly an exact diagonalization of the to-
tal model Hamiltonian in the collective space spanned by
some selected phonons. These are chosen of the Tarnm-
Dancoff type and appear as a superposition of two quasi-
particles

Qj 2 y (Xj )lnn~m n
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E(p'q'pq)=(p'q'
I pq &

the antisymmetric matrices

~ .(p'q'pq) = (p'q'a. a pq»
and the quantities

B„„,(p'q', pq) = (p'q'a„a„a, a,pq ),

(5)

(6)

(7)

all related through coupled recursion formulae. The
main numerical task will therefore, be to calculate and to
store, in the cheapest way, these quantities (5)-(7).

To apply the MPM2 in a realistic situation a model
Hamiltonian H has to be chosen. Since the main aim of
this work is to look for the general trends of the K =0 vi-
brations and not for a fine agreement between theory and
experiment, we introduce the simplest H possible which
takes into account the interactions known to play a major
role in the region of nuclei under consideration. We
therefore, describe the deformed heavy mass nuclei as be-
ing built of Z protons and X neutrons, moving in a de-
formed Nilsson potential, and interacting through a con-
stant monopole pairing force and charge independent
quadrupole-quadrupole and octupole-octupole forces in
the following:

H =Hs. p. +Hp+Hg+Ho

where

are then built on the phonons which are supposed to play
an important role. In the version MPM2 the multipho-
non states are simply given by

I pq & =(p 'q') 'Qt'Qz'
I
o) (4)

where the Q, and Q2 correspond each to a K =0 phonon,
with positive parity when the index is 1, and negative
parity when it is 2. The states (4) do not form an orthog-
onal basis. (To simplify the language we shall however,
use this terminology within quotes in the forthcoming
text. ) The coeScient (p!q!) ' has been introduced in (4)
to simplify some formulae obtained within the method.
Since the Pauli principle is fully taken into account
through the second term of Eq. (2), the overlap matrix of
the states (4) and the matrix elements of the model Ham-
iltonian between them are not easy to calculate. It has
been shown that the introduction of a Wick's theorem
generalized to phonons or the use of recursion formulae
is required. In practical numerical situations the second
choice is more convenient. The explicit expressions of
the recursion formulae for the MPM2 can be deduced
from the general formulae of Ref. 4 or rederivated direct-
ly. Since they can be found in earlier works ' they are
not given again here. It seems however, worthwhile to
remind the reader that the matrix elements of any one- or
two-body operator can be given in terms of the overlap
matrix elements

Hg ————,'X~ g Q;Q, ,

Ho = —
—,'X3 g 0;OJ, (12)

with

L, = gC (j)C (j),
m

Q, = g (m(j)
I

R'F,o I
n(j))C (j)C„(j),

OJ= g (m(J)
I
R Y3O I

n(J))C (J)C„(j)

In these relations i and j refer to protons or neutrons
whereas m and n label the single particle states. To treat
the pairing, the canonical Bogoluybov-Valatin transfor-
mation is introduced to switch from the particle opera-
tors C and C to the quasiparticle operators a and
a . The model Hamiltonian is then, as usual, separated
in its different parts

H =Hoo+H), +H22+H3)+H40 ~ (14)

The explicit form of these different terms can be found in
Ref. 7 and are not repeated here.

To reduce, as much as possible, the number of parame-
ters, we fix the single particle potential parameters (Ir,p)
of the Nilsson potential for the whole region as recom-
mended by Lamm. The quadrupole deformation param-
eter e2 is taken (but reduced to two digits), for each nu-

cleus, from the tables of Lobner et al. No higher order
deformations are introduced. The intrinsic matrix ele-
ments of the R Y20 and R Y30 operators are evaluated
according to the prescriptions of Boisson and Piepen-
bring. ' The units are chosen so as to express the quad-
rupole J2 and the octupole 73 strength parameters in
keV. The BCS gap parameters 5 and b„are evaluated
empirically from the experimental masses. " Their values
may be obtained by use of several interpolation
methods. ' ' The spreading of the results indicate that
there is a possible uncertainty on the evaluation of the
b, 's of the order of = 100 keV.

To limit, in a reasonable way, the number of quantities
(6) and (7) to be calculated, one is forced to reduce, as
much as possible, the number of active orbitals intro-
duced in the treatment of the BCS equations. We used 20
active levels equitably distributed on each side of the Fer-
mi surface. The sensitivity of the results to an enlarge-
ment of the single particle basis will be discussed in Sec.
III. The pairing strength parameters G- are then fixed
through the usual gap equation of the BCS treatment.

To get the basic collective phonons one needs the an-
tisymmetric matrices X, and Xz. These are obtained by
solving the secular equations of the Tamm-Dancoff ap-
proximation for K =0 and I( =0+. In the first case,
the secular equation has the familiar form

x, g I
(m(j) IR'r30 In(j)& I'f'.(j)r .(j)=1

mnj

'
where

(j)C (j)C (j),
mnj

Hp ———g G LtL
J

(10)
& „(j)=[E„(j) co]—

(15)
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where

2F (tv)X2 ——1,
where

(16)

F= g [So(j)+S, (j)S„(j)+Sz(j)S„(j)],
J

S,(j)= g T (j)u'(j),

S2(j)= g T (j)v'(j),
(17)

S„(j) =D„(j)/D (j),
S„(j) =D„(j)/D (j),
with

T (j)=—,'(m(j)
~

R Y20
~
m(j)&f (j)t (j),

D (j)= [G (j)S3(j)—1][G(j)S5(j)—1]
—[G (j)S4(j)]',

D„(j ) =G (j )S2(j )S4(j ) G(j)S,(j)[G—(j )S5(j ) 1], —

D, (j)=G (j)S,(j)S~(j) G(j)S2(—j)[G(j)S3(j) 1], —

and

S3(j)=-,' gtt'(j)t (j),

S4(j)=-,' g u'(j)v'(j)t (j), (18)

S,(j)=-,' g v'(j )t„(j) .

(To simplify these expressions we have omitted the expli-
cit dependence in co of the quantities F, S;, T, D;, and
t „}Wenote tha. t the poles of F(tv) in (16) are no more
only simple two quasiparticle energies.

To solve Eqs. (15) and (16}one has to fix the quadru-
pole 72 and octupole X3 strengths. In principle, the
values of these free parameters are adjusted so as to get,
within the MPM, the lowest 0+ excited level at the energy
E(Oz+) equal to the observed energy and the lowest 0
excited state at an energy E (0, ) in the neighborhood of
the intrinsic band head energy E;„,. (This value E;„, can
be deduced from the observed energy of the first I"=1
state by subtracting the rotational contribution roughly
estimated to =10keV. )

As is well known, the nonconservation of the number

E „(j)=E (j)+E„(j)
gives the energy of the two quasiparticle states and where

f „(j)=u (j)v„(j)+u„(j)v (j) is the usual pairing fac-
tor. In the second case, where K =0+, the secular equa-
tion is more involved, due to the simultaneous effect of
the pairing and quadrupole-quadrupole interactions.
Since the corresponding generalized secular equation is
not usual, we hereafter give its expression

of particles introduces for K =0+ a spurious state
8'

~
0&, where N=g C C is the number operator. In

the RPA, it corresponds to the solution co=0 of the secu-
lar equation. In the TDA, which we use here, the spuri-
ous contribution is distributed over several low lying
states. We have to decide which solution of Eq. (16) to
retain as the building block of our version of the MPM.
In practical situations (i.e., at least for the nuclei studied
in this paper), the lowest TDA solution has an overlap
with the spurious state greater than 75%. Furthermore,
it has the same symmetry of the wave function as the
spurious RPA solution. Consequently, we prefer to use
the second collective solution, which has a much smaller
overlap with the spurious state (about 20%), as the build-
ing block of our approach.

In practical situations one has, of course, to truncate
the space spanned by the states (4). Another numerical
ingredient of the MPM2 is therefore the maximum value

n,„of the number of phonons p+q in the "basis" (4).
This n,„ is chosen so as to get the numerical stability of
the energies of the states 0, , 02+, 03+, 02, and 04+. In the
nuclei under consideration we used n,„=8. With this
choice the energies E(0, ) and E(02+) were obtained
within =3 keV and the energies E(03+), E(Oz ), and
E(04+ }within =10keV.

Since the states (4) do not form an orthogonal basis,
the eigenstates O'J of 0 cannot be obtained by a simple di-
agonalization. To get them we use the method of
Lowdin. ' As a consequence, the eigenfunctions %' of the
model Hamiltonian which we expanded in the states (4)

(19)

can generally not be interpreted in a simple way, e.g. ,
their components in the "basis" (4) can even be larger
than unity. Therefore, to get a better feeling concerning
the nature of these eigenstates we calculate the E1, E2,
and E3 transitions which link them. Since we restrict
ourselves, as explained earlier, to 20 active single particle
levels we need, of course, to introduce some effective
charges in the EA, transition operators. For the El we in-
troduce ez eN/A and——e„=—eZ/A, while for the E2
and E3 we use ev ——e(1+e) and e„=ee In practical . situa-
tions, calculations are done for the values e=O and/or
e=0. 10. The units are chosen so that

~

(0~+
~

EA,
~
0, &

~

=1 for A, = 1 or A, =3 and

)
(02+

~

E2
~

0&+ & )
=1 for E2 transitions. In the particu-

lar cases where some experimental results concerning
B(E2) and/or B(E3) are known we have also used the
usual single particle units (s.p.u. ).

As is well known, the BCS treatment introduces some
nonconservation of the particle number. To see how the
MPM2 eigenstates %' are affected by this symmetry
breaking, we have also calculated the deviations
hN =

~

(q'
~

8'
~

q'& N~ of the numbe—r of particles for
the five lowest lying excited MPM2 states.

We may also remark here that there is, a priori, no
reason to use the same values of the strength parameters
g in the model Hamiltonian and in the resolution of the
TDA equation. However, to restrict as much as possible
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the number of free parameters of the problem we use only
one value of 7 for each multipole.

+
0
0
0

0.003

0.04

1908
0.005 18pp

1783

III. RESULTS AND DISCUSSION
0.15 0.77 0.014

This section will be separated into two parts. In the
first one we study the sensitivity of the MPM2 results
versus the different ingredients of this approach in one
particular nucleus. For this purpose we have chosen U
which is, from the experimental point of view, one of the
best known even nuclei of this mass region and for which
our theoretical results have been published earlier. It
corresponds to a situation where the I =1,K =0 and
I"=0+,K =0 states are observed at energies differing by
less than 30 keV. It is therefore, a case where the cou-
pling between the two K =0 modes is expected, a priori,
to be of a certain importance. The second part of this
section is devoted to a systematic study of a series of nu-
clei of the same region: more precisely, we apply the
MPM2 to Th U and Pu. The aim of
this analysis is twofold: first, we want to point out the
general properties of the obtained MPM2 results within
this set of nuclei. Second, we discuss these versus the ex-
perimental information, bearing in mind that our arnbi-
tion is not, as discussed in Sec. I, to search for a fine

agreement between theory and experiment.

A. Sensitivity of the results of the MPM2 versus
the different ingredients of this approach in the case of ' U

As recalled in Sec. II, the MPM2 has some "parame-
ters" which we classify into two categories: (l) Those
which we call "numerical parameters" and which are
essentially related to the size of the MPM calculations.
(Clearly this family includes the value n, „defined earlier
and the number of active levels introduced in the BCS
treatment. ) (2) Those of dynamical nature which are,
with our choice of the model Hamiltonian, the strengths
of the residual pairing and multipole-multipole forces.

In Fig. 1, we recall the MPM2 results obtained with
these parameters fixed as indicated in Sec. II. The energy
spectrum relative to the ground state clearly exhibits
some anharmonicities: the 02, 03+, and 04+ levels appear
at energies larger than twice the energy of the 0, or 02+

states. According to the nonorthogonality of the MPM
states (4), the eigenfunctions are not easy to interpret.
However, a simple glance at the E1 and E2 matrix el-
ments demonstrate that favored electric transitions con-
nect some definite levels: e.g., the E1 transitions between
04+ and 0, or 02 and Oz+, the E2 transitions between 02
and 0& or 03+ and 02+. As a consequence, it seems natu-
ral, in this nucleus, to give some "one phonon" or "two
phonon" labels to the different calculated levels. (Note
the quotes used throughout the whole paper to recall that
these states are not pure one or two phonons. ) More pre-
cisely, 0, will be called the "one 0 phonon, " 02+ the
"one 0+ phonon, "whereas 02 will be named the "one 0
and one 0+ phonon, " 03+ the "two 0+ phonon, " and 04+

the "two 0 phonon" states. Furthermore, we will intro-
duce some anharmonicity ratios defined as following:

0.002 1.35 0.003 0.92 0.37

0+

0 0.03

781

768

1.0
1.0

0

FIG. 1. Relative energy spectrum obtained within the MPM2
for "U and with the following parameters: e, =0.22, 6„=660
keV, 6~=970 keV, 7&——1 keV, 73——9. 1 keV, and n,„=8. The
lhs and rhs give respectively the square of the intrinsic E1 and
E2 matrix elements.

R, =E(03+)/E(0~+),

R2=2E(0~ )/[E(02+)+E(0, )],
R3=E(04+)/E(0p ) .

(20)

In the present nuclei, the identification of the "two
phonon" states on the basis of favored electric transitions
and the definitions of the R ratios are rather evident.
We note that, in some cases, where the strength of the E1
transitions from the two 03+ and 04+ states to the 0, state
and the E2 transition from these levels to the 02+ state are
shared in a more equitable way, these identifications and
definitions may not be so easy; they may even be mean-
ingless.

Let us first study the sensitivity of these results vs n

In Fig. 2 we give the evolution of the energies of the "one
phonon" and "two phonon" states with n, „, all other
parameters being fixed. One observes on this figure that
the "one" and "two phonon" states behave differently:
the energies of the "one phonon" states oscillate with in-
creasing n, „depending on the parity of this parameter,
whereas the "two phonon" states have an energy decreas-
ing continuously with n,„. In the two cases, the varia-
tion of the energies decrease with increasing n,„ leading
to the required physical stability of the numerical results.
These different evolutions are due to the importance of
the H4O part of the model Hamiltonian, which connects
multiphonon states p +q with those having p +q+2. By
the way, we note that the part H3&, which was completely
absent in the MPM1 approach, ' does not contribute in a
significant way in the MPM2.

Now, we would like to discuss the sensitivity of the re-
sults versus the number of active levels introduced in the
BCS treatment. We first remind the reader that this
number must be chosen with some caution. It must be
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sufficiently large to lead to stable numerical results and
not too large to avoid the effects of states which would be
unbound in a more realistic finite potential well (e.g. , the
states with a large principal quantum number for which
some matrix elements of R Y&o with bound states would
become tremendously large). Earlier MPM1 calculations
for K =0 states' or for K =0+ vibrations' used for
each kind of particles 30 active levels equitably distribut-
ed on each side of the Fermi surface. This choice seems
to be a good compromise. Unfortunately, a similar
choice would lead in the MPM2 version to a tremendous
large number of 8 quantities to calculate. This would
render the parameter adjustment very time consuming.
We were therefore, forced to restrict ourselves to 20 ac-
tive levels of each type of particles for which one needs
already 30 min on a IBM 3090/200 computer for one
given parameter set. In practice, to study the sensitivity
of the results versus the number of active levels we made
therefore, two types of calculation. In the first one we
used the first version of the MPM build on K =0 pho-
nons and compared, in Table I, the results obtained with
30 and 20 active levels. In the second one, we used the
MPM2 and compared, in Table II, the results obtained

TABLE I. Comparison of the results obtained in U for the
MPM1 with 20 and 30 active levels. The 02+ is here the "two 0
phonon" state. All energies are given in keV.

20 levels 30 levels

Number of X protons
Number of X neutrons

X3

TDA( 1

E(0i )

E(0,'-)
R3

18
17
8.84

1172
775

1881
1.21

43
39
2.65

1407
775

1863
1.20

with 20 and 16 active levels. In each case the strength
parameters of the model Hamiltonian have been adjusted
as indicated in Sec. II. It is noticeable that the energies
of the "two phonon" states and the anharmonicity ratios
remain stable. For this reason, we conclude that the re-
striction to 20 active levels is justified and appears, from
the computational point of view, as a reasonable
compromise.

Now we look for the sensitivity of the MPM2 versus
the variation of the dynamical parameters. In Sec. II we
showed that the empirical values of the gap parameters
Ap and A„are extracted from experimental masses within
=100 keV. It is therefore, interesting to see how the
MPM2 results are affected by a variation of these gaps in
their domain of determination. First, we note that a vari-
ation of the b 's changes the position of the asymptotes of
the TDA secular equations (15) and (16) and influences
therefore, the nature of the TDA solutions used as the
building blocks of the MPM2. According to the nature
of these asymptotes the relevant parameter will be b„or

We made several calculations where 6 or A„have
been varied within =100 keV, and where the multipole-
multipole strengths parameters are adjusted, for each
choice of the 6's, so as to reproduce the empirical "one
phonon" energies. The variation observed for the ener-
gies, of the calculated "two phonon" states, were only of
the order of 30—60 keV, attesting the stability of the
MPM2 results and, by the way, their physical nature.

The influence of the variation of X3 on the MPM2 re-
sults, all other parameters being fixed, is shown in Fig. 3
and Table III. Several remarks can be done. With in-

959

829
805

803 779 781

TABLE II. Comparison of the results obtained in U for
the MPM2 with 16 and 20 active levels. All energies are given
in keV.

773 764 768 20 levels 16 levels

NUMBER OF PHONONS

FIG. 2. Evolution of the energies, E(0& ) and E(02+) of the
"one phonon" states, E(02 ), E(03+), and E(04+) of the "two
phonon" states in "U vs the maximum value n,„ofthe num-
ber of phonons p +q introduced in the MPM2 "basis" (4). The
parameters are the same as in Fig. 1.

X3

TDA(01

DA(OI+ )

E(0+ )

RI
R2
R3

9.1

1143
1257
768
781

2.30
2.30
2.48

11.3
1084
1213
770
712

2.37
2.33
2.51
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1165

812

1143

78]

1120

788

1097

796

1074

806

12-
11-
10-

775

8.9

768

9.1

724
680

9.5

635

9.7

7-

5-

OCTUPOLE PARAMETER
2

FIG. 3. Variation of the calculated MPM2 level energies in
' U vs g3, all other parameters being those in Fig. 1.

I I

1 S
I I I I I I I I

5 7 9 11

OCTUPOLE P~~&~

I I I

is 15

TABLE III. Variation of the predominant electric transition
probabilities linking the "two phonon" to the "one phonon"
states and of the anharmonicity ratios R, obtained in "U vs g3
in the MPM2. Note that for g3g9. 3 keV the definition of R&

and R3 are interchanged.

X3 8.9 9.1 9.3 9.5 9.7

creasing 73, the collective character of the K"=0 pho-
non increases, the energy E(0& ) decreases while one ob-
serves a slight enhancement (=10 keV) of E(02+), and
the difference between E(0& ) and the TDA energy coTD~

increases. As a consequence, the difference between the
harmonic TD approximation and the MPM2 results gets
more important with increasing collectivity of the octu-
pole building phonon. The evolution of the "two pho-
non" states is more involved. The 02 keeps the character
of the "one 0+ and one 0 phonon" and its energy fol-
lows the variation of E(0, ). To understand the evolu-
tion of the "two phonon" states nature, it is worthwhile
to consider the E1 transition from 03+ and 04+ to 0, and
the E2 transitions of the same 0+ states to the Oz+. It is
clear that around 73——9.3 the 03+ and 04+ exchange their
character: the 03+ is mainly the "two 0+ phonon" state
for low 73 and the "two 0 phonon" state for 73g9.3

and vice versa for the 04+ level. The definitions of R
&

and

FIG. 4. Variation of the anharmonicity ratio R3 ——E ("two
0 phonon")/E ("one 0 phonon") in U for a MPM1 calcula-
tion versus g3. The arrow indicating g, corresponds to the criti-
cal value where the first physical solution of the RPA disap-
pears.

R3 have to be interchanged when passing the pseudo-
crossing. Near this point their definition is somewhat

meaningless. We note on one hand, that R& is quite
stable, demonstrating that the variation of X3 does not
influence in a noticeable way the behavior of the "two 0+
phonon" state. On the other hand, R3 increases regular-

ly with I3. In Fig. 4 we give the variation of the ratio R3
in a MPM1 calculation vs g3. It is seen that for small
values of 73 the MPM1 leads practically to an harmonic
situation. Around and beyond the critical value 7„
where the first solution of the RPA disappears, R3 gets
rapidly greater than 2, and the energy spectrum appears
as dilated compared to an harmonic situation.

Finally, we have studied the sensitivity of the MPM2
results to the variation of Xz. It came out that this pa-
rameter does not play any important role. The results
presented in Fig. 1 are qualitatively not changed if one
varies even by 300% the value of Xz. This finding means
that the first excited 0+ stated (noted here 02+ ) is certain-

ly not of a quadrupolar nature, but mainly of pairing na-
ture. This conclusion is in total agreement with the ear-
lier work of Chasman. '

0+ 0+
03+~0

02 ~0(
02 ~02+
Ri
R2
R3

1.52
0.06
0.11
2.37
0.93
0.78
2.28
2.32
2.42

1.35
0.15
0.37
2.16
0.92
0.77
2.30
2.30
2.48

0.91
0.52
1.09
1.44
0.92
0.75
2.32
2.28
2.58

0.29
1.05
2.13
0.41
0.91
0.74
2.32
2.34
2.60

0.09
1.16
2.44
0.10
0.91
0.72
2.32
2.36
2.72

B. Application of the MPM2 to several Th, U, and Pu isotopes

Apart from the U used as a test nucleus in Sec.
III A, we applied the MPM2 to five other even actinides,
where some experimental information exists, and for
which the energy separation of the observed 02+ and 1&

states varies from 30 to =300 keV. For each of the stud-
ied nuclei ( Th, U, and Pu), we give, in
Table IV, the most interesting results obtained within the
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TABLE IV. Results obtained in the MPM2 for the six studied nuclei. All energies are given in keV. The electric transitions are
given in units where

~

(ground state
~

EA
~

"one phonon state" )
~

= l. Experimental information on possible "two phonon" states is

given for comparison where it exists. The energies marked with an asterisk correspond to states which can certainly not be interpret-
ed as "two phonon states. "

X3

~TDA(0

E(0+ )

(Ecc0—0—%s)

( Ecc0+0+ss)

Experiment

E(02 )

Experiment
R)
R2
R3
E1(0 0 ~0))
E1 (02 02+)

E2 (02 ~0) )

E2 (0+0+ 0+)

" rh

8.95
945
510
695

1740
1606

1381

2.31
2.29
3.41
0.980
0.890
0.880
2.37

232U

9.16
940
558
776

1630
1791

1534

2.31
2.30
2.92
1.210
0.730
0.930
2.44

234U

9.04
1143
768
781

1908
1800

1783
1237*

2.30
2.30
2.48
1.350
0.770
0.920
2.16

236U

9.24
1122
695
792

1775
1855

1722

2.34
2.32
2.55
0.750
0.730
0.910
1.71

238p

7.68
1055
605
749

1739
1708
1229*
1427
1592

2.28
2.35
2.87
0.460
0.900
0.880
1.43

240Pu

7.35
1020
599
884

1662
1819

(1411)
1526
1587

2.05
2.14
2.77
0.970
0.930
0.830
2.05

MPM2. We give the energies of the fitted "one phonon"
states 0& and 02+, the energies of the calculated "two
phonon" states "0 0," "0+0+," and 02 and the anhar-
monicity ratios R, , Rz, and Rs defined in Eq. (20). Ex-
perimental information on the possible two phonon states
is given for comparison when it exists. We also indicate
the value of the free parameter P3 of the theory and the
value ATDA of the solution of the TDA secular equation
for E =0 . We restrict the information concerning the
electric transitions to the two largest E1 and E2 linking
the "two phonon" and the "one phonon" states, in the
units indicated in Sec. II.

A few specific remarks can be formulated for some of
the studied nuclei and some general properties of the
MPM2 results become clear. The Pu is of particular
interest since it has often been considered as an example
where there exists some evidence for the observation of
the "two octupole phonon" states. Schmorak et al. ' ob-
served in the P decay of the isomeric state (7.22 min) of

Np two levels at 1411 and 1438 keV assigned to the
I =0 and I =2 states of a rotational band with E =0.
Assuming a positive parity for these levels, they found
some evidence for an interpretation as "two octupole
phonon" states: these levels decay mainly to levels of the
one 0 phonon band and, furthermore, they are not ob-
served in one neutron transfer reactions (d,p) and (d, t).
More recent experimental results' ' indicate the possi-
bility of a negative parity for these two levels, excluding
the given interpretation in favor of a two quasiproton
—,'+642 and —,

' 523 configuration. In an interpretation as
a "two phonon" state the level observed at 1411 keV
would have an anharmonicity ratio R3 of 2.36 vs 2.77 in
the MPM. We note that another 0+ level has been locat-
ed at 1526 keV. According to the corresponding value
R3 ——2.56, it may be a better candidate for a "two pho-
non" state. In Pu, with the parameters fixed as indi-
cated in Sec. II, we had some difficulties attempting to
reproduce the energy of the first excited 0+ state, which

TABLE V. Comparison of the calculated B(EA.,0~IF——A, ) where A, =2 and A, =3 with the experi-
mental results taken from Ref. 21.

Nucleus

238Pu

236U

234U

" rh

0+

0
0
0+

0
0+
0

2+

3
3
2+

3
2+
3

Energy

983

661
744
852

849
677
572

Experiment

3.8+0.5

30. +5
23. +3
2.3+0.3

26 +3
1.1+0.1

29 +3

Theory

1.0
1.2

17.4
9.4
1.2
1.5
8.9
0.1

12.4

Effective
charge e

0.0
0.1

0.0
0.0
0.0
0.1

0.0
0.0
0.0
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TABLE VI. Comparison of the most interesting results obtained for the six studied nuclei in the two versions MPM1 and MPM2
of our method. The units are the same as in Table IV.

E(cc0—'%l)

E("0 0 ")

R3

E1(2~1)

'"Th

510
1666
1740

3.27
3.41
1.020
0.980

232U

558
1620
1630

2.90
2.92
1.336
1.210

234U

768
1823
1908

2.37
2.48
1.690
1.350

236U

695
1775
1775

2.55
2.55
1.456
0.750

238Pu

605
1686
1739

2.79
2.87
0.800
0.460

240p

599
1649
1662

2.75
2.77
0.996
0.970

is obtained in the MPM2 at 749 keV, i.e., somewhat
lower than observed (942 keV). Nevertheless, we may
conclude that the 0+ state observed at 1299 can, by no
means, be interpreted as a "two phonon" state, its "ex-
perimental" anharmonicity ratio being much smaller
than that predicted in the MPM. This kind of conclusion
is similar to that drawn earlier for the 0+ states at 1044
keV and for the head of the K"=0 band at 1237 keV
observed in U (see also Table IV).

In Table V we compare the reduced transition proba-
bilities B(EA.,0~IF =A), in s.p.u. , for A, =2 and k=3 ob-
tained in the MPM2, using a=0 in the effective charges,
with the experimental results. ' More precisely, we give
the values of B(E2) for the transition from the ground
state to the rotational I =2 state of the first E"=0+
band (i.e., Oz+ in the MPM2 calculation) and the values of
B (E3) from the ground state to the rotational I =3 state
of the E =0 band (noted 0, in the MPM2). In this
table we see that the order of magnitude of the calculated
B(EA, ) are the same as those observed. In some cases we
also give the values obtained in the MPM2 using @=0.10
in the effective charges, just to show that the correspond-
ing variation goes in the right way. As mentioned in Sec.
I, our aim is not to search for a fine agreement between
theory and experience, but only to look for the general
properties of the MPM2. The results of Table V clearly
illustrate that the description of the observed electric
transitions is correct.

Finally, in Table VI we compare the results concerning
the "one 0 phonon" and "two 0 phonon" states ob-
tained in the two versions MPM1 and MPM2 of our ap-
proach. The comparison of these data shows that, even
in the case where the levels 03+ and 04+ have quite similar
calculated energies (e.g. , in Pu) the anharmonicity ra-
tios R3 are not affected in a significant way when one
switches from MPM1 to MPM2. The effect of the cou-
pling between the two K =0 modes, of different parity, is
better seen on the variation of the El(2~1) transition
from the "two 0 phonon" state to the "one 0 phonon"
state when one uses two building phonons instead of one.
To see some noticeable effect of this coupling, it appears
that the separation of the two observed 02+ and 1, levels
and the collectivity of the two types of phonons must
combine their effects so as the 03+ and 04+ states appear at
neighboring energies.

To evaluate, in some way, the effects of the nonconser-
vation of the number of particles induced by the BCS

treatment, we have also calculated, in all the studied nu-
clei, the deviation hN of the number of particles for the
five lowest excited MPM2 states. As for the U results
published earlier, it was found that this deviation was
generally =1 and always &2.

The analysis of the data presented in Tables IV and VI
allows us to state some general properties of the MPM2
results, which were also indicated earlier for U. First,
we note that the quadrupole force parameter X2 does not
play any important role for the description of the "one
phonon" state. For the "two phonon" states, we observe
three cases. In U and ~Pu, the 03+ is mainly the "two
0 phonon" state and the 04+ the "two 0+ phonon" state.
In Th and U it is the other way round. For U and

Pu these identifications are a little less evident. But, in
any case, it is observed that the "two 0 phonon" state
has an anharmonicity ratio greater than the "two 0+
phonon" state, according to the fact that the octupole
phonon is much more collective.

IV. COMPARISON BETWEEN THE MPM
AND THE QPNM OF SOI.OVIEV et al.

The two methods have in common that they aim to
find an explanation of the lack of the "two phonon"
states in the energy region of twice the energy of the one
phonon state. On one hand, as we have seen in Sec. III,
the MPM finds that the "two phonon" states appear with
anharmonicity ratios )2.3 and that they keep some col-
lective character in their electric transitions to the "one
phonon" states. On the other hand, in the QPNM of
Soloviev et al. , it was concluded that the "two phonon"
states are pushed to energies of the order of =3-4 MeV,
where they lose completely their collectivity since they
are fragmented over many levels. The aim of the present
section is to try to explain this difference in the con-
clusions of the two models.

We therefore, remind the reader of the different steps
of the QPNM. This model starts with phonons of the
RPA type

Q = g [(X )„,a„a, —(Yl) a, a„], (21)

where the index j summarizes the quantum numbers
which identify the phonon. As in (1) the a and a opera-
tors stand for quasiparticles. But, the corresponding sin-
gle particle states are now eigenfunctions of the Woods-
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Saxon potential, the parameters of which are tailor stud-
ied for each definite mass region. The model Hamiltoni-
an of the QPNM includes, in addition to the constant
pairing force, numerous terms of the multipole-multipole
expansion of the long range force. Even in some cases, a
rather sophisticated spin-multipole force is also intro-
duced. The matrices X~ and Y. in (21) are obtained by

solving, for each multipole Ap, the secular equation of the
RPA. The strengths X&„are fixed, for each multipole, so
as to fit, within the RPA, the lowest solution of the RPA
to the observed level energy. The trial wave function of
an excited nuclear state in an even nucleus is written in
the form

~

n)= zR„~(kp)Q;~+ zP„,, tky)Q, ~Q; 0),
k jl

(22)

where the index k stands for the number of the solution
of the RPA equation for a given multipole Ap. The index
i summarizes the triplet kkp. The sum over k =k'A. 'p'

and l =k "A,"p" is restricted to values of 1,'p' and 1,"p"
compatible with A,p. In practical situations, Soloviev
et a/. introduced the first ten solutions of the RPA equa-
tion for each of the following multipoles Ap =20, 22, 30,
31, 32, 33, 41, 43, and 44. (In some specific cases even
more higher multipoles are introduced. ) This choice al-
lows them to take into account the coupling of the collec-
tive phonons to some of the noncollective ones. The en-
ergies E„and the coefficients R and P of the trial wave
functions are then obtained by a variational procedure.

As in the MPM„ the Pauli principle is taken into ac-
count in the QPNM. In the evaluation of (n

~

n ) one
has to calculate terms like (OQt, Q~'Qj Qt 0) which can be
written in the form

OQt'Q'Q Qt 0~ =5 '5n'+5 t'5't+%'(j i 'j I) (23)

As this stage, the authors of the QPNM make the ap-
proximation which consists to retain in (23} only the di-
agonal j=j' and 1 =1' contribution in %'. It has been
shown that this approximation can reasonably be made.
Within this framework, the "two phonon" states are
pushed to energies of the order of 3-4 MeV. In this en-
ergy region the density of levels is, of course, very high
and the experimental identification of these specific states
is quite impossible since, according to the predictions of
the QPNM, they lose completely their collectivity.
Therefore, the authors of the QPNM conclude that "two
phonon" states do not exist in deformed nuclei.

In Sec. III, we have shown that the stability of the
"two phonon" states is very sensitive to the maximum
number n,„of the phonons p+q introduced in the
"basis" (4). In particular, it was found that for n,„=3
and a fixed value of 73, one observes an important over
estimation of the energy of the "two phonon" states. As
a consequence, it seems not surprising to us that, in the
QPNM, these states are pushed to high energies. Indeed,
the trial wave function (22} used by Soloviev et al. only
takes into account one and two phonon contributions and
neglects the effect of the components with 3, 4, and even
more phonons which, for eolleetive phonons, have been
shown in Sec. III to play an important role.

TABLE VII. Comparison of the energies (in MeV) of the
"two phonon" states obtained in the QPNM of Ref. 5 with
those calculated in the MPM2 where n,„=3.
Nucleus

240p

232U

0+

0
0+

A, iP I k 1

201
301
201
201
301

A,~,k, QPNM MPM2

201
301
301
201
301

4.2
3.3
4.2
6.0
3.7

2.5
2.8
2.4
2.8
2.5

In Table VII we compare the results of the QPNM and
the MPM2 for the energies of the excited states 0+ and
0 for which the wave functions have their main com-
ponent on two collective phonons. The values given in
the column labeled QPNM are taken from Ref. 5, those
indicated in the column labeled MPM2 are obtained with

n,„=3. At first sight, this choice of n, „might appear
surprising. However, if one wants to compare with the
QPNM, where the basic phonons are of the RPA type
and contain therefore, some effect of the part H40 of the
Hamiltonian, one also needs to introduce the effect of this
term in the MPM2 and it is only for n,„)3 that this
term influences the one phonon collective state. It is
worthwhile to note that with this value of n,„, the fitted
strength parameters X2 and 73 are only slightly different
from those using n,„=8. As a consequence, it seems
difficult to admit that the effect of the components with 3,
4, . . . , 8 phonons in a generalized form of (22) might be
simulated by a simple renormalization of the strength pa-
rameters 7, as already assumed in Ref. 5.

Even if the energies obtained with the MPM2 and
n,„=3 are somewhat smaller than those given by the
QPNM, it is clear, in conclusion, that a collective "basis"
with a small number of phonons over estimates the ener-
gies of the "two phonon" states compared to a "basis"
where n,„ is fixed on a criterium of stability, as in Sec.
III.

V. CONCLUSIONS

We would like to summarize the different important
points we learned concerning the vibrational states with
EC =0 in the mass region 224 & A (240.

First, we confirm, as already expected from Chasman's
work, ' that in this region the "one phonon" E =0 states
can practically be described by taking into account only
the pairing and the octupole degrees of freedom. This
leaves, in fact, only one free parameter 73 in the problem.

Second, as for the quasiparticle phonon nuclear model
of Soloviev et al. , the full treatment of the Pauli principle
leads to dilated energy spectra. However, at variance
with the mentioned model, we found that the "two pho-
non" states are predicted in an energy region of 1.5 —2.0
MeV. Further, they keep some collective character in
their electric transitions to the "one phonon" states. This
property should help to find some experimental evidence
for their existence. A systematic experimental search of
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these states remains to be undertaken. %e may add here
that similar conclusions have recently been obtained for
the "two y phonon" states in the rare earth region.

Third, we found that the E =0+ mode, which is
mainly of the pairing type in this region, is only weakly
coupled to the octupole mode. This gives, a posteriori, a
justification of our previous use' of the MPM1 version of
our approach. It would be of interest to see if this cou-
pling also remains small in the case where the I( =0+ is
expected to be of collective quadrupole nature (e.g. , in
's2Sm and its neighbors}. The same question concerning

the coupling with the y phonon can also be asked. Un-
fortunately, in this last situation the MPM "basis" must
be extended so as to include 4 phonons: the present two
E =0 phonons, the y phonon with I( =2+ and its time
reversed, carrying K = —2+. This is, at least for the
moment, out of the possibilities of the available comput-
ers. Furthermore, we feel that this improvements of the
MPM should take place after some others dealing e.g.,
with a proper treatment of the nonconservation of the
number of particles and with the introduction of the cou-
pling with noncollective (two quasiparticle) states.
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