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Data on the nuclear equation of state from a number of different sources, from nuclei, high ener-

gy nuclear collisions, supernova, and neutron stars are analyzed. The current situation concerning
supernova simulations is critically appraised. It is found that simulations that have achieved a
prompt ejection do so with an equation of state that is too soft to support the measured masses of
several known neutron stars. It is concluded that supernova explosions have not been proven to
provide a significant constraint on the nuclear equation of state. Additionally it is concluded that
the theoretical bias used to interpret data on neutron star masses as if they belonged to a population
all having the same mass (of 1.4MO) is unjustified. Evidence from the various nuclear data and neu-

tron star masses favor a high compression modulus, E =300 MeV. No definitive statement can be
made about the equation of state at higher density, save that the neutron star equation of state must
be moderately stiff to accommodate neutron stars of mass = 1.85MO.

I. INTRODUCTION

The equation of state of nuclear matter impinges on a
number of areas of physics, such as the monopole reso-
nance, high energy nuclear collisions, supernovae, and
neutron stars. Generally, it is expressed in a form that
provides the energy as a function of density, or pressure
as a function of energy density. The function depends of
course on the precise nature of the matter and the condi-
tions under which it exists or is probed. Since nuclei are
bound by the strong force, they are approximately isospin
symmetric, and exactly so in the idealization of nuclear
matter. In contrast, stars are bound by the gravitational
force, and they must be charge neutral, since excess
charge would be blown off. Given the starting condition
of nuclei, the dense hot matter produced in nuclear col-
lisions remains without net strangeness because the time
scale of the collision is fast compared to weak interac-
tions, although at sufficient temperature or compression
it can develop other baryon and meson populations
though the strong interaction. '

In contrast, the time scale is milliseconds in superno-
vae and millions of years in neutron stars so that the pro-
cesses that produce strangeness are fast in comparison,
and generalized beta equilibrium is achieved. The com-
position of all three systems is therefore different. In nu-
clear matter, Z= —,

' A. Stars initially have large proton
fraction, but it evolves, and in the intermediate density
stage of supernovae collapse, Z= —,'A, because electron
capture of relativistic electrons on nuclei gives a lower
energy state for charge neutral matter. Although the
electron capture rates do not keep pace with the collapse
in the initial stages, at densities still far below nuclear
density the weak interactions rates become fast on the hy-
drodynamic scale of the collapse, and the composition of
matter follows the equilibrium path as the matter further
compresses. At this stage it can become rich in composi-
tion, containing not only neutrons, protons, and leptons,

but also hyperons. As the core further compresses to
form the neutron star, the populations further evolve.
Neither in the denser stages of collapsing matter in the
supernova, nor in neutron stars, can the composition be
characterized simply by Z/A, as for nuclear matter. The
matter in these dense equilibrated systems is a multicom-
ponent one.

The equation of state is therefore a many dimensional
function, and it is concerning this that we would like ulti-
mately to have knowledge. Of course all aspects of this
function are related in the fundamental theory as well as
in some effective theories that we have available. It is
through the imperfect medium of the latter that we shall
sometimes correlate information from diverse sources.

Properties at saturation are most accessible and best
known, the binding energy, saturation density, and sym-
metry energy. Until recently, it has been assumed that
the compression modulus, also, was reasonably well
known through analysis of the giant monopole resonance
in nuclei. Two types of analysis have been performed. In
one, the random phase approximation (RPAj and a
variety of phenomenological two-nucleon interactions are
employed to reproduce the position of the observed reso-
nance in various nuclei, and then the nuclear bulk prop-
erties are calculated in Hartree-Fock approximation to
find the corresponding K that best reproduces that posi-
tion of the resonance. It is K=210+30 MeV. In the
other, the asymptotic behavior of RPA sum rules is stud-
ied to ascertain the coefficients in an expansion of the
compression of finite systems and determines in this way
that K=220+20 MeV. These are in satisfactory agree-
ment. However, some difficulties have been raised in con-
nection with these conclusions, which motivated a reex-
amination based on the Landau Fermi-liquid theory.
The conclusion of that work was that K is small, of the
order 100 MeV. It has also been widely quoted that the
fact of supernovae provides evidence that the equation of
state must be soft, especially at higher density, in order to
release sufficient energy for the prompt-bounce mecha-
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nism to work. On the other hand, some analyses of high
energy nuclear collisions have indicated a moderately stiff
to very stiff equation of state, although serious ambi-
guities have also been noted. '

The purpose of this paper is threefold. First, we wish
to report on our own research that impinges on the equa-
tion of state. This concerns evidence that can be ob-
tained from (1) Landau sum rule, (2) nuclear masses, (3)
pion yields from high energy nuclear collisions, (4) neu-
tron star masses. Second, we critically appraise the situa-
tion with respect to what supernovae can tell about the
equation of state. Third, we summarize recent evidence
from the work of others on the equation of state.

II. LANDAU SUM RULE

F, =3(m'Im —1),
rn *=0.9m,

F, =O, 1) 1

Go ——1.6,
GI =0, 1)0
5, =0.15 .

(3)

With these assumptions it was found that K =106 MeV.
It has been subsequently realized that m* should be
smaller than the above choice, and this increases K. A
very recent determination of m * has been made through
application of dispersion relations to a study of the nu-
clear mean field from energies between —20 to 165 MeV,
and a value en*/m =0.83 was found. " However, neither
this, nor the Landau parameters are known with perfect
precision. Of course high precision can be obtained for
direct observables, like masses, but other quantities, in-
cluding effective force parameters, can be determined
only approximately through the intermediary of a model
or theory. In this case, we believe that it is optimistic to
assert that the Landau parameters are known to better
than 30%. Even at that, there remains the fact that the
higher 1 Landau parameters are set to zero for lack of in-
formation. Even granted that the series should converge,

In the Landau theory of Fermi liquids, the compres-
sion modulus is given by

3R k
K = (1+Fo),m*

where m * is the effective mass and Fo is one of the Lan-
dau parameters according to which the properties of the
liquid can be characterized. Ordinarily, K, as a supposed
observable, would be used to determine the Landau pa-
rameter Fo from this relation. However, Brown and
Osnes proposed to determine K from this relation by
finding Fo from the Landau sum rule

QO F QO GI'

0 I+FI I(21+1) I 0 1+Gl'l(2l+1)
= —3 +5, , (2)

with specific choices of the remaining Landau parame-
ters. The choices made in Ref. 4 were as follows:

this is a drastic assumption. But let us accept it for orien-
tation and be optimistic that m'/m =0.83+20% and
that the Landau parameters are known to 30%. The re-
sults are summarized in Fig. 1 which shows the band in
which K falls when up to a 30% uncertainty is acknowl-
edged for the Landau parameters. The range of m* cor-
responds to the assumed 20% uncertainty in this parame-
ter. What we learn from this is that K is very poorly con-
strained by the Landau sum rule, a conclusion quite at
variance with Ref. 4, where the dependence on uncertain-
ty in the Landau parameters was not explored in this
way. The range on K is 74 MeV&K &371 MeV. The
range is even large if a larger error is admitted for the
Landau parameters. We conclude therefore that the Lan-
dau sum rule as used by Brown and Osnes does not pro-
vide a small upper bound on K.

III. NUCLEAR MASSES
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FIG. 1. Range in which the compression modulus falls as-
suming up to a 30% error in the Landau parameters, as a func-
tion of effective mass within a 20%%uo range of the value
m */m =0.83 established in Ref. 11.

The coefficient of various terms in the droplet model of
nuclear masses have such significance as the volume ener-
gy, symmetry energy, compression modulus, etc. , and the
dozen or so such parameters in the expansion are able to
represent the masses of thousands of nuclei to very high
accuracy. In Fig. 2 we show a section of the surface of
the rms deviation in mass about the minimum as a func-
tion of the compression modulus, the calculations for
which were kindly provided by Moiler. ' ' The region of
the minimum is very broad, but suggests a value
K=310+100 MeV. However, one should note that the
behavior of the rms deviation as a function of K depends
on the precise formulation of the model. The macroscop-
ic model that is studied here is the finite-range droplet
model. This model combines the droplet model with the
folding model surface and Coulomb energy integrals. It
also incorporates a new exponential term that has a large
influence on how the model describes nuclear compressi-
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FIG. 2. Section of the rms mass deviation of the droplet

model fit to atomic mass data as a function of nuclear compres-
sion modulus (Refs. 12 and 13).

IV. RELATIVISTIC NUCLEAR COLLISIONS

Since the seminal experiments of Stock et al. ,
' there

has been a concerted effort to determine the nuclear
equation of state. Many researchers have contributed to
this work (cf. references in Refs. 16, 7, and 17). One ap-

bility. The error is assigned rather arbitrarily from these
considerations and the flatness of the curve. A combined
fit to masses and radii should improve on the determina-
tion, and we mention in Sec. VII A such a determination
based on an early version of the droplet model. We men-
tion also the earlier work on a compressible nuclear mass
formula, for which K=267+52 MeV was found from a
mass fit to heavy nuclei. '

proach that has not been fully exploited is a field theoret-
ic description of the nuclear fireball, although it was first
proposed in a more general context almost a decade ago. '

Nuclear field theory has been extensively studied for
finite nuclei. Once the coupling constants have been fitted
to bulk nuclear properties, it is able to account for a
growing body of data on finite nuclei. ' ' ' This may
be interpreted as attesting to the general correctness of its
form, as an effective theory. Depending on how well the
coupling constants are determined, it provides a more or
less unique way of extrapolating to the domain of densi-
ties that are believed to be probed in the experiments,
within the assumed validity of the theory. We emphasize
that unlike the frequently used parametrizations of the
equation of state, the high density behavior of the theory
is determine, as is its saturation properties, by the cou-
pling constants. These are fixed by the binding energy of
nuclear matter, its saturation density, the effective nu-
clean mass at saturation, the symmetry energy, and the
compression modulus, which we shall vary to obtain
agreement with experiment.

A. Field theory of hot compressed matter

We shall describe the region of hot dense matter that is
produced in a relativistic nuclear collision in the frame-
work of relativistic nuclear field theory. We formulated
the description of hot dense matter, sometimes referred
to as a nuclear firebal, in this theory almost a decade
ago' and refer to that and more recent work for discus-
sion and details. Within the theory, the compression
and temperature effects are explicitly included. We draw
attention to some recent related work in Refs. 26-29.
The pion yields are computed from the primordial popu-
lations of pions and deltas in the manner described later.

The Lagrangian that we employ is

y 4s( yP g+g so g gyp~ pgpgyp13P3 @13+ (~go~
B

,'a)„~"—+—,'m a2)„aP ———,'p„„g'+—,'m p„pi' ,'bm„(g o) ——,'c(g o) +——

Here co„„=c)„co„—B~„,its denotes a baryon sPinor, and
the sum is over all charge states of N and 6, and, in prin-
ciple, over higher resonances as would be appropriate for
very high energies. ' The o. and m mesons are Yukawa
coupled to the baryons and the p meson is coupled to the
isospin current. The ellipsis represent the Lagrangians of
the mesons that are treated as thermal populations; in
this case, pions and kaons. The cubic and quartic terms
are scalar self-interactions whose strength can be exploit-
ed to adjust the compression modulus. For symmetric
matter, the expectation of the p field vanishes. The finite
temperature solutions of the theory can be computed as
in Ref. 1. We chose the coupling constants of the theory
to yield the saturation density po ——0. 145 fm, binding
energy, 15.95 MeV, and effective nucleon mass at satura-
tion m '/m =0.8. The latter is close to the value of 0.78

for the scalar effective mass that corresponds to the Lan-
dau effective mass of 0.83 obtained in a recent analysis of
scattering and bound state data. "

The initial state of the hot compressed matter can be
estimated in several ways. One way is to assume perfect
stopping of the interpenetrating matter, in which case the
initial density of the compressed fireball is at least,

PI =21'Po .

This is the overlap density of the Lorentz contracted fire-
ball, po being normal nuclear density. Assumption of
thermalization of the input energy at that density then
specifies the state of the system.

Another estimate of initial conditions is obtained by as-
suming relativistic fluid dynamics. The Rankine-
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Hugoniot relations then specify the conditions of matter
in the shock zone, the temperature, compression, and
through the theory of matter, the composition, etc. ,

2
e(p+e)

eo(p+eo)
e/p

&o~Po

P
Po

Here y is the Lorentz factor, p and e refer to pressure
and energy density in the shock zone, and eo to the ener-

gy density of matter in the ground state of the incoming
nuclei (represented in all calculations that employ these
equations as semi-infinite slabs).

We shall use both of the above estimates. The first
gives a lower estimate of the initial density when stopping
occurs, and the latter gives an upper estimate, since it as-
sumes planar geometry. ' We then assume, as in the
original work, ' ' that the pion yield equals the thermal
population of the pions and deltas, at the initial condi-
tion. We shall also relax this assumption by considering
a scenario in which the dense matter expands adiabatical-
ly to a prescribed freeze-out density.

In either case the pion yield is computed from the par-
ticle densities as

0.6
Field Theory, m /m = 0.8, shock

05 K =250

0.4—

0.3--

C
0.2—

0.1—

0.0
100 200 300 400

E, i' A (MeV)
500

FIG. 3. Pion and delta populations in a nuclear fireball de-
scribed in nuclear field theory, as a function of c.m. energy, at
the shock density. Results for three values for K of the corre-
sponding cold nuclear matter are shown.

p +p~+p~

px —pa+ p~ —p~

where the bars indicate antiparticles.
For three assumed values of the compression modulus

of the corresponding cold matter, the calculated yields of
pions and deltas are compared in Fig. 3 for the case that
the initial conditions are given by the solution of the
Rankine-Hugoniot relations. A similar comparison could
be made for the overlap condition, Eq. (2). However, the
results are not substantially different and we do not
show them. In both cases the pion yield computed from
Eq. (4) (namely the sum of thermal pions and deltas in the
figures), is too large compared to the observations, as is
shown for the shock initial condition in Fig. 4. Even for
the very large compression modulus, the computed yield
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FIG. 4. Total pion yields computed in a relativistic nuclear
field theory of the fireball at the shock density prescribed by the
Rankine-Hugoniot conditions are compared with the data (Ref.
32'.

is too large. We apparently must conclude that the con-
ceptual division of the energy into two parts, the
compression and thermal, the second of which is sup-
posed to be responsible for pion and delta production ac-
cording to Stock's suggestion, is not even approximately
realized. Indeed, an examination of the expression for
the energy density in the theory, ' and a realization that
the field variables appearing in it must be obtained self-
consistently at each temperature and density, reveals that
the division into compression and thermal energy as
functions of only density and temperature, respectively, is
not possible. Both energies depend on the other variable.
Moreover, compression alone can produce a b popula-
tion when the Fermi energy of the nucleons exceeds the
threshold energy of the b, .

Clearly the assumption that the pion yield is frozen at
the initial thermal population of pions and deltas may be
an overestimate, since the reabsorption of both in a sub-
sequent expansion and cooling will reduce the ultimate
yield. We estimate the reabsorption by supposing that,
once formed at the initial conditions prescribed by Eqs.
(2) or (3), each fiuid element of the fireball evolves at con-
stant entropy, equal to the initial entropy of the fireball,
and that the populations remain in equilibrium until a
prescribed freeze-out density. This is a quasi-
hydrodynamic expansion, inasmuch as the internal condi-
tions match those of hydrodynamics, but the space-time
structure is absent. The internal energy decreases, the
missing energy being accounted for by the collective Auid

energy, and of course the temperature drops. In Fig. 5
the resulting pion yields are shown for an adiabatic ex-
pansion from initial conditions prescribed by the shock
equations to a freeze-out density. We can anticipate that
the smaller the freeze-out density, the smaller will be both
the yield and the slope of the yield as a function of ener-
gy. The reasons for this are quite clear. For the slope,
the higher the bombarding energy, the higher the initial
energy density, and hence, the greater will be the cooling
and reabsorption during expansion to freeze out. Of
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FIG. 5. Total pion yields computed in a relativistic nuclear
field theory of the fireball following an adiabatic expansion to a
freeze-out density of pf ——2pp from an initial density prescribed

by the Rankine-Hugoniot conditions. Data are from Ref. 32.

course we are not assured that the yield and the slope will
correspond simultaneously to observation, but in Fig. 5
we see that that is actually achieved for a pion freeze out
of pf ——2po. This gives some confidence in the scenario
described above.

However, we note two negative points. The first is
that, as in Fig. 4, the yields corresponding to vastly
different values of I( are not much different from each
other. Second, the coupling of the delta to the meson
fields was here assumed to be the same as for the nucleon.
Uncertainty in these couplings introduces additional un-
certainty in the yields. This has been the subject of de-
tailed study in Ref. 27.

Thus, although the data is rather well reproduced in
the above model, the sensitivity to the equation of state is
low, and it cannot be defined within very broad limits.

V. SUPERNOVA EXPLOSIONS

In the late stages of the evolution of a star, thermonu-
clear combustion burns to the end point or minimum
mass possible for the number of baryons present. At this
time a dynamic instability sets in and gravitational col-
lapse commences. However, numerical simulations
have not, until recently, produced a successful scenario in
which most of the imploding material from the collapse
of a massive star is ejected. Failure to eject means that
the stellar material will once more be accreted by gravity,
and the massive remnant will subside into a black hole
rather than a neutron star whenever the mass exceeds a
critical value of several solar masses.

A. Prompt bounce

This scenario in which mass ejection occurs on the
time scale of a few hydrodynamical crossings of the iron
core (= 10 ms) is a tenuous one. On the one hand, stellar
evolution calculations of the precollapse configuration of
the star find that the iron core mass is an increasing func-

tion of progenitor mass with a lower bound of =1.3Mo
for the core mass of the lightest progenitors of type II su-
pernovae =10M~), while numerous simulations of the
subsequent evolution find that the mass of the iron core
cannot exceed =1.35Mo and still allow a successful
prompt explosion. Otherwise the shock is dissipated by
neutrino losses and photodisintegration, and stalls at the
order of 100 km and the star does not explode. Within
this narrow window, Baron et al. found that if they
choose an equation of state that is sufficiently soft at high
densities, a successful prompt ejection can occur. If this
were the whole story, then a tentative conclusion could
be reached that the equation of state must be sufficiently
soft at high density to produce type II supernovae.

Very recently it has been discovered by Nomoto and
by Woosley and collaborators, that a very small correc-
tion to the Coulomb energy in the presupernova, corre-
sponding to the lower energy of a lattice compared to a
free electron gas, lowers the iron core mass by about

]p Mo This seemingly smal 1 effect significantly reduces
the dissipation of the shock as it traverses the iron core,
leaving a greater energy for ejection. Its effect should be
to moderately improve the chances for prompt explo-
sions. At the same time it can be remarked that when
uncertainties so small as this (=10%) become of vital
concern as to whether the simulation of the collapse leads
to successful mass ejection, it must be concluded, in view
of the exceedingly complex physics of the entire scenario,
from the evolution of the presupernova to the collapse,
that there are other uncertainties at least as large as this.
It has been found, for example, that for each &pMC of
iron core that the shock traverses, about 2)&10 ' ergs is
dissipated in dissociation energy. This is comparable to
the entire explosion energy of typical supernova.

However, taking advantage of the smaller iron cores it
is still found, in very recent work, that a soft equation of
state is necessary to achieve the prompt ejection with the
desired explosion energy. In particular, the authors
seek to account for SN1987a, the supernova event of ear-
ly 1987, with the prompt bounce mechanism using a nu-
clear equation of state based on the parametrization
known as BCK. It is characterized by the compression
modulus K(x) at the relevant proton fraction x =Z/A
and by the index y, which is the power dependence of the
pressure on the baryon density. The particular parame-
ters used give E(—,

'
) =180 MeV for nuclear matter and

E(—,
'

) = 138 MeV for the neutron rich matter near the re-
bound density, which is about four times nuclear densi-
ty. The value of the index is @=2.5. With such a pa-
rametrization, and using precisely the form described in
Ref. 5, we have solved the Oppenheimer-Volkoff equa-
tions of star structure. Our results are shown in Fig. 6
for the value of x = Z /A =—,

' employed in the supernova
simulation, and for a somewhat smaller one, as might be
more pertinent to the more highly evolved material of a
neutron star. As is characteristic, there exists a max-
imum star mass as a function of the central density. This
maximum mass for the equation of state used in the pa-
per of Baron et a/. , is seen to be smaller than the masses
of two known neutron stars. One is the very accurately
measured mass of PSR1913+ 16, and the other is the
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FIG. 6. Gravitational mass of neutron stars as a function of
central density for the BCK equation of state used in Ref. 37 for
the value of x=Z/A = —,

' employed in the reference, and a
smaller value, as might be reached in the further evolution of
the collapsing matter to the neutron star. The x coordinate of
the two measured masses is not significant since the central den-
sity is not measured. The error on the mass of PSR-1913+ 16
measurements is smaller than the data point.

less well known mass of 4U0900-40.
Therefore, a shock energy large enough to survive the

dissipation due to nuclear dissociation as the shock
traverses the core, and still eject the mantle promptly
with the energy estimated from the light curve of
SN1987a, is bought, in the simulation, at the price of an
equation of state that is too soft to support the measured
masses of several known neutron stars.

We have also tested those equations of state employed
in Ref. 5 that are cited as producing successful first
bounce supernovae. We find that of the five cases listed
as successful, four of them are incompatible with neutron
star masses and the remaining one [E(—,')=180 MeV,

y =3], yields a low explosion energy, too low to account
for the energy inferred from the light curve of SN1987a.
It can account for 4U0900-40 only at the lower bound on
the error in the mass measurement.

Therefore, it is unproven that the prompt-bounce
mechanism can be made to work in supernova simula-
tions with equations of state that are soft enough to
release enough energy for prompt ejection of the mantle,
and still enough to be compatible with certain known
neutron star masses and with the preponderance of evi-
dence from nuclear physics that is surnrnarzed in Sec.
VIII. This conclusion is reached with the same equation
of state as used by the authors of the supernova simula-
tions. Consequently, it is premature to conclude, as has
been done, that supernovae, by their fact, imply a soft
equation of state. This is all the more reinforced by the
observation that there exists an alternative mechanism
that does not impose this restriction on the equation of
state. This we now discuss.

8. Late-time shock revival

A different scenario has been recently discovered by
Wilson which was reported to lead to successful ejec-
tion for a wide range of precollapse cores arising from the
wide range of star masses that occur in nature. Except
for light mass progenitors, 8 ~MlMo 5 15 and under,
the restriction of a soft equation of state as described
above, and in all cases for progenitors with M ~ 15Mo,
the shock typically stalls at about 100 km. Wilson found
that it can be revived on a long time scale by reheating
due to absorption of a neutrino shower emitted by the
cooling neutron star. This mechanism has been reported
to yield successful explosions for a wide range of progeni-
tors and may, in fact, describe all type II supernova. It
produces neutron stars in a wide mass range from 1.2 to 2
solar masses. However, this mechanism, like the prompt
one, is sensitive to small effects; in this case to accurnula-
tion of numerical inaccuracies because of the extremely
long evolution time. '

C. Softening due to hyperons

Elsewhere we have shown that the hyperon threshold
in neutron star matter is around p=3po, and that the
equation of state is very much softened by the opening of
these degrees of freedom. This density is below that
which is attained at the time of the shock formation in
supernovae. Since the weak interaction time in dense
matter is short on the hydrodynamic scale of milliseconds
that governs the collapse, this softening will play a role in
supernovae. Its significance in gravitational problems
can be gauged by the fact that hyperons reduce the limit-
ing mass of neutron stars by up to —,'Mo, which is to be
measured on a scale of several solar masses. It would ap-
pear therefore that the nuclear equation of state can be
stiff at low density, and still be sufficiently soft at high
density due to nucleon conversion to hyperons, as to
release sufficient energy to the shock so that it can
promptly expel the mantle. This suggestion has so far
not been explored in supernovae simulations, but appears
to be a possible resolution to the problem of the prompt
bounce.

D. Conclusions

We note the following conclusions.
(1) In 7 cases out of 8 in which the simulation of the

prompt-bounce mechanism of supernovae explosions has
been cited to work in Refs. 5 and 37, the equation of state
employed is too soft to support known neutron star
masses. In the one case for which it worked for a some-
what stiffer equation of state, the explosion energy was
too small to account for SN1987a. Therefore, the burden
of proof, that the prompt mechanism can be made com-
patible with neutron star masses and other evidence on
the equation of state, rests on the proponents of the
prompt mechanism.

(2) Consequently, it has not been established that the
occurrence in nature of supernova explosions provides a
constraint on the equation of state, as has been frequently
quoted in the literature.
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(3) This is further reinforced by the fact that an alter-
native mechanism, the late-time one, works without the
restrictive condition.

(4) Both the prompt and the late-time neutrino reheat-
ing mechanism are very sensitive to physical effects and
numerical inaccuracies at the 5 —10%%uo level. This can
lead one to suspect that there may be a major physical
effect that has not yet been realized or implemented in
the simulations.

(5) The narrow window or iron core mass for which the
prompt bounce mechanism was thought to work has led
to a bias in the way in which observations on neutron star
masses are interpreted, namely that they have an almost
unique mass which is to be discovered by finding the mass
that is compatible with the overlapping errors in the mea-
surements. In this interpretation the probable mass is
1.4+0.2Mo. As shown elsewhere, this would place a
lower bound on the nuclear compression modulus of sym-
metric matter of =200 MeV. However, in view of the
success of the late-time explosion mechanism for a wide
range of progenitor star masses, and hence of neutron
star masses, we should accept the dispersion in mass
determinations as representative of neutron stars of
diferent masses. These range from 1.05Mo to 1 87Mo.
generally with large errors except for PSR1913-16which
is known very accurately as M =1.451+0.007Mo. The
most probable mass in the case of one of the largest mass
determinations is 1.85+v 3OMo for 4U0900-40. This is
the mass that theory must account for, and not the lower
value of 1 4Mo gen.erally employed as the critical value

VI. NEUTRON STARS

We analyze neutron stars in the framework of relativis-
tic nuclear field theory generalized to beta-stable charge
neutral neutron star matter, including all baryon species
that are required to achieve equilibrium over the relevant
density range. The hadronic part of the Lagrangian for
this theory is given in Eq. (4), and the full Lagrangian in-
cluding leptons is given in Ref. 45 together with the equa-
tion of state. When the field equations are solved subject
to the subsidiary condition of isospin symmetry, the solu-
tion corresponds to symmetric nuclear matter. When
this same theory is solved with subsidiary conditions of
charge neutrality and beta equilibrium, we get the solu-
tion for neutron star matter. These solutions, by conven-
tion, will be denoted always by the properties of the cor-
responding solutions of symmetric matter.

In this analysis of neutron stars, we vary the stiffness of
the equation of state of neutron star matter at high densi-
ty. This is accomplished through a variation of the cou-
pling constants of the theory which leaves the bulk prop-
erties of cold symmetric matter fixed at saturation, with
the exception of EC. In this way we are able to place a
lower bound on K. The reason why a lower bound is im-
posed by neutron star masses is that, for a given equation
of state, there is a maximum or limiting mass that a neu-
tron star can attain. The limiting mass is an increasing
function of the stiffness of the equation of state. An ac-
ceptable equation of state must have a limiting mass at
least as large as the largest known neutron star mass.

Hence, the lower bound. Since there is uncertainty in the
effective nucleon mass at saturation, which is one of the
saturation properties used to fix the coupling constant,
and because it also effects the behavior of the equation of
state at higher density, we shall use a range of values for
this quantity. We note that, corresponding to the Lan-
dau effective mass 0.83 found in Ref. 11, the scalar
effective mass of this theory at saturation is 0.78, the two
being related by mL* ——(m,"„+kF )'

Several authors have suggested that neutron star
masses do not depend sensitively on K or the properties
of matter near saturation because their central densities
are high. We disagree with this for several reasons.
First, for any theory of matter and for nature too, the
equation of state is everywhere specified by its coupling
constants, both its high density behavior as well as its be-
havior near saturation. This factor establishes the link,
albeit in practice through an imperfect theory. Second,
the central density does not contribute much to the mass
because of the three dimensional geometry. We have
computed that half of the mass of a neutron star, even at
the limiting mass, is contributed by matter at densities
not too much above saturation density. In Fig. 7 we
show the fraction of mass M(p)/M of the limiting mass
star that is composed of matter is excess of p, and what it
reveals in the particular case is that half the mass lies at
densities less than three times nuclear density. Thus, the
mass of a neutron star, at the limiting mass, is dominated
neither by very dense matter, nor by matter near nuclear
density. The balance between these domains in lighter
stars shifts to the latter.

So far only half a dozen or so neutron star mass deter-
minations have been made The most probable mass in the
case of one of the largest mass determinations is
1.85 0 30Mo for 4U0900-40. In Fig. 8 we show our cal-
culation of limiting neutron star mass as a function of the
stiffness at high density of the equation of state, as con-
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FIG. 7. The fraction of mass M(p)/M contained in matter at
density greater than p as a function of baryon density, p, for a
neutron star at the limiting mass, 1.85MO, in the case that
K=300 MeV and the nucleon effective mass in nuclear matter
with the same coupling constants is m */m =0.75 at saturation.
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ergy were not listed among the seven constraints on the
early work. ' As we showed earlier, about half the mass
of the heaviest neutron stars is composed of matter in the
lower density domain below 3po so that such uncertain-
ties as those mentioned are quite important for neutron
star structure. Moreover, such uncertainties propagate,
by continuity, into the high density domain. In addition,
the ordering of thresholds for the higher baryon states in
both of the above works ' ' suggests that the symmetry
energy at higher density becomes small in comparison
with that expected from the coupling of baryons to the
rho-meson, as was discussed elsewhere.

1.25
200 300 400

IC (MeV)

I

500

FIG. 8. Limiting neutron star mass as a function of compres-
sion modulus, of the corresponding cold symmetric matter, are
shown for several nucleon effective masses (at saturation densi-

ty) computed in the relativistic nuclear field theory (Ref. 45).
Horizontal line represents the most probable mass of neutron
star 4U0900-40.

trolled through the coupling constants of the theory, and
characterized by the nuclear compression modulus of
symmetric nuclear rnatter and the nucleon effective mass
at saturation. The most probable value of the mass of the
above star is found to place a lower bound of K &335
MeV. If the lower bound on the mass measurement of
4U0900-40 is used, then the lower bound on E becomes
about 225 MeV, while corresponding to the upper bound,
K=700 MeV. We note that the sequence of limiting
masses as a function of m * at fixed K changes at K =260
so that lower m* than used here will not effect the con-
clusion on the range of Ji that is needed to account for
the mass of this star.

The authors of some recent neutron star calculations
find limiting masses for given E that are larger than what
we find. These calculations in some cases are for pure
neutron matter (cf. Ref. 46), and in another include only
neutrons, protons, and leptons. However, above a cer-
tain density, of the order of two or three times nuclear
density, the ground state of charge neutral matter con-
tains also hyperons. ' We have shown elsewhere
that hyperons significantly soften the equation of state be-
ginning at the thresholds for these particles and reduce
the limiting neutron star mass by an amount ranging
from —,

' to —,'Mo depending on the intrinsic stiffness of the
equation of state, with the effect being largest, the smaller
E. When account is taken of this, the quoted results
appear to be in accord with ours.

We should remark that such an important role for
hyperons is supported by the nonrelativistic calculations
of Pandharipande but not by Bethe and Johnson. '

However, since these early works, it has been realized
that when such calculations as those are carried to con-
vergence, nuclear rnatter saturates at twice the empirical
density. Moreover, even though neutron stars have
dense interiors, and are the most isospin asymmetric ob-
jects known, the compression modulus and symmetry en-

VII. REVIEW OF OTHER RESULTS

A. Masses and radii in the droplet model

We saw earlier that the droplet model fit to masses as a
function of K is very flat. An improved determination
could be achieved through a combined fit to masses and
radii. This has not been done yet with the improved
droplet model of Ref. 12. However, an older version ap-
plied to a combined fit of masses and charge radii gives
K=280+65 MeV, in agreement within the errors with
the new result presented in Sec. III.

B. Flow angle in high energy nuclear collisions

The measurement of momentum flow in high energy
nuclear collisions carries information on the equation of
state but, as recently emphasized, a momentum depen-
dence of the mean field of a nucleon in a nucleus intro-
duces a large ambiguity in the interpretation. ' The
presence of a momentum dependence in the mean field
has not been in doubt since Weisskopf pointed out this
consequence of nuclear saturation and the approximate
independent-particle structure of nuclei, but its form is
by no means known. In Ref. 9 it was found that the
flow angle could be accounted for by either a soft
mornenturn-dependent potential, or a stiff momentum-
independent potential. We conjecture that these are but
two of a continuum of representations of the flow accord-
ing to the method of analysis used in Ref. 9. The "proof"
is as follows: The particular momentum dependent mean
field employed in Ref. 9 is

U(p, p) =a~+6 ~ +c~
( [1+(p—(p') ) /A ]

Po Po Po

which depends on five parameters a, b, o., c, and A. The
last is arbitrarily fixed throughout while c is fixed by the
value of the nucleon effective mass. The first three can be
determined by the saturation density and binding of nu-
clear matter, and the rnomenturn flow angle. The
compression modulus is then fully determined. In this
way we can deduce that there is a continuum of momen-
turn dependent mean fields that can reproduce the flow
data, each yielding a different value of K. The first and



37 EQUATION OF STATE FROM NUCLEAR AND ASTROPHYSICAL. . . 2741

last entries of Table I of Ref. 9 are two members of this
continuum. Other representations of the flow data corre-
spond, for example, to 0. varying between —,

' and 2, and
m*/m varying between 0.7 and 1, with corresponding
values of K between 215 MeV and 377 MeV, the momen-
turn dependence being largest at the first extreme, and
zero at the other. Since these correspond to m'/m equal
to 0.7 and 1, respectively, they may effectively be regard-
ed as the range in which this method determines K. If we
assume that the dependence of K on m * determined in
this way is linear, and choose m'/m=0. 83 in accord
with its recent determination in Ref. 11, then K=285
MeV gives the correct flow angle and saturation proper-
ties.

C. Recent results for the giant monopole resonance

New results for K have been reported by the
Groningen group who made precision measurements on
additional nuclei to those used in the analyses of the
breathing mode of a decade ago. The new data is for iso-
topic chains of Sn and Sm isotopes, ' and comprises a
larger database than before. The errors on the location of
the giant monopole resonance in the new experiments are
typically —,

' to —,
' what they were in the old, and the experi-

menters report that the sum rule appears to be exhausted.
The new value obtained for the nuclear matter compres-
sion modulus is K =299+25 MeV.

VIII. SUMMARY

We have analyzed evidence on the equation of state
coming from a wide range of sources, from nuclear
masses, the Landau sum rule, pion yields from high ener-

gy nuclear collisions, and neutron stars. Taken together,
these analysis favor a large nuclear compression modulus
and a stiff equation of state except for the Landau sum
rule, which places only a very broad constraint from low
to high K. Secondly, we critically appraised the situation
on supernova simulations with regard to the equation of
state. It has been previously reported that, to obtain a
prompt ejection in supernova simulations, the equation of
state must be soft at high density. We showed that with
one exception (our of eight) the equation of state used in
those simulations were so soft that they could not sup-
port the measured mass of several neutron stars. The ex-
plosion energy is bought at the expense of neutron star
mass. In the exceptional case, the explosion energy was
small and marginal. Beyond this there is an alternative
mechanism, Wilson s late time neutrino reheating, that
does work without the restriction on the eqution of state.
However, it was noted that both mechanisms are sensi-
tive to effects at the 5 —10% level, and are therefore mar-
ginal scenarios as they stand. It may be that there is an,
as yet, unrealized physical effect that has not been includ-
ed in the simulations. Thirdly, we briefly discussed addi-
tional evidence from other work in Sec. VII. This includ-
ed the momentum flow angle in nuclear collisions for
which we showed that there is a continuous ambiguity in
the determination of K unless the nucleon effective mass
is well established. An exciting new development is the
new high precision data and a broader data base for

K (MeV}

00 0

nuclear masses

00 00 0 00 0

masses + radii [1]

heavy-ion flow angle [2]

pion yield

Landau sum rule '

neutron stars

supernovae (prompt) [3]=

giant monopole (original) [4]

giant monopole (new) [5]

FIG. 9. Summary of results for K. The numbered items are
taken from other sources referenced as follows. Item numbers 1

is from Ref. 53, item 2 from Ref. 9, item 3 and from Ref. 5, item
4 from Ref. 3 and item 5 from Ref. 56. Unnumbered items in
the figure are from this work.

analysis of the giant monopole resonance (GMR) ob-
tained by the Groningen group.

In Fig. 9 we summarize results for K from the broad
range of evidence studied or quoted in this work. All the
evidence agrees within their errors except for the old and
new monopole results which do not agree with each oth-
er, and the prompt-bounce supernova simulation, which
however should not be regarded as a constraint for the
reasons discussed in Sec. V. All of the evidence that we
have considered is consistent, within the lower error
bounds, with the original analysis of the (GMR) data.
However the present evidence lives more comfortably
with the new GMR data and its analysis. It would ap-
pear therefore that the compression modulus lies around
300 MeV, with considerable error.

Concerning the equation of state at higher than nuclear
density, it is not possible at this stage to make very pre-
cise statements. Certainly the neutron star equation of
state must be sufficiently stiff as to support the mass of
known neutron stars. The original suggestion of Stock,
that a rather direct measurement of the density depen-
dence of the nuclear matter equation of state is possible
from pion yields in nuclear collisions through a measure-
ment of the "missing potential energy" is not a rigorous
procedure as discussed in Sec. IVA and proven in Ref.
29. Unfortunately, it is not born out even qualitatively in
the calculations of Sec. IV B. If thermodynamic equilib-
rium in the dense matter is not achieved, then an extrac-
tion of the equation of state becomes entangled with
many uncertain issues concerning the treatment of the
dynamics, a glimpse of which is seen in the discussion of
Sec. VII B.

Finally, we wish to acknowledge that K is a less than
perfect characterization of the stiffness of the equation of
state. We have related different kinds of phenomena,
some of which sample the equation of state over a range
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of densities, through relativistic nuclear field theory.
This is model dependent but quite precise as to its mean-
ing, as we have described the theory.
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