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A general formula for the coefticient of internal conversion in an intense laser field, which is valid

for all atomic electron shells, is deduced in a simple nonrelativistic model. For special shells, for
which internal conversion without the laser is energetically forbidden but which have an energy de-
fect relatively small compared to the laser photon energy, the presence of the laser radiation is
essential. Cases such as the 4s —shell internal conversion of the E1 transition of the isomeric state

(E~ =544 eV, ~=5.3 s, J = '2' +) and the Sd 2, 5d
2

shell internal conversions of the E3 transi-

tion of the isomeric state "U (E~ =73.5 eV, v =26 min, J= —'+) are numerically investigated in

the small momentum approximation.

I. INTRODUCTION

where R and x denote electron and proton coordinates,
respectively, and Ze is the nuclear charge. Furthermore,
in paper I, only the E shell ICP in the small momentum
approximation (see below) was investigated.

The exact treatment of laser free ICP needs a very
complex calculation. Besides the above simple interac-
tion Hamiltonian, it is also necessary to take into account
the effect of photon exchanges. In such a calculation one
has to use relativistic (Dirac-type) wave functions and
also has to take into account the effect of the nuclear size
and of the shielding of the Coulomb potential of the nu-
cleus by inner-shell electrons.

The treatment of the laser assisted ICP (LA-ICP) also
needs electronic wave functions which are the solutions
of the Dirac equation, but with the Hamiltonian
HF HoE+H„z w——ith HoF —— ificaV+Pmc —Ze /R—
and H„z ——ea A (for the notation see Ref. 4). Here A is
the vector potential describing the laser radiation.

The main problem of the formulation of the LA-ICP is
that there is no exact solution of the Dirac equation with
the above Hamiltonian and the same holds for the non-
relativistic Hamiltonian

HE=—
2

Ze2 1 e+ p ——A

which was used in paper I. Thus at present we have to
take approximate solutions for the in and out electron
states.

In a recent paper' (hereafter referred to as paper I) we
dealt with the internal conversion process (ICP) that
takes place in the presence of intense radiation (laser)
field. In paper I a very simple model was used, as the in-
teraction Hamiltonian HI, which causes internal conver-
sion, was supposed to be of Coulomb type

Z e2 Ze2

iR —xi R

Our final aim is to construct a general theory of LA-
ICP, but because of the above-mentioned numerous prob-
lems we are going to do it step by step. In the present pa-
per we are extending the calculation in two directions.
We restrict ourselves to the simple model of paper I but
we investigate not only the K shell case; furthermore, at
the beginning we do not use the P =aop/A&& I approxi-
mation [small momentum approximation (SMA)].

With these extensions we generalize the calculation of
LA-ICP in two essential respects, we work out some of
the mathematical grounds for LA-ICP which will also be
useful in the case of a general relativistic calculation, and
we account for the LA-ICP of all electronic shells making
possible the discussion of special interesting cases.

The vector potential A of a circularly polarized exter-
nal radiation field in the dipole approximation is

A=a e&cosset —e2sincot

where co is the angular frequency, and a is the amplitude
of the vector potential. e& and ez are the unit vectors per-
pendicular to each other and e3 ——e&Xez. We use the
coordinate system e&, ez, e3 further on.

In Sec. II the electronic wave functions in the initial
and final states are given. In Sec. III the transition prob-
ability per unit time of the process is deduced. Section
IV is devoted to the general form of LA-ICP and in Sec.
V the result is discussed in the SMA. In Sec. VI numeri-
cal results and their discussions are given. The
mathematical formulae necessary for the computation, in
general, are listed in Appendix A. Appendix B contains
the method of computation of the quantities denoted by
i&~' ' and T&' ' 'I in the paper. Appendix C gives the

way the quantity T (depicted in Fig. I) was numerically
computed in. Finally, in Appendix D we deal with the
approximations used at the deduction of the initial and
final states. As the initial state looks like a wave function
of MTA type the relation to the MTA is also discussed
there.
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and Gpp' ——JIv(p sine)exp(iNX) we have for the final state
in this approximation the form of (5d) of paper I.

tively, and

d xI '''d x~

III. CALCULATION OF THE TRANSITION
PROBABILITY PER UNIT TIME

In this section we follow the steps of Sec. III of paper I.
We use the scattering matrix formalism, and the matrix
element to be determined is the same as (6) of I. Using
the expressions (4a) and (6a) it can be written as

proton spin

with x&, . . . , x, denoting proton coordinates. After car-
rying out time integration in (8) we have

S'N, L) —/H L,™O'N «.2m
1

fi, lm I l, ab ~y Im

(N, L)Sf; —— g SfI, Im

N, L, l, m

(7)
X 5[K +E Aa—I,b+(L N)%co—],

with the notation

(9)

where

I"1' *H yaUI 'd g d7 dr .1
fi lm .g Uf 1m f I ivi (8)

Here p; and ff are nuclear wave functions for the initial
(a}and final (b) states having energies E, and Eb, respec-

f y bag a 8 1(t aU ILId3/ dr (10)

and Ace,b
——E, —Eb. The caret denotes the space depen-

dent part of the wave functions.
The above modifications alter formula (11)of paper I

V d dQ (L I ) (L' I )
lS l

= g g 4m H ' ' ' H '' ' G' '"G' '5(N, L)5(N', L') dEdQ
(2W)' l, ab l, ab I

&
m

~ I2 m& p
N, L, N', L' l), m ), l~, m~

where 5(N, L) denotes the Dirac delta function in (9) and 5(N', L') has the same meaning but N' and L' stand in the ar-
gument instead of N and L. Using the identity

5(N, L)5(N', L') =5(pI(L N L'+N—'))5—(N, L)IA,

we can obtain the following result in the usual way

2m IL, I, m, ) (L', I,m, )'
IVIII Ib I Inp(N, L)d~f'(Ina, P™b) = X np(j«) Hl, ab IIl, ab Gl m Gl m 3 5L L', N —N'd+p—

(2m%)
(12)

where the symbol p (N, L) denotes that p has to take a value determined by the argument of 5(N, L), np(jnA, ) is the den-
sity of the initial electronic states, i.e., the number of electrons on the given subshell of quantum numbers j,n, A, , p is
the magnetic quantum number of the initial electronic state, and m„mb are the magnetic quantum numbers of nuclear
states (a) and (b), respectively, 5L l ~ N N is the Kronecker delta.

We work in the point nucleus approximation, i.e., we neglect the nuclear size beside the size of the electronic shell so
we use the expansion (A2) of I /

l
R —xz l

in terms of spherical harmonics valid if x~ & R. Thus we obtain
oo

(13)
I=pm = —I

where s =1,2 and QI (a, b} is the matrix element of the electric multipole moment of order l, m [see (14) in paper I] be-
tween nuclear states (a) and (b) which can be written with the use of the Wigner-Eckart theorem through its reduced
matrix element & b ll QI lla & as

jb
QI (a b}=(—1}' '&bllQIlla & —mb m m, (14)

Furthermore,

(L, l, m, ) .(L, l, m, )

IIm, gp
=C Im, gp with C =

3 1/2 0
(m.ap )

(15)

and

iI '«„' ——f e ~f„«(g)$ «„(B,Ip)Y'I (B,y)JL(bgsin8)i e' +gI ((,B,Ip)g' dgdlpsindd8 . (16)

Since & b llQI lla & decreases rapidly with increasing 1, we retain from the sum for I only the term of lowest 1 which gives
nonzero reduced matrix element. Thus I is determined by the multipolarity of the nuclear transition as usual.
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We use the addition formula of the spherical harmonics and write the product Y&„Y1 in the form

„„„A.I J A, I
Y2„Y( ——g +J 1 )(.

p p p M YJM .
J,M

~ (L 11m 1
) (L 12 2Here J=2J+1, 1=2l+ I, and A, =2k.+l. Using this in HI, 'b' ' and in HI, b

' ', the formulae (13)—(16) and twice
the condition of orthogonality of the 3j symbols (A3); furthermore, averaging over the magnetic quantum numbers of
the initial nuclear state (a) and the initial electronic state, i,e., over m, and (u, and summing over the magnetic quantum
number mB of the final nuclear state (b) as usual, we obtain

dWf; ——

N, L, N', L' 11,m1, 12,m2

4 (. &)
me p(N, L) G(N) G()v)

p I
I 2~4 11m1 12m2

'2
2

(L ( ) (L', I ) I
& b IIQ(ll(2 &

I

X L L N N' g p p p JM JM 2( ) p
J,M . . (2j, +1)(20

(18)

where

i&M'* * ——f e «f„z(g)YJM(8, (p)JL(bgsin8)e' "i g( (g, 8,y) g' 'dgd(psin8d8, s =1,2 . (19)

Finally, the total transition probability per unit time can be obtained as

Wf; ——

N, L, X', L'11,m1, 12, m2

8no( jn A. )me

'2
.(L,I, I.(L', ( ) (N N ) I &bIIQ(ll(2 &

I

'

JM
(2P)

where

T(N, N') g(N) G(N' dpsjn8d011m1, 12m 2 2~ 11m1 12m 2
(21)

IV. LASER ASSISTED INTERNAL CONVERSION COEFFICIENT (LA-ICC)

.(L, l, m )
We can make further simplifications in the expressions of i JM

* ' using the formulae (A4) for the spherical harmonics
and intergrating over g. Similarly the integration in Tl '

1 over X can be carried out. These integrations result:
1 1'2 2

2W 5L + M + p 27T5L +M + p 277'5N N + p respectively, which with the definition of the internal conversion
1' 21 1 2'

coefficient (ICC) [see Sec. V formulae (28) and (29) in paper I] gives for the LA-ICC

no( j)l [(21—1)!!] aEO

m(l +1) E, V'a

' 21 —1

Zeff

' 1/2
2%co

N, L, ll, m1, 12, m2, J
/L+ml /

(J

1

0 0

'2
J .(L,11m1) .(L +m1 2, 12m2

0 J, —L —m J, —L —m

1/2
(N, N+m2 —m1)
11m l.12 m 2

+(N L)—
Ado

(22)

where Ep ——mc is the rest mass of the electron, %co is the laser photon energy, a is the fine structure constant,
Ez ——E, —Eb is the energy of the gamma photon, 6=Ez —Ez, E&

—= I( is the binding energy of the electron in the shell
investigated; furthermore,

if B'™)=&vri 'KJ'(™f f P) (cos8)P( ' (cos8)i "J„(b(si 8)snin8d8 e f„z(gj)( (Pg)dg, (23a)

with

1/2
B,m, g~~ (B+ IB I+m, + Im, )/2 (J —

I
B

I
)! (is

I ms
KJ( ' ——jr I,J ( —1) (J+ IB I

)' (I, + Im, I)'
(23b)

and
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TI' '
'&

——Kl 'I™fJ, (13sin8)J&(13sin8)PI ' (cos8)P& ' (cos8)d(cos8) .

A, l, m, (C, D)The formulae we need to computeiJ~'' ' and Tl '
l are given in Appendix B.

7 1 I'2 2

(24)

V. SMALL MOMENTUM APPROXIMATION

I &J ~c
~

I 'rxi. ~ (25)
L = —J N ) —5/fico+LJ-L =even

with

The SMA results (see Sec. II) that 1, =12=0, m, =m2 ——0 and so we have quantities of types iz L' and Tpp'pp' ap-
pearing in the LA-ICC. Thus (22) giving the LA-ICC (a„,.z) of a nuclear transition of multipolarity 1 and of an elec-
tronic subshell of quantum numbers n, j,A, as

J=i+). 1 g J J
oooJ= /I —A,

/

and

' 2l —1

B(j)= (2j + 1)1[(21 —1)!!]2 Zeff(J)

(I+ .I ) n

l 2P(N, L)
~~,L.

=
22 p p

' 21+1/2
&Ep 2 2'~
Er v'~ Er

' 1/2

(25a)

(25b)

Here 2~N I Tpp'pp' ——[see (25) and (26) in paper I], J2
~
N! denotes the Bessel function of the first kind,

P(NL) =Pp(N —L +6 /Rcu)'~2 with Pp=ea(2/ArpEp )'~, i' iJ ——I ' (see Sec. IV in paper I), and

I
~JL I

SJL(y)(l+b') " 'y ", -J L=ev—en

I iji I
=0, J L=odd—

where y =b /(1+b ) with b defined in Sec. II,
n —1

S&I (y)= g d (nA, )(1—y)~ g F&ik (y)y",

(26)

(27a)
q=0 k) J —L

FJLk~ 2nNJL f&LI,
——2F~ 'k+1+, ;L+k+1;y (2k+L —J+q+1)!/[2 "+ k!(L+k)!],

NJL ——

JLk

1/2
2J+1 (J —L)!

4~ (J +L)!
I (k+ —,')k!(J+L)!

2~I +k+1 I +k+3/2 (J —L)!J —I. L+J
2 2

(27b)

(27c)

(27d)

As the L dependence in P can generally be neglected, a'„Jz may be written in a simpler form'

a„' z B(j)SF&&(n)T—— (28) l 2P(N)
T = g f J2!~!(x)dx

N & —6ih~
(30)

SF»(n) =
'2

J=l+& I A, J
oooJ= [1—A, }

L= —J
J —L =even

I 'I ~I. ! I

and P(N) is P(N, L) with L =0.

VI. RKSUX.TS AND DISCUSSIQN

(29)

where n in the parentheses indicates that SI l& depends on
the constants d p( n A), . . . , d„,, (n A, ),

At first we discuss the conditions of validity of our re-
sults. The laser field should be so intense that the interac-
tion energy of electrons with the laser field would become
comparable with the binding energy of electrons in the
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In the ' W case a —", + state decays via E1 transition
to a —', state with E~=544 eV and ~=5.3 s. However,
the dipole coupling between low lying states is very
weak' in the nucleus which is manifested in the fact that
a measured half-life against dipole transition can be
10 —10 times smaller than the theoretical one com-
puted in the Weisskopf estimation. Thus the total ICC of
the E1 transition of the ' W isomer cannot be comput-
ed in a similar way as was done in the U case. How-
ever, we can give an upper limit for the laser free ICC.
For a given transition the largest ICC belongs to the most
inner shell; therefore, we estimate the total ICC by the
sum of the ICC's of the N2 and N& shells. Their values
can be approximated by threshold ICC's which are upper
limits. These are not available directly, but the threshold
ICC's of Mz, M& shells are known, we can compute
them for hypothetical transitions of energies 489 and 423
eV corresponding to the binding energies on the N2, N3
shells. Thus we obtain a(N2) &490 and a(N&) &980, i.e.,
the total ICC azg1500 for the 544 eV transition of

W in the laser free case.
We investigate this ICC in two cases: at a laser intensi-

ty I =9.85X10' W/cm (po ——9.5), laser photon energy
irido=5 eV, and at I =2.1X10' W/cm (po=12. 5),
duo=1. 16 eV both giving y && 1, and similarly to the case
discussed above we can obtain SF,o(4)=4iry/9 with

do ——1, d
&

———3, dz ——2, and d& ————,'.
In order to obtain the LA-ICC's we need the numerical

values of the quantity T(Po, b/fico) given by (30). It was
computed with different 6 &0 values corresponding to
the cases investigated in this article and in paper I (i.e.,

U, ' W, and ' Ag) and the result is depicted in
Fig. 1 where po=1.07X10 I' (fico) ~ . The method
of computation is detailed in Appendix C. The numerical
data' necessary to the calculation and our ICC results
are listed in Tables I and II, respectively.

The processes discussed here numerically may be
promising to observe as the energy defects are relatively
small compared to the laser photon energies.

On the basis of our results one may propose experi-
ments on LA-ICC. The crucial points of such an experi-
ment are the production and collection of nuclei of the
desired amount being in the isomeric state and their irra-
diation by intense and long laser pulses. From an experi-
mental point of view the appearance of multiple charged
ions and free electrons in intense (I & 10' W/cm ) laser

atomic potential. This leads to a condition for the ap-
plied laser intensity

4
Zeff

[fico(eV)] 6.31.10 W/cm (31)

Another condition is a consequence of the SMA. The
SMA is valid and so is our result in the preceding section
ifpaolfi «1 which yields the condition

(32a)6 (&E~,
or more precisely

b, +(N L)duo—«E& . (32b)

TABLE I. Atomic and nuclear data (Ref. 13) used in the cal-
culation. E& is the electronic binding energy of the subshell,
E=Ey —Eg with Ey ——73.5 eV (U) and Ey ——544 eV (W). The
quantity SFI&(n) is determined by (29), y =b /(1+ b ).

Electronic
shell SFIx(n)E& (eV) 5 (eV)Atom

5d-(0 )

5d 2 (05)
4s

2 (Ni )

U
U
W

105

96
592

—31.5
SF»(5)= 32my /245

—48 SEip(4) =47Tg /9

Finally, our result can be used only at moderately high
laser intensities because at extremely high intensities the
nonrelativistic formulation loses its validity.

At moderate laser intensities the condition y &&1 is
usually fulfilled and in the expression SF&&(n) the only
term which contains the lowest power of y is enough to
be retained. It can be seen from (26) and (27a) that

~
iJL

~

-y '" in this case, " thus the J;„=
~

1 —A,
~

power term gives the main contribution to SF&&. It means
that because of

~

L
~

&
~

I —A, ~, L is a small number and
the above approximation, i.e., formulae (28), (29), and
(30) can be used. [In the computation of y we use
b =1.07X10 (I' /vireo) X(n /Zz). ]

As numerical examples we discuss the 04,05 shell
ICC's of the E3 transition of the isomeric state U and
the N& shell ICC of the E1 transition of the isomeric state

W. The ICC for these shells is energetically forbid-
den without the presence of the laser radiation as the
gamma energies are less than the binding energies of the
electron on the shell in question.

According to Weisskopf's formula' for the decay of a
—,
'+ state of excitation energy 73.5 eV to a —', state by E3
transition, the theoretical lifetime for photon emission is
3.1& 10 s. Thus the experimental lifetime of 26 min of
the U corresponds to a total ICC az- ——2X 10' in the
laser free case.

We restrict our considerations to lasers of intensity
I =2.73 X 10' W/cm (po ——5) with photon energy
Ace=5 eV and I =1.2X10' W/cm (po=9. 5) with
Ace=1. 16 eV in the U case. The electronic binding
energies Ez of the subshells determine the quantity
Z,zln which can be estimated as Z,zln =(Ea/R„)'
where R~=13.605 eV is the Rydberg constant. Thus in
the cases of 04,05 shells y &&1. It means that the ap-
proximate formulae (28), (29), (30), and the

SF&z( n )-y
'" approximation can be used to compute

ICC. With these approximations one can obtain from
(29) with the use of (26) and (27a) —(27d)
SFiz(5) =32iry/245. The number in the parentheses
refers to the principal quantum number of the state in
question. The comparison of the wave function of the Sd
state and of its form given by (4c) and (4d) gives for the
constants do(52), . . . , d~(52) necessary for the computa-
tion of SF&z(5): do ——0, d& ——0, dz ——r, d& —— 2r/3, and-
d4 ——2r/21 with r =4/5!(7!/2!/5)'
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TABLE II. The intense field ICC results (a'„j ). I,fico are the laser intensity and laser photon energy, respectively, y =b /(1+ b')
with 5 =1.07X10 (n/Z e)(I' /ficu) where Z ff/n =(E~/R)', I =8.73X10"Po(%co)' .The quantity Tis defined by (30) and it is
given in Fig. 1.

Matter
(shell)

U(O~)
U(O4)
v(o, )

U(o, )

W(N) )

W(N, )

A~ (eV)

5.0
1.16
5.0
1.16
5.0
1.16

Po

5.0
9.5
5.0
9.5
9.5

12.5

I (W/cm2)

2.7&& 10"
1.2)( 10'
2.7X 10"
1.2x10'4
9.9x10"
2.1)& 10'

0.55
0.51
0.58
0.53
0.44
0.28

0.23
0.20
0.25
0.22
0.16
7.3 g10-'

0.27
6.6g 10-'
1.2
1.7
3.6
8.9X 10-'

1a„
2.1~ 10"
4.6~ 10"
2.7X 10"
1.5 &&10"
3.3 x 10'
1.80

pulses is disturbing. ' Thus because of the high electron
background, it seems more convenient to detect those
soft x rays which are emitted in the recombination pro-
cesses instead of the detection of slow conversion elec-
trons. The number of emitted soft x-ray photons N can
be estimated as

be used to con6ne a laser pulse and to force it to run back
and forth through the sample many times, while a laser
active material compensates the losses and ensures that
its intensity remains approximately constant. In this way
the laser irradiation time t may be increased.

Nr ——rt Ata~„/ar, (33)
ACKNOWLEDGMENT

where aT is the total laser free ICC (a T »1 in our cases),
a&„ is the LA-ICC of the shell investigated, 3 is the ac-
tivity of the sample, t is the integrated laser irradiation
time (it is the duration of the laser pulse in an ordinary
case), and rt is the efficiency of soft x-ray detection in-
cluding geometrical eSciency.

Taking, e.g., a„,/ar-0. 2 (' W, a„,=330, see Table
II), rt=10 and t —10 s, we obtain that we need an
activity A -6&&10"Bq (15 Ci) to obtain N —1 in one
laser pulse. This high activity may be reached by select-
ing the isomeric nuclei by a method similar to the one ap-
plied by Letokhov et al. ' to sort out ' Os isomers.
This method is based on the fact that the angular
momentum is higher in some isomeric states than in the
ground state, and this difference gives rise to different
molecular spectra because of hyperfine interaction, when
the atom with isomeric nucleus is embedded in molecules
like Os04 or in our case, e.g., WO3. This method gives
the possibility to select molecules containing isomeric nu-
clei and in this way to produce a sample of low density
but high activity.

The ' W isomer can be produced by thermal neutron
capture in a neutron beam of high flux. The reaction

W(n, y)' W may have a cross section o-2 mb es-
timated by the cross section of the similar

W(n, y)' W reaction' where the nuclear angular mo-
menta, which are essential in a thermal neutron capture
process, are the same as in the ' W(n, y)' W reaction.
The abundance of ' % is 26.3 /o.

Besides the fast isomer separation we need a soft x-ray
detection method of high resolution in order to be able to
select soft x-rays originated from the recombination of
the N&, Nz, and N3 shells. A promising method was
developed for absolute soft x-ray measurement with a
transmission grating spectrometer' which may be a can-
didate for soft x-ray detection in a LA-ICC experiment.

Finally, a regenerative type resonator (amplifier)' may
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APPENDIX A

The following general mathematical formulae are used
in the paper:

e'f'&=4ngg . ij', (P()YI' (8,X)YI (t'I, tp)
I =0m = —I

(Al)

[see Ref. 2, Appendix A, formula (3.5)], here P, O, X and

g, 8, (p are the spherical coordinates of vectors p and g,
respectively,

[see Ref. 2, Chap. XII, formula (5.10)],x~ & &,

(A2)

m ),Pl2

J] J2 J J] J2 J
5 .5'

m2 m m& m2 m 2j+1

(A3)

XPI' ~ (cos8)e' (A4a)

YI (8,y)=( —1) YI', m &0 (A4b)

(see Ref. 7, Sec. 1.1.2),

[see Ref. 7, formula (4.42)],
1/2

1)(m+ ~m ()/2 21+I (i —
I

m
I

)'

4m (1+ [m j)!
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dm
pm(x} ( 1)m(1 x2)(1/2&m p (x), m )0

[see Ref. 18, p. 334, (8.6.6)],

dm
P&(x)=(2m —1)!!C( +'/ (x), m & I

[see Ref. 18, p. 779, (22.5.37)],

1 ~ m r(a+ n —m )(2x)"
r(a) m!(n —2m }!

(A5)

(A6)

(A7)

j& jz j
ml m2 m

denotes 3j symbol, P&(x) is the Legendre function, P( (x)
is the associated I.egendre function of the erst kind,
C„(x) is the ultraspherical (Gegenbauer) polynomial,
I (x } is the gamma function, and J&v stands for the Bessel
function of the erst kind.

f (1—x ) x('dx=
—1

B,X+1, p=evenp+1
2

0, p =odd

(A8)

[see Ref. 19, formula (8.380.11)],

[see Ref. 18, p. 775, (22.3.4)], here [n/2] is the largest in-
teger & n l2,

APPENDIX B

(.C,D) .(A, l, m, )
The quantities T& ( and ijtt * * given by (23a),

(23b), and (24) are discussed here. First we are dealing
with Tt' '

I . We have to evaluate integralsofthe type
1 1'2 2

& m f Jc(——Psin8)JD(Psin8)P, ' (cos8)

r(x)r(y)
I (x+y)

[see Ref. 19, formula (8.384.1)],

(A9)

and so

xp( ' (cos8)d(cos8), (8 la)

JN =( —1}' I
' J

I
&v I, N =integer (A 10)

T(C,D) g 1™2C, D
l

1
m I, 12m2 ll, l2 ll 1' 2m2 (8 lb)

(see Ref. 18).
Here ji denotes the spherical Bessel function, FI is

the spherical harmonics,

[see (23b) and (24)]. The product JcJD is written in
another form using (A10) and the new variable t =cos8
as

ao
1

r+s
1 t2 (ICI+ ID I+2r+2s&/2

J [p( 1 t2)1/2]J [p( 1 t2)1/2]
rs=0 T.S .t t

t

pl c I+ ID I
+2r+2s

X
I (

~

C
~

+r +1)I (
~

D
~
+s +1)2"+'+!

I I+ I

(see Ref. 20). Using (A5) and (A6) we can obtain

(82)

r+s 2 ( Ic I+ ID I + Im& I+ Im2 I
&/2+r+s lm( I+(1/2& lm2 I+(1/2&

r, s =0

&&pl
c I+ ID I+2r+ '/'[r!s!r(

~

C
~
+r +1)r(

~

D
~
+s +1)2r+s+( I

c I+ ID I &/2] (83)

Taking into account (A7) we can conclude that (83) contains only integrals of the type of (A8) and so (83) can be in-

tegrated term by term using (A8).
The other quantity can be written as

.(A, l, m, ) —.I, B,m, A A, l, m, g . 1 I
&J, i&

' ' & /r('&, '( 'i f ——., 2&' '(g)e f„&„(gj)& (pg)(

with the notation

EJ's' ' ——fP) l(cosa)p( * (cosa)J„(b(sine)sin@de .
A, l m,At first we deal with c.& z' '. We use (A5) and (A6) again and with the new variable t =sin8

(84)

(85)
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ajar' '=( —1} '(2
)

m
(

—1}!!(2(8 [
—1)!!2ft *C' '+" '[(1 t —}' )Ct

' [(1—t )' ]

XJq(bgt) 2 &/2
if J+l, —(8

(

—
( m, (

=even,tdt

( 1 2)1/2

' ——0 if J+1,—~B
~

—
~
m,

~

=odd .
(B6)

Using (A7) and the integral formula

t" " '(1 t —) J„(bgt)(bgt)' dt
0

b v+1/2 +v+l +v+3 b
8(A, + I, —,'[@+v+1]),F2,v+ I, +I,;— (B7)

APPENDIX C

The computation of the numerical values of T given by
(30) is based on the following formulae

N —1

f Jqtv(t)dt = f Jo(t)dt —2 g J2k+ )(z),
0 0 k=0

(C 1)

(see Ref. 21), the integration over t can be performed.
The remaining integration with respect to g can be car-
ried out with the use of (A4) of paper I, as with the use of
the definition of the, Fz( ab, c;y) function, it can be writ-
ten in power series form of (b g l2—). The resulting
formulae in both cases ( T and i ) are so cumbersome that
we omit their publication. The formulae given above are
suitable for constructing computer program to calculate
LA-ICC in the p ~ 1 case.

f J,(t)dt =1—f J,(t)dt .
0 z

(C2)

Fortunately there is available an approximate solution
for

E= Jo t t,
z

(C3)

which gives F. for z & 8 (po) 4) with an error less than
2 ~ 10 . So we can obtain fOJO(t)dt with the same error
if we use (C2). In this way a program was constructed
where a subroutine producing Jz(x) with an error less
than 10 ' was used. Thus with the help of (Cl) we can
obtain one term of the sum T with an error less than
2N 10 (if Po )4, z )8).

In the z & 8 (po & 4) range we used the formula

f t"J (t)dt=
0

zz"+"+'IF2 ,' [p+v+ 1];,' [—p+v+ 3],—v+1;—
I

2"(p+v+ 1)I ( v+ 1)
(C4)

1 ez
Jpg(z)— N —moo

v'2mN
(C5)

it is clear that above a critical value of N the integral I2
rapidly goes to zero. This rapid decrease of I2 versus in-
creasing N was observed in each case calculated. For
each point of our T curve (Fig. 1) we also obtained a
number NM«characterizing the ICP. Those N photon-
ic processes played a dominant role in the LA-ICP which
had N &NM«. Thus to an arbitrarily small number c.

belongs an NM«so that the contribution of N photonic
processes N &NM« to the total LA-ICC is less than c..
The NM«values are important as with their help we can

with @=0 and v=2
~

N
~

in order to compute
&2 = foJ2!z! (t)d't From the asym. ptotic form'

N

I

check the validity of condition (32b) at a given laser in-
tensity.

At first sight it seems that besides the 04„05 shell
ICC's, the P„P2 ICC's of the U can be computed in
the SMA as they fulfill (32a). However, the detailed cal-
culation (i.e., the NM/, x values} show that for these shells
condition (32b) is not fulfilled and the SMA cannot be
used at moderate laser intensities.

APPENDIX D

There have been contradictory claims in the literature
on the methods, about how can handle problems in in-
tense radiation fields. On the one hand it is stated that
the momentum translation method (MTA) is a very com-
pact useful one to describe intense field phenomena. '
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E=Eo[e,sin(tot )+

eicos(cot�)

], (D 1)

which can be deduced from a vector potential of the form
(3) with a =cEo /to.

The Hamiltonian corresponding to (2) in the electric
field (xE}gauge is

On the other hand, ' it is claimed that the MTA wave
function represents a noninteracting wave function. As
our initial and final states given in Sec. II are in the radia-
tion gauge, and the initial state has the form which is
called MTA wave function, we want to make clear the
situation here. The MTA is a gauge-specific technique
appropriate to Coulomb-gauge; therefore, we formulate
our problem at first in the Goppert-Mayer (xE) gauge in
order to avoid the above problem and then we transform
the result into the radiation (p/I }gauge.

The electric field strength of a circularly polarized
wave can be written in the dipole approximation as

with

u(R, t)=V e' ~ ' e
—1/2 i ( pR —gt)/A i(eEO/mhco )p[elsin(cot)+e2

(D5)

e
—ie AR/ticu (g t) (D6)

where A is the vector potential in the Coulomb gauge.
Now we transform the initial and final wave functions

into the radiation gauge. The results are

and

eie AR/tie~ (R)ei(Ki/ti)
I ~nk.p (D7)

and E=E+e Eo/2m', which will be approximated as
E=E further on. The prime over v& denotes that the
state is given in the xE gauge. One can recognize that
formally (D4) can be written as

Ho ——p /2m+ V(R) —eER . (D2) v& ——u(R, t) . (D8)

Here V(R ) denotes the Coulomb potential. As was men-
tioned in the Introduction, there has been no exact solu-
tion of this problem, yet.

We take two different approximate solutions of (D2) as
in and out states. The initial state can be an unperturbed
one of hydrogenic-type [see formulae (4c) and (4d) in
Sec. II], as we are searching for internal conversion of
inner shells, which are "near" to the nucleus, where the
shielding of the external radiation field is strong. The
final state is described by the exact time dependent solu-
tion of (D2) without the Coulomb term. We hope this is
a good approximation, as in the final state the atomic
electrons shield the Coulomb field of the nucleus and thus
for the outgoing electron the laser-electron interaction
can be considered dominant. Thus the exact solution of
the time dependent Schrodinger equation

eiz sina y eiNa J (z) (D9)

eiz cosa W iLeiLaJ (Z)L (D 10)

the identities

e AR!Tie = ( eaR /irtc)sin8cos(tot + qr )

=bgsin8cos(cot +ip),

(eEo/mirth )p[e,sin(rot)+eicos(rot)]

(D 1 1)

Thus (D7) is the noninteracting state in the radiation
gauge though it looks like an MTA wave function. "
Using (3)' (D5), the definition of the frame of reference
(e&,ez, e&};furthermore, the Jacobi-Anger formulae

ih —v& ——(p /2m —eER )vfat

has the form

i (eEO/fico)R[ —e&cos(cot)+e2sin(cot)]
vf —e ' ' ' u(R t)

(D3)

(D4)

=P sin(9sin(rot +X), (D12)

with the notation b =eaao/Pic, R =ciao, a =cEo/to,
P=eaplmclco, we obtain the in and out states in the ra-
diation gauge in the form given in Sec. II.
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