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We use the eigenstate of the shape operators in second quantized form to give a geometrical in-

terpretation to each boson excitation in the interacting boson model. For well-deformed systems a
method is presented by which the intrinsic components of any boson number preserving operator
can be calculated in second quantized form and to leading order in the boson number. In this way
vibrational and rotational modes are identified and the corresponding excitation energies and mo-

ments of inertia are calculated to leading order in the boson number. The intrinsic components of
the E2 transition operator are also calculated. Using these results several E2 transition rates are
calculated to leading order in the boson number.

I. INTRODUCTION

The interacting boson model has been subjected to
many investigations, all having basically two aims in
mind. The first is to relate it to the geometrical model,
i.e., to determine the shapes and shape phase transitions
described by the interacting boson model, and to give a
geometrical interpretation to each boson excitation. The
second aim is to obtain information on the excitation en-
ergies, moments of inertia and transition rates of the in-
teracting boson model without resorting to a diagonali-
zation of the IBM Hamiltonian. The techniques em-
ployed in these investigations include the usual Ritz
variational principle, ' classical approximations, the
generator coordinate method, ' ' " the random phase
approximation, ' ' and the self-consistent cranking
model. '

In a previous paper' we illustrated by means of a U(3)
interacting boson model how the eigenstates of the posi-
tion operators in second quantized form can be used to
achieve the two goals set above. Using this state it was
not only possible to give a geometrical interpretation to
the boson model without leaving the domain of quantum
mechanics, but a procedure was also developed by which
the parameters of the geometrical description for the de-
forrned case can be calculated in a series expansion con-
trolled by the inverse of the boson number. In particu-
lar, excitation energies and moments of inertia can be
calculated to different orders in the inverse of the boson
number. Another advantage of this approach was that it
allowed for a proper treatment of the symmetry of the
system. As we show in Secs. V and VI this property is
extremely advantageous as it avoids the introduction of
spurious excitations.

The present paper is organized in the following way.
In Sec. II we discuss the eigenstate of the shape opera-
tors in second quantized form for the U(6) interacting
boson model. Section III is devoted to the case of a de-
formed axially symmetric system. In Sec. IV a well de-
formed system is considered and some useful approxima-
tions are introduced. These results are applied to a

quadrupole-quadrupole interaction in Sec. V to calculate
excitation energies and moments of inertia. In Sec. VI
we calculate E2-transition rates, and finally we present a
discussion and conclusions.

II. EIGENSTATE OF THE SHAPE OPERATORS
IN SECOND QUANTIZED FORM

The interacting boson model attempts to describe the
low-lying collective modes of an even-even nucleus by

assuming that the valence nucleons tend to form pairs
coupled to angular momentum 0 and 2. It is further-
more assumed that these pairs can be treated as exact
monopole and quadrupole bosons. ' Boson creation
operators s,d„(jtt= —2, —1, . . . , 2) and annihilation
operators s,d„are introduced for the six levels. As is
well known, the dynamical group associated with this
model is a U(6) group generated by the 36 bilinear com-
binations' (Schwinger representation) s d„, d„s, d„d„,
and s ts. Any one-plus two-body operator which
preserves the total number of bosons, such as the in-
teracting boson model (IBM) Hamiltonian or elec-
trornagnetic transition operators, can be written in terms
of the generators of the U(6) group. It is also well
known that the U(6) group contains an SO(3) subgroup
generated by the Cartan-Weyl basis'

L+ =+&10(d d )+, ,

Lo ——&10(d d)(') .
(2, 1)

Here the parentheses denote angular momentum cou-
pling and d„denotes the covariant components of the
annihilation operators.

The boson Fock space in which the U(6) algebra dis-
cussed above is realized, can carry only completely sym-
metric U(6) representations labeled by the eigenvalues of
the first order Casimir operator, 8'=s s +dt. d, which is
just the total number of s and d bosons 1V =n, +nd. To
introduce shape operators and their eigenstates we em-
ploy a generalized Holstein-Primakoff realization for
the symmetric U(6) representations instead of the
Schwin ger representation. Eliminating the s boson,
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which is a scalar under the SO(3) group, leads to the fol-
lowing Holstein-Primakoff realization for the symmetric
U(6) representation [N]:

s d„~(N —8'q)'~ d„,
d„s ~dt (N —&d )'~z,

(2.2)

s s~N —8'd,

kd ——d d= gd„d„.

For this realization the carrier space is the subspace

The integration is performed over the entire five-

dimensional real space R . In the Appendix we also
show that

(c7
~

a ') = g 5(x„—x„')5(y —y' ) 5(ao —ao) . (2.7)
p&0

The completeness relation (2.6) involves the identity
on the d boson Fock space, and hence it involves a
direct sum of all the symmetric U(6) representations [N],
N =0, 1,2, . . . . To consider a particular symmetric
U(6) representation, [N], we introduce the projector

P„=~ ~
nz Pf] no fJ ] ff z)(Pz Pf, np

~
nz, n„no, n &, n z ):nd ——g n„&N

P

of the d boson Fock space.
Shape operators can now be introduced in the usual

way:

(2.8)

where the primed sum denotes that the summation is
carried out over all values of n (iz= —2, —1, . . . , 2)
subject to the restriction nd ——g„n„&N. Furthermore
1~ denotes the identity on the symmetric U(6) represen-
tation [N]. The completeness relation (2.6) becomes

a&
—— —(d„+Z&) .

2
(2.3)

(2.9)
Note that the shape operators form the components of a
self-adjoint tensor operator, i.e., a„=(—1) a —p. In
the Appendix we prove that the state

~

a) = 5&4exp( —
—,'a a)exp( ——,

'dt d +&2a dt)
~

0),

(2.4)

where the complex numbers a„satisfy a„'=(—I)"a „, is
a simultaneous eigenstate of the shape operators. %e
use the notation a to denote the set of complex variables

[a„j„z.The bra state, (a ~, is given by

It is important to note that all the U(6) generators of Eq.
(2.2) commute with Pz.

A transformation to intrinsic variables and Euler an-
gles can be performed in the usual way '

a„=gD„"„(Q)a„az——a z, a, =a, =0 . (2.10)

Note also the transformation properties of the d boson
creation operators under rotations

R(Q)d„R '(Q)= QD„„d„. (2.11)

In the Appendix we also prove the identity

f,da a)(a
~

=1,
where we have introduced

and

da= g dx&dy„dao
p&0

a„=x„+iy„, p & 0,
a„=(—1)"(x „iy „}, p &—0 .

( a
~

= (0
~

exp( ——,
' d d +v'2a d }exp( —

—,'a a )

(2.5)

(2.6a)

(2.6b)

(2.6c)

Here the rotation operator, R (Q), is given by

R ( Q ) =exp( i H, L, )e—xp( i 8zL~ )exp( —i 83L, ),—
(2.12)

and the Cartesian components of the angular momentum
operators are defined in the usual way [see Eq. (2.1)]:

L„= —(L+ +L ),1

v'2

L = —(L~ L), —
y ~ + (2.13)

L, =La .

Introducing the transformation (2.10) in the state
~
a)

and using (2.11) gives

~

a) =
~
Q, ao, az) = exp[ —

—,'(ao+2az)]R(Q)exp[ ——,
'dt. dt+&2[aodo+az(dtz+dt z)]) ~0)

=R(Q)~ao, az) . (2.14)

Performing the transformation (2.1) in the completeness relation (2.9) leads to (see for instance Ref. 21)
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with

f dQ f dr(ao, a2)R (Q)P&
I
ap, az ) & ao, az

I
PzR '(Q)= f 1QR (Q)Q;„«R '(Q)= lz,

S

(2.15a)

Qi f dr(~p ~2)PN I~o ~2&&~o ~2 IPx
S

dr(ap, a2) = i 2a2(3ap —2a 2 )dapda2,

dQ=sinO2dO&dO2dO, .

(2.15b)

Here d~ is the usual Bohr-Mottelson volume element ' and dfL the usual volume element for the Euler angles. 2l, 22

The region of integration in (2.15) is (ao, a2)G I [0, 00 ))& [O, v'3ao/~2]I—:S. The operator Q;„«can be interpreted as

a projector onto an intrinsic subspace. Rotating this subspace over all possible orientations gives back the whole

space.
In the usual P and y representation with ao ——P cosy and a2 ——(P/i/2)sony, Eq. (2.15) reads

f dQ f g'dP f dysin3yR(Q)P& IP, y)&P, y I
PzR '(Q)= f dQR(Q)Q;„„R '(Q)=lz, (2.16a)

0 0

with

I p, y) = exp( —
—,'p )exp[ ,'d —d —+v'2[pcosydo+ —psiny(dz+d 2)]I I

0) . (2.16b)

The region of integration here is (p, y)K[[0, ~)
X [0,n'/3] J =S. As usual the integration is restricted to
the region S. The reason for this is that the coordinates
a„are scalars with respect to rotations of the intrinsic
axes [see Eq. (2.10)]. Furthermore, any point in the ap-

az or P-y plane can be reached from a point in the re-
gion S by a combination of a rotation of the intrinsic
axes through n. around the x axis, a rotation of m/2
around the intrinsic z axis, and a cyclic permutation of
the intrinsic axes (which can also be built up out of rota-
tions of the intrinsic axes}. To ensure that the coordi-
nates a„are single valued, the integration must therefore
be restricted to the region S. Integrating over the whole
ap-az or P-y plane would simply give rise to a multipli-
cative factor of 6 in the completeness relations (2.15) and
(2.16). This can also be verified directly from the prop-
erties of the states

I ap, a 2 ) and
I
P, y ) and the SO(3)

group property

f dQR(Q)R(a, P, y)= f dQR(Q) . (2.17)

The state
I
o. ), cast into the form of Eqs. (2.14) or

(2.16b), can be used to obtain a differential operator real-
ization of any boson operator written in terms of the
U(6) generators of Eq. (2.2). Our main aim, however, is
not to cast the IBM into a differential form, but rather
to give a geometrical interpretation to each boson excita-
tion and to calculate excitation energies and transition
rates approximately for well deformed systems. We
therefore only indicate briefly how a differential operator
realization can be obtained. Suppose that the operator
0„' transforms like the SO(3) representation l and that it
is written in terms of the U(6) generators of Eq. (2.2).
Using the completeness relation (2.15), we can write

0 q
——0 „'1~—— d 0d~ ao a2 R 0 Px ao a2 ao a2 DEKKO KR ' 0 P~,

K
(2.18)

1 a
& ao, a2

I

—(d2+d 2 ) =—2a&+
&2 2 Ba2

&~o ~2
I

a
&&p &p

I +—(d2+d 2)= 2&2
g

&+pv'2 2

where integration over the Euler angles and the region S
is understood. A few simple relations can be derived

Iwhich enables one to transform the operator 0 K into a
differential form. We have

1 L
&+0 +21 (di+d i)=&ao ~2 I

2 2(a2+ 3ao/ 2)

iLy-
&~o ~2

I

—(di d —i)=&~o ~2
I

2 2(a2 — 3ao/ 2)

(2.19)

1 iL
&&p &p

I
—(di d i)=&&p &2

I2 2(a2 — 3ap/ 2)

L
&ap, a2 I ~—(d, +d, }=&ap, oz IV2 2(a 2+ v 3ap/v'2)

&&p &2 I
—(d2 —d 2)=&&p &p

IV2
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L,
(ao, az I

—(d, —d, )=(ao,a, I

4a&

a
&ao az

I
do= — ao+

&Rap
&ao ac I

a
(ao, az

I
dp= ao —

&
&ao az

I

Rap

Here the operators L„,L, and L, are still the boson an-
gular momentum operators of Eq. (2.13) and the relation

Bf(6„)[f(d„»L; ) = g ~d
" [d. L; ),

v

(2.20)

where f is an analytic function, was used. This relation
can easily be proved if the boson commutation relations
and the commutation relations of the boson operator
with the angular momentum operators are used. Finally
we note the well known relations '

L„R '(0)=L,'R '(0),
L R '(Q)=LyR '(0),
L,R '(0)=L,'R '(0) .

(2.21)

Here L,' denotes differential operators acting on the
Euler angles and the prime denotes that it is the com-
ponent with respect to the intrinsic frame. ' With the
aid of Eqs. (2.19) and (2.21) the operator 0«can be
transformed into a differential form. It should, however,
be noted that the boson operators L;, occurring in Eq.

I

(2.18), have to be commuted to the immediate left of the
rotation operator R '(0) before they can be replaced
with differential operators according to Eq. (2.21). This
gives rise to correction terms which can become very
complicated, especially if the square root factors of Eq.
(2.2) enter into the boson operator. In the case of a well
deformed system these corrections are, however, small
and they can be ignored in the lowest order approxima-
tion.

Finally we remark on some properties of the intrinsic
wave functions. Taking the matrix element of Eq. (2.18)
between two U(6) basis states transforming properly un-
der SO(3), one can define the intrinsic wave functions

' 1/2

N 8n
4'.LK«o a»=

2L +1 (ao, a~ I [N],e,L,K ) .

(2.22)

Here e denotes the additional quantum numbers needed
to specify the U(6) states completely. The normalization
factor is chosen for convenience. With this normaliza-
tion of the intrinsic wave functions, the normalization
factors needed for the Wigner D function occur explicit-
ly in the expressions for the total wave functions. Note
that Eq. (2.22) does not imply that K is a good quantum
number, it merely provides a convenient quantum num-
ber for labeling the intrinsic wave functions. As a
matter of fact, from Eqs. (2.18), (2.19), and (2.21) it is
clear that the total geometrical wave function corre-
sponding to the U(6) state

I [N],e, L,M), which trans-
forms properly under SO(3), is given in terms of the in-
trinsic wave functions of Eq. (2.22) by

' 1/2

Pe, L,M(fl ao az)=&fl ao az I [N] e L M&= g q
DM'«N, LK(ap, az)

7T

(2.23)

Clearly E mixing occurs. However, in the ease of well deformed axially symmetric systems it turns out, as is dis-
cussed in Sec. V, that the EC mixing is of a higher order in N, the total number of bosons.

The intrinsic wave functions of Eq. (2.22) has all the usual features. ~e immediately note from (2.14) that the in-
trinsic wave functions vanish if E is odd. Furthermore we note that

' 1/2

«(ap ap)=
2L 1

(ap ap I [N] & L, —K)
2L +1

8 2

2L +1

' 1/2

(ap, az
I

R (O, m, O)
I [N), e,L,K )

4' LK(ao a2 ) (2.24)

where Eq. (2.11) and (2.14) were used. The only nonvan-
ishing linear independent intrinsic wave functions are
therefore those for which the angular momentum projec-
tion, K, on the intrinsic axis are non-negative even in-
tegers. Note also that if K =0 the intrinsic wave func-
tions with odd values of L must vanish identically. Fi-
nally we remark that since the a's are scalars with
respect to rotations of the intrinsic frame, the state

I
a )

I

is also a scalar under rotations of the intrinsic frame.
Therefore the wave functions

(a
I [N], F. ,L,M ) = (Q, ap, az I [N],e,L,M )

are invariant under rotation of the intrinsic frame as
they should be.
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III. DEFORMED AXIALLY SYMMETRIC SYSTEMS

Since no stable triaxial deformations occur in the
IBM-1 (see Refs. 1—6), we only need to consider axial
symmetric systems. Suppose therefore that the potential
energy has a pronounced minimum in both the p and y
directions at p=po and y =0 or y =sr/3, corresponding
to prolate or oblate deformations, respectively. The
lowest excitations then correspond to small oscillations
around these equilibrium values.

Instead of treating oblate deformations with the con-
ventional choice y=m/3, pE[0, oo ), it is often more
convenient to use the choice y=0, pE( —oo, O] as is de-
scribed in Refs. 21 and 22. Hence, instead of using the
region of integration S in Sec. II, one must use the re-

gion

(p, y) E [(—oo, O] X [O, n/3])

or, equivalently,

(a„a,)E I( —~,0]X[—&3ao/&2, 0]j .

Note that the new vacuum is not an SO(3) scalar and
that it breaks the SO(3) symmetry. However, because of
the assumption of axial symmetry, the new vacuum is
still an SO(2) scalar. Furthermore, note that the b„bo-
sons do not transform properly under SO(3), but that
they do transform properly under SO(2). This is once
again a consequence of the assumption of axial symme-
try.

On inspection of (3.2a), we not that the state
~
g, q, po &

factorizes into a part associated with a one dimensional
oscillator and the radial part associated with a two di-
mensional oscillator (see the Appendix and also Ref. 18).
With the transformation (3.1) the completeness relation
of Eq. (2.15) becomes

1 = f dA f dr(g, g)

&«(»~~ Ik n Po&&(,n, Po~&~&-'(II),

(3.3a)

with

Clearly, all the results of Sec. II also hold in this case.
For axially symmetric systems one can therefore take for
the deformation in the y direction y =0 without any loss
of generality, provided that one allows for negative
values of Po. For convenience we use Prolate deforma-
tion, i.e., po&0 to derive the results of this and the next
section. However, keeping in mind the remarks made
above, it is easy to see that all these results also hold for
oblate deformations.

For our purpose it is more convenient to work in the
aQ-a2 representation and to introduce the coordinate
transformation

d r(g, r)) = 3&2Porl 1+ — d g d ri
P 3P2

—= 3&2Porif (g, rj )dgdri .

Equation (2.19) yields the following relations:

(3.3b)

(3.4)
a2 ——0+g, gE [0,( —', )' ao],

ao=po+0 kE[ po oo )

(3.1)

Inserting (3.1) into the state
~
ao, a2 & gives

I ao a2 & =
I k g»o&

exp(b, b, )exp[ —,'(g +hobo)+—&2(bto]

Xexp[ (ri'+b2b 2)+—&2p(b2+b, )]
~

0&,

(3.2a)

with

b„=d„, Up&0,

All the other relations of Eq. (2.19) hold with the re-
Placements a2 ——g and ao ——Po+g.

Because of the form L, /4az occurring in Eq. (2.19),
the coupling between the rotations around the intrinsic z
axis and the a2 vibrations is strong in the axially sym-
metric case. This coupling should therefore be treated
exactly. For this purpose it is convenient to introduce
the rotations around the intrinsic z axis into the state

~
g, q, po & itself and to write

exp( —~PL, )
I 0 n, Po& =— —exp(bib' i )

l 0 n 0»= 2

(3.5)

6Q —+dQv'2

~

0& =exP( ——,'Po)exP —Podo
~

0&,2'' (3.2b)

with

L, =&10(d d )o ——2b 2b2 +b, b ) b)b, —2b —2b

(3.6)
(0

i
0&=1,

b„ i
0&=0, Vp .

If one uses the SO(3) group property of Eq. (2.17) in the
completeness relation (3.3a), it is easy to verify that
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f dP f dQ f dr(g, ri)R (Q)P&exp(b&b &)
~
g, r), P&&g, rf P ~

exp(b&b &)PNR '(Q}=1& .
S

(3.7)

Actually, all that is done in Eq. (3.7) is that states with a fixed projection of the angular momentum are projected out
of the state

~
g, g, Pp&. Another important property of the states

~
g, rI, P& is that they form a complete set of states

for the boson Fock space

I(npn2pgp)(bp)(b2)(bp)~0&~npg2np& I

Indeed, from the results of Ref. 18 it is easy to verify that

np n2 n

~
np n2 n p&&np n2 n (3.8)

A final property of the state
~
g, g, P & worthwhile noting is that it is the vacuum of the b& and b

&
bosons, i.e.,

bilked&=b ) lknb&=0
In particular this implies that

L.
l 0 n 4&=2(b2b2 b —2b —2) l k n 0&=J, I 0—n 0&

and

& g, ~,y ~
~,R -'(n}=

& g, ~,y ~
L„R -'(n) =L,'& g, &, y ~

R -'(n),
where L,' is a difFerential operator acting on the Euler angles [see Eq. (2.21)].

(3.9)

(3.10)

(3.11}

IV. WELL-DEFORMED AXIALLY SYMMETRIC SYSTEMS

Suppose that the ground state of the system is well deformed, hence the fluctuations of g and rI in the ground state
are small compared to Pp, i.e.,

p
(4.1)

Here & & denotes the expectation value in the ground state. The lowest excited states which involve a small number
of b„bosons and low angular momenta are then also expected to satisfy the condition (4.1). From now on we only
consider the subspace of states satisfying the condition (4.1}. Our aim is to obtain the excitation energies and mo-
ments of inertia of these states to leading order. Furthermore we are also seeking a prescription to calculate the lead-
ing order contribution to a transition matrix element between these states.

To do this we consider the matrix element of any U(6) operator 0 „, transforming like the SO(3) representation I,
between two U(6) states satisfying the condition (4.1). Next we insert the identity (3.7) between the bra state and the
operator. Furthermore we note that, under the assumption that the system is well deformed in the sense of (4.1), the
finite integration limits can be ignored and the region of integration extended to gE( —ao, ao ) and rial [0, ao ). Finally,
using Eq. (3.8) leads to

& [N), e', L', M'
i
0 „'

i
[N), eL,M & = f d 0& [N],E',L', M'

i
R (Q)T T g D„'~O x R '(0)

i [N), e, L,M & .
K

(4.2)

Here we have introduced the operator

2(3 2)' Pp' f" dr f de f nde"'"((, e')lr, n, s&&r, n, alexp(b, b, ), (4.3)

with T the Hermitian conjugate of T. The operators g
and q are de6ned by

—(bp+bp),v'2

I

and we have noted the properties

(4.5)

=—'(b2b ~+b2b 2+b2b2+b 2b q+ 1)
(4.4) From Eq. (4.4} it is easy to verify the following com-

mutation relation:
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[lbp A A=[[bt] El A=o

[b„,A=[b„' r"]=0

[bp 2}']=[bo 8']=0
l[b„i').21']=[[b„' i'),8']=0, ] =+2.

Using Eq. (4.6) one obtains the relations

Tbt bt+ f '(Kr}'}
V 2Pp PO

Tbp= bp &+f '(Kri '}
2Pp Pp

Tbt = bt — ' (b +b ) T, p, =22,P ]b 6p2 ]L

0

(4.6}

(4.7a)

(4.7b}

(4.7c)

Here we introduced the notation

1/2
2n

3Pp
+

p
(4.7h)

+ g [A""(P[])b„b„+A„„(P[])b„b„]
p, &v

Note that the action of the boson operator J, on the
wave function is the same as the action of the differential
operator L,'. With the aid of Eqs. (4.7) it is possible to
calculate the intrinsic components of any operator in
terms of the bp, b2, and b 2 bosons as well as the angu-
lar momentum operators L ', L ~, and I '. To d
we expand the operator 0 K in terms of the b„bosons

0 x = A (P[])+g [ A "(P[])bi + A„(P[])b„]

Tb„= b„+ 2
(b q+bP) T, @=22,

p p 6 2

+ Q A"„(P[])btb„+ (4.8)

I

2& 3P[]
+ 2& 3Pp

Tb R
iL'

2~3P, + 2~3, —

TJzR =Jz TR = TLzR =L z TR

(4.7d}

(4.7e)

(4.7f)

(4.7g)

As we have already remarked, the assumption of axial
symmetry implies that the b bosons transform properly
under SO(2) [see (3.2)]. Consequently the only nonvan-
ishing terms on the right-hand side of Eq. (4.8) are those
having the same SO(2) transformation properties as the
operator OK. In particular, this implies that for the
Hamiltonian, which is an SO(2) scalar, all terms that do
not commute with L, must vanish. Among these terms
are the terms linear in the b„(@&0)bosons. Using Eqs.
(4.7) and (4.8) it is possible to cast Eq. (4.2) into the form

[[N] E', L', M' l 0„'l [N] EL M]= f dQQDEE'r ([N] 3LK(
l

T QDEr '[0 ] ([brb L;']„„,
1 2

X XDMK T
l
[N],E,L,K3

K3

(4.9)

The intrinsic components, (0 x );„„,of the operator are
obtained by replacing the bp and 6+2 bosons in the ex-
pansion (4.8) by the corresponding expressions of Eq.
(4.7). For the b+] bosons the situation is more compli-
cated since the boson angular momentum operators have
to be commuted to the immediate left of the rotation
operator before they can be replaced by differential
operators acting on the Euler angles. This leads to rath-
er complicated corrections to the intrinsic components
of the operator. It is, however, simple to see that these
corrections can also be expressed in terms of the bp bg2
bosons and the angular momentum operators L,'. In
this way one obtains for the intrinsic operator a constant
term, terms which depend only on the bp, b+2 bosons
(called vibrational}, terms which depend only on the an-
gular momentum operators L,' (called rotational), and
mixed terms (called vibrational-rotational). The intrinsic
component thus has the form

(0 x }.t.=(0 rc }.t.,p+(o sc }.t.,.a (b. b. }

+(0 x );„„„,(L,')

+(0 K } t...ot, b(b (4.10)

A (pp}= (o
I
0 E I

0)

A "(P,) =(o
I [b„,o ' ] I

o&,

A„(P[])=(0
I
[0x,b„]

I
0),

The operators given in Eq. (4.10) are extremely compli-
cated and an approximation scheme is clearly called for.
However, before any calculation of the intrinsic opera-
tors can be attempted, we need a prescription to calcu-
late the expansion coefficients of Eq. (4.8) as well as pp.
To calculate the expansion coefficients of Eq. (4.8) we
use the relations
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A "(&o)= &0
I [b„[o» b. ]310&

A~"(P,)=(1+5„„)—'&0~ [b„b„,O' ] ~
0&,

A„„(P,)=(1+5„„)—'&Oi [0',btbt] ~0& . (4.11)

The coefficients of higher order terms are calculated in a
similar way, the only difference being that the expecta-
tion values of commutators with more than two boson
operators occur. Introducing the Glauber coherent
state24

2 2

~r&=exp ——,
' g z„'z„+ g z„d„O& (4.12)

one has

~
r=[P,/&Zj &=

~

0& . (4.13)

Here we have used the short hand notation Ipo/v'2j to
denote the set Izo =pa/&2, z„=O; Vp~Oj. The expan-
sion coefficients can now be calculated in the following
way

A(Po)=[&r
~
0»

~

A "(Po)= . .&r~o,'[r &.
az.* IPp/'+2I

A (po)= &rio,'iz& .
zv IPp/'&2I

(4.14)

A" (po) = &z[o,'~r& .
Bz Bz IPp/'&2I

A ""(po)=(1+5„„)
az: az: IP/&2 I

A „„(po)=(1+5„„)
a2

BZ 'BZ ~ I P /t'Q2
I

A'(po)= . &z iH iz&
az.*

=A„(PO)=. &z iH iz&
a

BZ~ IP /'V'2I

zero. Here we have used the fact that the Hamiltonian,

The variables z„and z„' are treated as independent corn-
plex variables. For higher order terms one finds similar
expressions for the expansion coefficients, the only
difference being that they involve higher order deriva-
tives. Indeed, it is easy to see that the expression for a
particular A involves a derivative of an order which is
equal to the total number of indices on A, i.e., the total
number of boson creation and annihilation operators
occurring in the term under consideration.

The value of Po for which the potential energy is mini-
mized, is determined by setting the first order derivatives

H, is Hermitian to note that A "(Po)= A„(PO). If the po-
tential energy is indeed axially symmetric, all the deriva-
tives with respect to z,*. (v&0) should vanish when cal-
culated at y'=0. This should serve as a check for axial
symmetry. The value of Po is therefore determined by
setting the derivative with respect to zo zero. This is
equivalent to demanding that the terms linear in the bo
and bo bosons vanish in the intrinsic Hamiltonian. As is
well known, ' and as one can easily convince oneself,
130-&N (N is the total number of s and d bosons) in the
deformed regions.

For a one-body operator it is simple to verify from the
properties of the Glauber state that to leading order in N
the expectation value & z

~
0»

~

z & is a homogeneous po-
lynomial of degree 2 in z&, z„, and (N —g&z&z&)'
Similarly, for a two-body operator it is a homogeneous
polynomial of degree 4. From this, Eq. (4.14) and the N
dependence of Po, it easily follows that for a one body
operator A (Po) -N, A "(Po) and A „(Po)—t/N, etc.
Similarly, for a two-body operator A(PO)-N, A "(Po)
and A „(Po)-N ~, etc.

The obvious approximation for the intrinsic operators
of Eq. (4.10) would be to truncate them to leading order
in 1/N. From the discussion above it is clear that the
leading order contribution to the intrinsic operator is
simply the constant term, if it does not vanish. Howev-
er, if one truncates the intrinsic operator at the constant
term, the dynamics of the system is neglected complete-
ly. For instance, transition matrix elements between
orthogonal states will vanish. Furthermore, making this
approximation in the Hamiltonian would only provide
one with information about the leading order behavior
of the ground state energy while no information about
excitation energies and moments of inertia will be ob-
tained. To include the dynamics one has to consider
higher order contributions in 1/N to the intrinsic opera-
tor. Precisely where one truncates the operator depends
on the question under consideration. For instance, if a
transition matrix element vanishes for an operator calcu-
lated to a certain order in 1/N, one would want to check
the next order as well. For our present purposes we just
consider the leading order contribution to the constant
term, the vibrational part and the rotational part, while
we neglect the rotational-vibrational part. For the Ham-
iltonian this approximation implies that we consider the
leading order behavior of the ground state energy, the
intrinsic excitation energies and the moments of inertia,
while all interactions between rotations and vibrations
are neglected. This is the information required in lowest
order, namely, one wants to know what are the typical
vibrational energies and what governs the rotational
spectrum. Only after knowing this would one start to
refine the picture by including the next order including
the coupling.

Using the N dependence of the expansion coefficients
one can show that it is consistent in the above approxi-
mation to use the approximations

Tb„=b„T, Vp =0,+2,
Tb„=b„T, Vp=0, +2,
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1
L.'+EL

yTb~iR '= TR
2 3po

where Q„(z ) is the function obtained by making the re-
placements b„~z„' and b„~z„ in the quadrupole
operator. For the constant term one then has

L „'kiL '

Tb~~, R '= TR
2 3PO

(4.15)
A (X,po ) =2po b, —Xpo

2
(s.sa)

instead of the expressions (4.7), and to neglect correc-
tions arising from commuting the boson angular momen-
tum operators to the left of the rotation operator before
replacing them by differential operators. In this approxi-
mation the calculation of the intrinsic components of an
operator therefore simplifies considerably. In the expan-
sion (4.8) one keeps only the constant term and the
lowest order terms in the b„bosons. To obtain the in-
trinsic component one then simply replaces the b+1 bo-
sons by the corresponding expressions in Eq. (4.15),
while keeping the bp and b+2 bosons. This gives the
leading order contribution to the vibrational and rota-
tional parts, while all rotation-vibration interactions are
clearly neglected.

with

p2
N—

2

-= x
X

(5.5b)

For the expansion coefficients of the linear terms one
finds

A"= A =0, Vju&0 .p (5.6)

Setting the first order derivatives A (X,po)= AD(X, po)
zero yields

V. EXCITATION ENERGIES AND MOMENTS
OF INERTIA FOR A

QUADRUPOLE-QUADRUPOLE INTERACTION

To illustrate the use of the approach outlined in Secs.
I-IV, we consider a specific example here. We take for
the Hamiltonian

or

28N
X'+ 14

xpo= e&N —1+a
(X'+ 14)'"

' 1/2

(S.7a)

a=+1 . (5.7b)

H =iriQ Q+azL L,
with

Q„'=(s d)'+(d s)'+X(d Z)'

(s. la)

(5.1b)

In the Holstein-Primakoff realization of Eq. (2.2) the
quadrupole operator takes the form

Q2 (N fi )i/2d 2+d2t(N g )I/2+X(dtd )2 (5 2)

Which of these solutions gives a stable minimum is
determined by the second order derivatives. Note that
po ~N and hence if we consider a system with a large
number of particles and restrict ourselves to the low-
lying states where g and ri scale like unity, we have
(g )/po-1/N and (rl )/po-1/N. In this case condi-
tions (4.1) are thus satisfied. From Eq. (4.14) one also
finds

Note from Eq. (2.21) that the replacement

L L~L'L' (5.3)

A"„=0 if p&v,
A""=A„„=O if p& —v .

(5.8)

can immediately be made. We therefore only have to
consider the quadrupole-quadrupole part.

To calculate the excitation energies and moments of
inertia in the approximation of Sec. IV, we have to em-
ploy the expansion (4.8) to second order in b„and b„.
Under the assumption that the system has axial symme-
try the first order terms in b„and b„(p&0) must van-
ish. Indeed, all terms that do not commute with L,
must vanish. This should serve as a check that the sys-
tem is indeed axially symmetric. Furthermore, the first
order terms in bp and b~~ are set zero, thereby determin-
ing the value of Po. The first nonvanishing terms in the
expansion (4.8) are therefore quadratic in the boson
operators. To calculate the expansion coefficients we use
Eq. (4.14). To leading order N the expectation value
(z

~

Q.Q ~

z ) is given by

Az ——A z ——2(x~+ 2 s),2 —2 2

A i
——A, =2(x, —x2x3)1 —1 2

A p =2X2X40

A =A2 2
——2x7,2—2 2

A =A1 1
———2x1,1 —1 2

A = App =X2X6+X 5
00 2

(5.9a)

with

x, =6—XPO,

Equations (5.6) and (5.8) confirm that the system is
indeed axially symmetric. Furthermore one has

(z
~

Q.Q ~z)= y( —1)"Qp(z)Q p(z), (5.4)
x

x2 =&2PO
2
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(b, 'P()+X),

—3p3

+X

g —1p2

2
—XP()

x~ ———~2 S 'Po+
8

(5.9b)

HSU(3) 2K)C2sU(3) +(K2 —8K) )L L (5.14)

limit of the IBM. If one chooses 7= ——,
' the quadru-

pole operator of Eq. (5.1b) and the angular momentum
operators of Eq. (2.1) span a SU(3) subalgebra of the
U(6) algebra. In this case the Hamiltonian of Eq. (S.la)
can be written in terms of the second order SU(3) and
SO(3) Casimir operators. One has

g —1p g —2p2

x6 ——— 1+
2 4

x, =6+XP(),

x, = — —(b, 'P()—2X) .
V2

Using Eqs. (4.15), (5.6), (5.8), and (5.9), one has for the
intrinsic Hamiltonian

The eigenstates can consequently be labeled by

~
[N], (A, ,p), )r,L,M ), where (A, ,p) labels the SU(3) repre-

sentations contained within the symmetric U(6) represen-
tation [N]. The quantum number )r labels repeated
SO(3) representations contained within a particular
SU(3) representation. We remark that we always use the
orthogonal Vergados basis. The corresponding eigen-
values are given by

E(A, ,p, L)= —,))r)[A, +p +Ap+3(A, +p)]
H(„„=)r1 A(»po)+ Aobobo+ A (hobo+hobo) + ()r2 ——,')r) )L (L + 1 ) . (5.15)

+ A 2(b 2~2+~ —2b —2 }

+A2 2(b2tbt +b b )

2 [(L „') +(L y) ] +)r2L ' L ' . (5.10)
3p2

From Eq. (5.10) we can identify the moment of inertia
about the x and y axes. Note that the reciprocal mo-
ment of inertia about the z axis, resulting from the
quadrupole-quadrupole part, vanishes. This is because
of the axial symmetry of the system. The vibrational
part can be diagonalized by introducing the following
Bogoliubov transformations:

b„=a„cosh/ l~l + v'"h(t) lel' p— 0, +2,
b„=a „sinhp

I w I

+a„cosh(t) I„I, p=0, +2 .
(5.11)

=Ep(X pp)+K)( A pcosh2pp+2A sinhpp)a pap

+)r)( A zcosh2$2+ A sinh(}I)2)(a 2a2+a 2a 2)

Note that the SO(2} transformation properties are
preserved by (5.11). Indeed, it can easily be verified that
in terms of the a„bosons the angular momentum opera-
tor J, simply reads J, =2(a2a2 —a 2a 2). Using (5.11)
one finds for the diagonalized intrinsic Hamiltonian

The allowed values of the quantum numbers A, , p, )r, and
L for a particular N can be found in Ref. 25. The only
states of importance to us are the ground band
states,

~
[N], (2N, O), )r=O, L,M) (L =0,2, . . . , 2N),

the p-band states,
~
[N], (2N —4, 2), a. =O,L,M )

(L =0,2, . . . , 2N —4), and the y-band states,

i [N], (2N —4, 2), )r=2,L,M) (L =2,3, . . . , 2N —4).
For this choice of X one finds that (5.7b) with e= —1

gives a stable minimum if )r, &0. The value of po is then
given by

2~N
0 (5.16}

The Bogoliubov transformation which diagonalizes H;„„
is given by

2 . 1
coshPp —— —, sinh(()p ———

v'3' v'3 '

cosh(t)2 ——1, sinh$2 ——0 .
(5.17}

EI3 ——Ey ———6Nz) . (5.18)

With )r2 ——0 we obtain from Eqs. (5.9) and (5.12) for the
moments of inertia

The p and y excitation energies follow from Eqs. (5.9)
and (5.12),

[(L „')'+(L,')']+)r2L ' L ',
3p2

(5.12)
1

2J
1

2J
3K)

8
(5.19)

where all constant terms have been absorbed in Ep(X,pp)
and (()o, p2 satisfy

2A~
tanh((ip ———

A',

A 2 —2

tanh(()2 ———
A

(5.13) 1.1
-2.0 -1.5

2

x
-1.0

As a special case we consider the well known SU(3)
FIG. 1. The scaled equilibrium deformation Po/&N as a

function of X.
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+0.5-

0.4-
3I

0.3
-2.0 -1.5

2

I

-1.0

9.0;.
E~ 8.0 =-.-. : ......

6.0
5.7

4.0-

E~ (N=10)

E~-E~ (N=10)

FIG. 2. The scaled reciprocal moments of inertia
I/2J„~ K~

~

= I/2J»
~
~,

~

as a function of X. In these calcula-
tions ~2 ——0 was used. The dashed line shows the approximate
calculation. The solid line shows the exact result as obtained
from dividing the excitation energy of the first excited 2+ state,
E'+, by L (L +1)=6 in a calculation with N =10.2+'

Comparing these results with the exact result of Eq.
(5.15) with s.t ——0, one finds agreement to leading order
in N. The same results have also been obtained in
several other analyses. '

Using Eqs. (5.7), (5.9), (5.12), and (5.13), it is easy to
calculate the p- and y-excitation energies and moments
of inertia in general. This calculation is shown in Figs.
1 —3 for X E [—2, —I ] and a& ——0. To obtain a stable
minimum one must demand K] (0 throughout. In Fig. 1

we show the equilibrium value pcl&N as a function of
X. In Fig. 2 we show the value of 1/2J„~ v&

~

=1/2J»
~

a&
~

as a function of X. We also show the ex-
act value as obtained from dividing the excitation energy
of the first excited 2+ state, E'+, by 1-(I-+1)=6 in a
calculation with N =10. In Fig. 3 we show Er/N

~
Ir,

~

and Ep/N
~
a,

~

as a function of X. The exact values as
obtained from the excitation energy of the first excited
0+ state, E'+, and the difference between the excitation
energies of the second and first excited 2+ states,
E2+ —E2+, in a calculation with N =10, are also shown.

Good agreement between the exact and approximate re-
sults is found. However, for large values of X and for
values close to zero, the agreement starts to break down
which can be understood as follows. If one increases g,
the dominating term in the quadrupole-quadrupole part
is the term (dtd ) (dtd ), which correspond to a spheri-
cally symmetric rather than an axially deformed system.
Hence, as 7 is increased a transformation from an axial-
ly deformed potential to a spherically symmetric poten-
tial occurs. In the spherically symmetric case the condi-
tions (4.1) are not satisfied and one can therefore expect
that the agreement would start to break down. On the

0
-2.0 -1.5 ~7

2

I

-1.0

FIG. 3. The scaled p- and y-excitation energies Es/N
~

ir,
~

and E»/N
~

s. , ~

as a function of X. The dashed and the dotted
lines show the approximate p- and y-excitation energies, re-
spectively. The exact p-excitation energy as obtained from the
excitation energy of the first excited 0+ state, E'+, in a calcu-

lation with N =10, is shown by the solid line. The dashed-
dotted line shows the exact y-excitation energy as obtained
from the difference between the excitation energies of the
second and first excited 2+ states, E + —E'+, in a calculation

with N =10.

other hand, as 7 approaches zero one tends towards an
SO(6) symmetry. In this limit the potential energy be-
comes Hat in the y direction and consequently the condi-
tions (4.1) are once again violated.

VI. INTRINSIC COMPONENTS
OF THE E2-TRANSITION OPERATOR

K
(6.1)

where the intrinsic components of the operators are cal-
culated in the present approximation as described in Sec.
IV, using Eq. (4.15). The necessary expansion
coefficients of Eq. (4.8) can easily be calculated with the
aid of Eq. (4.14). Using Eq. (4.15) we obtain for the in-
trinsic components, up to second order in the boson
operators b„, the following expressions:

We take for the E2-transition operator in the IBM the
quadrupole operator of Eq. (S.lb). In the approach of
Sec. IV the leading order behavior of the E2-transition
matrix elements are calculated from Eq. (4.9) using the
quadrupole operator

g —1

(Q2);„„=(Q p);„„=(b,+Xpc)(b2+b ~)— (b 'pc —4X)(b2bc+bcb 2) — (b~bc+bcb 2),

(Q 1 );„„=(Q',)t„„=0, (6.2)

(Qo );„„=&2po
XPp —&2 6 'pc+ +X babe — — 1+ (bObc+bobo)

g —3p3 g —1p g —2p2

8 0 0 4

g —1 2
—~—(& 'po —2X)(b2b2+b 2b 2)+ b, —Xpo (bc+ho) . —
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Introducing the SU(3) values of X and Pp as well as the
Bogoliubov transformation which diagonalizes H;„„ in
the SU(3) case [see Eqs. (5.11) and (5.17)], one finds

(Q2);„„=(Q'2);„,„=—( —, )' '(a2ap+apa 2),1/2

(Q f );„„=(Q') );„„=0, (6.3)

(Qp)[«tf=v 2N — (apap+a2a2+a 2a z) ~
2 = 3 t t

2

The most important aspect that should be noted from
Eq. (6.2) is that the K =El intrinsic components of the
quadrupole operator vanish. In a random-phase approx-
imation (RPA} approach these operators coincide with
the excitation operators of the spurious zero-frequency
modes. ' ' Another noteworthy point is that the lead-
ing order behavior of the intraband E2-transition rates
are determined by the constant term in (Qp );„«.

The interesting feature of the SU(3) limit [Eq. (6.3)] is
that the terms which change the total number of y and

P excitations, i.e., N =np+n2+n z (here n„denotes the
number of a„bosons and we use N to distinguish it from
N, the total number of s and d bosons} vanish up to the
order of unity in the E2-transition operator. Conse-
quently E2 transitions between states with different
values of N are prohibited. In particular, this implies
that E2 transitions between the ground band and p or y
bands are prohibited. However, transitions between the
P and y bands are allowed. From Eq. (6.3) it is clear
that the interband transitions are suppressed by a factor
I /N with respect to the intraband transitions.

This situation is completely analogous to the original
SU(3) limit of the IBM. With the choice X= —

—,
' the

quadrupole operator is a generator of the SU(3) group,
and hence it cannot couple different SU(3) representa-
tions. Consequently transitions between the ground
band belonging to the (2N, O) representation and the p or
y bands belonging to the (2N —4, 2) representation are
prohibited. On the other hand, transitions between the
p and y bands are allowed since they belong to the same
SU(3) representation. However, these interband transi-
tions are also strongly suppressed in comparison with
the intraband transitions.

This analogy can be made even more explicit if one
notes that in the SU(3) limit the intrinsic Hamiltonian of
Eq. (5.12) can be written in the form

representation [N]. This situation is completely analo-
gous to the original SU(3) limit of the IBM. In practice
one usually considers a quadrupole operator which
breaks the SU(3) symmetry slightly. This introduces
terms linear in the boson operators which allow transi-
tions between states with different numbers of p and y
excitations. The discussion of the SU(3} limit illustrates
that all the qualitative features of the E2-transition rates
are preserved if the transition operator (6.3) is used in
the prescription of Eq. (4.9).

Before one can calculate E2-transition rates quantita-
tively from Eq. (4.9) and the E2-transition operator of
Eq. (6.2}, one needs the states T

~
[N],a, L,K ) occurring

in Eq. (4.9). To obtain these states explicitly is clearly
an extremely difficult task. Instead, we use the following
approach. Suppose we wish to calculate the leading or-
der behavior of a E2-transition rate between two eigen-
states of the IBM Hamiltonian. Instead of using the
states T

~
[N],a,L,K ) in (4.9), we use eigenstates of the

intrinsic Hamiltonian (5.12) having excitation energies
which agree to leading order in N with the excitation en-
ergies of the IBM eigenstates under consideration. Note,
however, that the states T

~
[N],a,L,K ) already have

the required invariance properties under the basic rota-
tions of the intrinsic axes. ' On the other hand, solv-
ing for the eigenstates of (5.12) one still has to impose
the required in variance properties. Therefore, one
should use the correctly symmetrized states in Eq. (4.9).

The excitation rates calculated in this way agree to
leading order in N with the exact transition rates. We il-
lustrate this by means of some examples. For this pur-
pose it is again convenient to consider the SU(3} limit
since the exact transition rates can be calculated analyti-
cally there. As an example we consider the transition
rates 0+~2+, 2+~2+, and 0&+~2~. Using the ap-
propriate U(6) DSU(3) and SU(3) DSO(3) reduced Wigner
coefficients, ' one can calculate the leading order be-
havior of the exact transition rates. For the calculation-
al procedure we refer to Ref. 27 and only list the results
here:

~
{[N], (2N, O), 0,2()Q'~)[N], (2N, O), 0,0) =2N',

20N
[
{[N], (2N, O), 0, 2()Q () [N], (2N, O), 0, 2 )

[

2 =

H;„„=Ep—6Ntc)C)(U(3) )+H„, . (6.4)
(
{[N], (2N —4, 2), 2, 2))Q (([N],(2N —4, 2),0,0)

(

2=3 .

Here C, (U(3)) denotes the first order Casimir operator
of the U(3) algebra spanned by Ia„a„;p, v=O, +2[. The
operator C, (U(3}}is therefore simply the boson number
operator 8'=&p+R'z+n z. Nate also that the Hilbert
space on which this algebra is realized can carry only
completely symmetric representations which are labeled
by the eigenvalues of C&(U(3)), i.e., the total number of
bosons N. We also remark that this U(3) algebra should
not be confused with the original U(3) algebra of the
IBM. From Eq. (6.3) we note that the E2-transition
operator is also written in terms of the generators of this
U(3) algebra. Therefore, E2 transitions are only allowed
between states belonging to the same symmetric U(3)

(6.5}

Now we recalculate these transition rates with the aid of
Eq. (4.9), using the E2-transition operator of Eq. (6.3),
and the correctly symmetrized eigenstates of the intrin-
sic Hamiltonian (6.4). The eigenstates of the Hamiltoni-
an (6.4) can easily be written down; they are

~
N, n, K L,M ) =DE ~

N =np+nz+n 2, n

=n2+n 2,K =2(n2 nz)) . —

(6.6}
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Here (3.11) and (4.7g) were used to note that K =2(n2 —n 2). Imposing the required invariance properties under ro-
tations of the intrinsic axes, one finds for the normalized wave functions '

IN, n, K,L,M)=
' 1/2

( sr~ ~
N, n, K)+(—1) Dsr' ~ ~, , K—)) .

16m (5~0+1)
(6.7)

First we calculate the E2-transition rates within the ground band. The wave functions of the ground band are

' 1/2

~

N=O, n =0, K =0, L, M)= Dirc
~

N=0, n =0, K =0) .
8m

(6.8)

Using Eqs. (6.1), (6.3), (6.8), and integrating over the Euler angles, one finds for the E2-transition rates

~

(N=O, n =0, K=0, L'~~Q (~N=O, n =0, K =0, L)
~

=2N (2L+1)(2L'+l)l (6.9)

In particular we have

~

(N=p, n =O, K =0,2~~Q ~~N=p, n =O, K =0,0)
~

=2N

20N
/
(N =O, n =O, K =0,2//Q //N =O, n =O, K =0,2)

f

(6.10)

which is in agreement with (6.5). Similarly one finds for the transition rates L&+ ~L r+

/

(N= 1, n =1,K =2, L//Q /[N =1, n =0, K =O,L')
f

3(2L +1}(2L'+1) ( L 2 L' l (L 2

p ~l+( —1) l(2 2 p )
. (6.11)

For the transition 0&+ ~2&+ one has

1(N=1 n =1 K=2 2IIQ'IIN=I & =0 K=00) I'=3
(6.12)

which again agrees with (6.5).

VII. DISCUSSION AND CONCLUSION

The eigenstate of the shape operators has enabled us
to achieve four objectives. Firstly, we were able to give
a geometrical interpretation to each boson excitation in
the IBM. Secondly, contact has been made with the
usual rotation-vibration model ' without resorting to
classical or semiclassical approximations. Thirdly, a
well defined prescription has been given to calculate in-
trinsic excitation energies, moments of inertia and transi-
tion rates to leading order in the number of bosons in
the case of a well-deformed system. Finally, the SQ(3)
symmetry of the system has been treated exactly even in
the well deformed case. In particular this has manifest
itself in the fact that the K =+1 intrinsic components of
the quadrupole operator vanished in this approach. In a
normal RPA approach these operators would corre-
spond to excitation operators of spurious modes.

The method presented here is currently being used to
analyze the IBM-2 having both proton and neutron bo-

I gratefully acknowledge useful discussions with Fritz
Hahne and Hendrik Geyer.

APPENDIX

To prove Eqs. (2.6) and (2.7) we need some properties
of the eigenstates of the position and momentum opera-
tors for a one-dimensional oscillator. The position
operator for a one-dimensional oscillator is given by

x= —(b +b),v'2 (A 1)

As was shown in Ref. 18, the eigenstate of this operator
is given by

«, exp[ ,'(x'+b b )+&2x—b—t]~0)
1

=X(b,x )
~
0), (A2)

and it has the following properties:

sons. As a next step one would like to generalize the
procedure described here by avoiding the explicit use of
the eigenstate of the shape operators. Different ways in
which this might possibly be done are currently investi-
gated.
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Ix)= g F„(x)
I
n),

n=p

(x
I

x') =5(x —x'),

f Ix)(x Idx= g In)(n
I
=1.

QO n=0

(A3)

x „'= 2x„= —[b+(p)+b+(p)],

xo=— —(bo+bo) .1

2

(A10)

Here F„(x)is a harmonic oscillator wave function.
Similarly one can construct an eigenstate of the

momentum operator

On comparison with Eqs. (Al) and (A4), we can immedi-
ately ~rite down the simultaneous eigenstate of these
five commuting Hermitian operators (see also Ref. 18).

P= —(bt b) —.v'2

The result is

Ip) =, exp[ ,'(p ——blab —)+&2ipb ] I
0)

=P(b,p) I
0) .

(A4)

(A5)

I
x„',y„',xo) = g X(bt+(p), x„')

p&0

X g P(b (p),y„') J(bt, x )
I
0) .

p&0

(Al 1}

From Eqs. (A3) and (A6) it follows that this state
satisfies

This state satisfies properties similar to (A3) which can
easily be proved

Ip)= g (i)"F„(p) In &,
n=0 and

f dx Idx 2dy ldy zdxo I
x p yq xo & & x„' y„'»o

I

= I
R

(A12)

J Ip)(p Idp= g In)(n
I
=1.

oo n=0

For an n-dimensional oscillator the eigenstates of the n

position and n momentum operators are given by

(x„',y„',x
I
x„",y„",x' ) = g 5(x„' —x„")5(y„' —y„" )

p&0

X5(x, —xo) . (A13)

From Eq. (A8) we note that the state (All) is an eigen-
state of the shape operators of Eq. (2.3) with eigenvalues

n

Ix, ,x, , . . . , x„)= gX'(b, ',x, ) Io),
n

p. &= g P(b p;}I0&
(A7}

a„= —(x' iy' ), p—&0,
2

a
&
—— ( —1)"(x„'+iy„'), p&0,P (A14)

The generalization of the properties (A3) and (A6) are
straightforward and we do not list it here. '

To construct the eigenstate of the shape operators of
Eq. (2.3) we introduce the following set of commuting
Hermitian operators:

x„=—,'[a„+(—1)"a „], p &0,

yz —— [a„—( —1 ga „], p & 0,

ao=~p

Note that the eigenvalues satisfy a„' =( —1)&a
Transforming to the variables a„and the d bosons [see

Eq. (A9)] in the state (All) leads to the eigenstate of the
shape operators

1
I
a )=,~~ exp( ——,'a a)

Xp =Qp . Xexp( ——,
'd".d +&2a.d }

I
0), (A15}

Next we introduce the following set of bosons:

b+(p)= [d„+(—1) d „], p&0,1

2

b (ij, }= —[d„—( —1)"d „], p &0,1
(A9)

bp —dp e

In terms of these bosons the operators of Eq. (A8) can be
expressed as

with a„'=(—1)"a
Note that this state differs from the state of Eq. (2.4)

by a normalization factor 2. This factor is accounted for
if we transform to the variables x„=x„' /&2 and

y„=—y„'/&2 in the completeness relation (A12). This
transformation gives rise to a multiplicative factor 4 on
the left of the completeness relation. Incorporating this
factor as a normalization factor of the state

I
a ) leads to

the state of Eq. (2.4). The identities (2.6) and (2.7) follow
directly from Eqs. (A12) and (A13).
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