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The local-density approximation to the delta-hole model is investigated. Features learned from
work on the momentum-space approach to the pion-nucleus optical potential are incorporated into
the model. In the limit of no delta-nucleus interaction, we are able to examine the reliability of the
approximations of the model by comparing it to a model-exact momentum-space calculation. The
model provides a numerically efficient approach to studying delta dynamics in the nucleus.

I. INTRODUCTION

Classical nuclear physics assumes that nuclei and their
interaction with an external probe can be described by
neutrons and protons which interact via a potential in a
Schrddinger equation. This approach assumes that the
degrees of freedom associated with mesons, antinucleons,
and excited states of the nucleon can be subsumed into a
nucleon-nucleon potential. The interaction of a pion
with a nucleus necessarily goes beyond this view of classi-
cal nuclear physics. By injecting a pion into the nucleus
at energies which are comparable to or greater than the
pion mass, the relativistic, field-theoretic nature of the
pion must be included in the theory. In addition, near
the resonance where the pi-nucleon interaction is dom-
inated by the formation of the A,;, a unique opportunity
presents itself —the opportunity to study the propagation
and interaction of an excited state of the nucleon, the A;;,
in the nuclear medium.

The approaches which theorists have taken toward this
problem fall into three general categories. The first! as-
sumes that the pion-nucleon interaction may be well ap-
proximated by a zero-range interaction. This allows one
to work in coordinate space and has served as the basis
for a majority of the phenomenological work in the field.
The second®® approach is generally termed the
“momentum-space” approach as it requires the construc-
tion of the pion-nucleus optical potential, or transition
amplitude, in momentum space and the subsequent solu-
tion of the Klein-Gordon or (relativistic-Schrédinger)
equation in momentum space. The third approach* is the
delta-hole approach. Each of these three general ap-
proaches has its individual strengths and weaknesses, and
thus the pursuit of all of the approaches will enhance our
ability to better unravel the several physical phenomena
which appear to be present in pion-nucleus reactions.

A circumstance which restricts progress on this prob-
lem is that the quantitative relation between these various
approaches has not yet been firmly established. This in-
hibits information which is learned while utilizing one
approach from being effectively implemented in another
and inhibits the use of one approach as a cross-check of
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an alternative approach. In this work we will examine in
detail the relation of the “momentum-space” approaches
to the delta-hole approach. We utilize a local-density ap-
proximation® to the delta-hole model; this approximation
has been derived in Ref. 5 and found to reproduce well
the results of the full delta-hole model. It is also numeri-
cally much simpler, and thus much more convenient,
than the full model. Moreover, as the local-density ap-
proximation generates an optical potential in momentum
space, the comparison between this version of the delta-
hole model and the “momentum-space” approaches is
more direct. In order to compare results, we find that
certain extensions and modifications of the approach of
Ref. 5 are necessary. Some of these changes are required
in order to include in the local-density approximation to
the delta-hole model features which have been incor-
porated into the momentum-space approaches over the
years.

Moreover, in the absence of a delta-nucleus potential
and neglecting Pauli blocking in the pion-nucleon ¢ ma-
trix, we are able to define a model problem which can be
solved exactly utilizing the computer code® ROMPIN. The
model problem includes a fully relativistic treatment of
the kinematics and an exact treatment of the nonlocali-
ties in the problem, including the recoil of the delta. The
full delta-hole model utilizes approximate kinematics,
treats approximately the recoil of the interacting pion-
nucleon pair in other than the P;; channel, and linearizes
the propagator in the P;; channel. In addition, the
local-density delta-hole model uses a local-density ap-
proximation to treat the recoil of the delta. The model-
exact calculation can thus be used to calibrate the local-
density delta-hole model.

In Sec. II we derive and review the local-density delta-
hole model. We do this in a form where the comparison
to momentum-space optical-model potentials can be
made most easily. The following section, Sec. III,
presents the modifications and extensions to the local-
density approximation to the delta-hole model that we
have made. Section IV compares the lowest order results
of the delta-hole approach with the most contemporary
“momentum-space” approach® and outlines in detail the
differences between these two approaches.
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II. DERIVATION OF THE MODEL order to define our notation and to present the necessary

background for Sec. III. The pion-nucleon optical poten-

The local-density approximation to the delta-hole mod- tial in the impulse approximation is given by

el was derived in Ref. 5; we review the derivation here in
J

(K, | S | k) =3 [ dkd kyVhkp){(kky | Ho+Ep,K,+kn) | K kn)Wplky) (1)
B

where k. (k) are the initial (final) pion momenta, ky (ky) are the initial (final) nucleon momenta, ¥5(ky) is the wave
function of a bound nucleon, and t(w,,;,) is the pion-nucleon scattering amplitude. When written in this form, the ¢ ma-
trix t(w,,) contains a total momentum conserving delta function. In the delta-hole model, the pion-nucleon scattering

amplitude in the dominant P, ; channel is taken to be separable,

(K, | @+ Ep, Pop) | k,,kN>=A2k'-kv*<k')<P' G

where k is a relative pion-nucleon momentum, P is the
total pion-nucleon momentum defined by P=k +ky;,
P, is the total momentum operator, v(k) is the pion-
nucleon-delta form factor including its spin and isospin
dependence, G(w,,;,) is the delta Green’s function, A? is a
coupling constant, My is the nucleon mass, and Ej is the
binding energy of the state 5. The energy o, is the
pion energy in the pion-nucleus laboratory reference
frame. The mass utilized to calculate the energy associat-
ed with the pion-nucleon recoil (or delta propagation) is
taken to be w,,+ My rather than the resonance energy;
this is because we wish to utilize the model at energies
below and above the resonance energy, and the expres-
sion in Eq. (2) has been found to be an excellent approxi-
mation® to the fully relativistic expression. At this point
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The on-shell data together with Egs. (2) and (3) then serve
to define M,(wy,,). At this point the delta-hole model
differs from other models by focusing explicitly on the de-
gree of freedom embodied in the delta resonance. The ar-
gument of the free propagator of Eq. (3) is modified—in
addition to including the binding energy as indicated in
Eq. (1)—by introducing a potential between the A;; and

the nucleus according to
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the model is generic, i.e., all models can be viewed as
variations on these general equations. The only assump-
tion having been made is that the scattering amplitude is
of a separable form. Differences between the theoretical
models arise from the choice of the off-shell behavior of
the ¢t matrix, i.e., the form factor v(k); the treatment of
the integration over the momenta of the nucleons [Fermi
averaging in Eq. (1)]; the definition of the relative
momentum k and k' in Eq. (2); the treatment of Pauli
corrections and other medium modifications to G(wy,,);
or the particular form chosen for additional phenomeno-
logical corrections.

To proceed in the delta-hole approach, a complex and
energy-dependent mass for the resonance is defined for
the free ¢ matrix by

p? !
5P —P). (3)

_ Epe ——
M, |op,+Ep Ao+ M)

where R is the coordinate that is conjugate to P,,. The
potential U(R) is both subtracted from the energy on the
right-hand side of Eq. (3) and also occurs in the mass
term, because in a simple Lee model’ one is adding a po-
tential to both the bare delta and to the intermediate nu-
cleons, as is depicted in Fig. 1. The result of Eq. (4) will
then follow if one replaces the individual bare-delta nu-
cleus and nucleon-nucleus interaction with an effective
delta-nucleus interaction. To render the numerics feasi-
ble, the propagator in Eq. (4) is expanded, assuming the
delta-nucleus Hamiltonian is small,

2

Oy +My)
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FIG. 1. The interaction of a bare delta with the nucleus, U3(R, ), and the interaction of the nucleon with the nucleus, Ux(Ry),
are subsumed into an interaction which acts on the physical resonance U(R).

One chooses the pion laboratory energy w,,, as the expan-
sion point because the nucleon binding energy Ep will
roughly cancel against the energy of the delta and thus
yield a more convergent expansion. In the full delta-hole
model, this Green’s function is then constructed numeri-
cally by solving for the eigenstates of the delta Hamil-
tonian which appears in Eq. (5). One should notice that
what has been conventionally termed the lowest-order
approximation in the delta-hole approach is given by Eq.
(5). In the other approaches one would use the term
“lowest order” to imply the use of a propagator with
U(R) set to zero. We will use this latter definition.

In order to make a local-density approximation to the
model, an approximation to the delta Green’s function
must be made. The free Green’s function, Eq. (3), con-
tains a delta function that conserves the total momentum;
this delta function is absent in the delta Green’s function,
Eq. (4). In infinite nuclear matter the translational invari-
ance of the problem would also produce the momentum
conserving delta function. Thus, in the local-density ap-
proximation one approximates the delta potential by a
spatial constant, U, to recover the nuclear matter results,
but at a later stage allows U to depend parametrically on
R,

’ P‘Z)P
<P G, wlab+E8_m_U(R) P>
a
5(P'—P) Ep—My(o) L U- |E P’ oM™ g
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In coordinate space, the Green’s function of Eq. (6) is
given by
®)
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where M 4 is given by

Oy +My
eff — dMA (8)
1—
dwlab

and K, is given by
KZA=2Meﬁ'[wlab_MA(a)lab)]+(w]ab+MN )(EB-—(_]) .
9

Furthermore, the vertex functions v(k) and v (k') are
factored out of the integration in Eq. (1) by choosing an
approximate relative momentum k to replace k. In or-

I
der for k, to occur outside of the integration it must de-
pend only on the external pion momenta k, and k!, and
not depend on the nucleon momenta, ky or ky. We will
discuss the choice of k and its factored approximation k
in Sec. III.

The local-density approximation obtains its name by
approximating the sum of the product of target wave
functions in Eq. (1) by

SRV = 3 pa(R, )7 (kAR )s),  (10)
B a

where

IN+IN
2 b

Rav =

A 3
Jilx)= le(x) ,

k;(Rav)=3772pa(Rav) ’

and where p (R ,,) is the neutron or proton density sepa-
rately.
In order to use Eq. (10) one must also approximate the
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binding energy Ez which occurs in the Green’s function. corrections. One can avoid this difficulty by neglecting
The simplest approximation would be to replace Eg by  the correction term in Eq. (11) but carefully choosing the
an average binding energy (Ez). In Ref. 5 a local- value of { Ez). We do this by utilizing the momentum-
density approximation was used to generate the next or- space code ROMPIN (Ref. 3) to calculate results with the
der correction to this approximation. This can be done  individual binding energies. We then recalculate utilizing
by expanding Eq. (9) about an average binding energy an average binding energy ( Ez) and adjust the average

binding energy so as to produce the same total cross sec-
tions as the exact calculation. We find | (Ep) | =20.5,
20.0, and 16.0 MeV for '2C, 'O, and *“°Ca, respectively.

KA(Ep)=[Ki({Ep))+2(wp,+My)]'"?

=K,({Ep) )+M—( (Eg)—Eg) . These numbers work well at all energies. The difference
2K \({Eg)) that results from utilizing the average binding energy
(1 (Ep) rather than the individual energies is depicted in

Fig. 2 for 7™ elastic scattering from %0 at 162 MeV.
There is a difficulty with this expansion if we try to use If we now utilize the approximation for the density,
the results for low-energy pion-nucleus scattering. The  Eq. (10), and the approximation for the Green’s function,
local delta momentum K ,({Ejy)) occurs in the denomi-  Eq. (7), in the original expression for the impulse approxi-

nator. For some value of R,, the value of K,({Egz))is  mation to the optical potential, Eq. (1), we arrive at the

quite small, and thus the expansion can lead to large final result
J

’ S ] iKAS
itky—k )R, il7(k +k.)s] e
e L

’

(k| Zwn) | k,,)=—2Meﬁizzpn)»,?k'f-kfv(k'f)v(kf)fd3Ravd3s pi(R,)J 1 (kp(R,,)s)e o

(12)

f
where A? is the appropriately spin- and isospin-averaged bined with a conventional momentum-space optical po-
pion-nucleon coupling constant. Finally, the delta tential generated from the other pion-nucleon partial
momentum K, is allowed to depend on the variable R, waves to form the complete potential.
by replacing U in Eq. (9) by U(R,,). The final result for
the A, 5 contribution to the optical potential is given by
Eq. (12) with K, defined by Eq. (9). This is then com- III. MODIFICATIONS

The potential given by Eq. (12) should be quite similar

" to the momentum-space optical potential when the
10 — T T T T T T T delta-nucleus potential U(R,,) is set to zero. With no
delta potential the computer code ROMPIN (Ref. 3) calcu-

103 130(11-4"11-*)150 lates the impulse approximation to the optical potential,

Eq. (1), exactly. In Sec. IV we outline the approximations
which are made to this model-exact problem in the

Tw = 1620 MeV delta-hole approach and compare the results of the local-
102 density delta-hole approach to the model-exact results.
In this section we present modifications we have made to
the execution of Eq. (12) which were necessary in order to
make this comparison.

The first point to notice is that the energy w,,, which
occurs in the definition of K, Eq. (9), is the pion energy
in the pion-nucleus laboratory reference frame. The
transformation to the two-body, pion-nucleon reference
frame is accomplished by the incorporation, into the
propagator, of the recoil energy Pf,p /2w, +My) as in
Eq. (2). If one does not treat the Fermi averaging exactly
in the nonresonant partial waves, then the term
P}, /2(w,,+My) must be treated approximately for
these partial waves. This approximate treatment should

10—3 e not be utilized in the P; 3 channel.
0 30 60 80 120 150 180 We have not yet specified the definition of the relative
o ( d eg) momenta k' and k. The original discussion of how to
¢.m. define these momenta was carried out® under the appella-

FIG. 2. Angular distribution for elastic scattering of #* from  tion of “angle transformation.” An internally consistent
%0 at 162 MeV. The solid curve includes the individual bind-  definition®® is to define k as the momentum of the pion in
ing energies as in Eq. (1); the dashed curve replaces the indivi- the frame where the total pion-nucleon momentum is
dual binding energies by an average ( Ep ) =20.0 MeV. zero. This gives

do/dQ (mbysr)
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k,=7(B)k, B—Bo,k)B,
k,=k,—(k,-B)B,

with
B=(k,+ky)/[Ex(ky)+0,(k,)] .

It was shown in Ref. 6 that a reasonably quantitative ap-
proximation to these expressions is
MNkTr_a)n'(k‘rT)kN

k= . 14
ok + My 14

(13)

This is the approximation to a relativistic definition of a
relative momentum which is used in the full delta-hole
model. However, in Ref. 5 a further approximation was
used,

M Nkn'

~—— 15
YT REN T (15)

The physical consequence of making this further approxi-
mation is that an interaction which occurs in an orbital
angular momentum state / in the pion-nucleon center-of-
mass frame will occur in only the orbital angular momen-
tum state / in the pion-nucleus reference frame. It has
long been known!? that it is important to include the mix-
ing of the dominant p-wave interaction in the two-body
center-of-mass frame into other partial waves in the
transformed pion-nucleus frame. This can be accom-
plished without any additional numerical difficulty by
utilizing the approximation of Eq. (14).

In the derivation of the local-density approximation,
the form factors (and k’-k term) had to be factored out of
the integral over the nucleon momenta. This was neces-
sary so that the integral over nucleon momenta would
yield the closed form expression for the Green’s function
given by Eq. (7). A best value for approximating this
type of integration has been derived in Ref. 6. There it
was argued that the range in coordinate space of the non-
localities in the two-body ¢ matrix was smaller in extent
than the size of the nucleus. This means that in momen-
tum space the nonlocal behavior of the ¢ matrix is
sufficiently smooth that it can be removed from the Fer-
mi integration at the point where the density peaks, sub-
ject to the constraint that the factorization be done in a
sufficiently symmetric way so as to preserve time-reversal
invariance. The results of these arguments yield (neglect-
ing the recoil of the target)

kn=(k,—k,)/2,
Kiy=(k,—k.)/2 .

(16)

We utilize this “optimal factorization’ approximation to-
gether with the approximate kinematics of Eq. (13) for
the evaluation of the momenta at which the form factors
are evaluated,

. My +o,(k,)/2 wlk)/2
I~ My+4o,k,) T My+olk,) "’ -
1
My+ow(k)/2 o k)/2

I Myto k) T Myt k) "
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Nuclear physicists are not generally accustomed to
utilizing invariantly normalized wave functions and
phase spaces. Even at very low energies, when a pion hits
a nucleon in a nucleus the intermediate states for the
scattered pion are quite relativistic. Thus at all energies
it is important to utilize invariant normalizations. We

will norm our wave functions according to
(k,|k,)=2w,k,)8(k,—k,), )
(18
(kn | kn? =2EN(ky)8(ky—ky) .

With this normalization the Lippmann-Schwinger equa-
tion reads, for the invariant ¢ matrix,

a3k
20 (k" 2E (k")

(K, | T k) =(K, | Z|k)+ [
(K| 2| K)G(W,)

x{k2|T|k,), (19

where W, is the total energy in the pion-nucleus center-
of-mass frame. For pedagogical purposes, we here tem-
porarily keep the finite mass of the target nucleus, while
throughout the rest of this work these small corrections
have been neglected. It is straightforward® to utilize in-
variant norms and Eq. (19). It is common, however, to
use noninvariant normalizations and insert a phase-space
factor to correct for the lack of manifest invariance. We
demonstrate below that these two approaches are
equivalent, as such a demonstration does not seem to ex-
ist in the literature and also because it will help elucidate
the origin of the phase-space factor that occurs when us-
ing a nonrelativistic normalization.

If we were to change to a ¢t matrix and optical potential
defined without invariant normalizations (we use here the
norm of Ref. 11),

(k| T™R |k, ) =[20,(k.)2E ,(k')]" ">k, | T | k,)

xX[20,(k,)2E ,(k )]~/
(20)

(ki | ZNR |k, ) =[20,(k, )2E (k)] %k, | 2| k,)
X [20,(k ,)2E 4(k )72,
then the Lippmann-Schwinger equation becomes
(k| TNR |k, ) =(k,|Z R |k,)
+ [dPk (k| ENR K G(W,)
x (ki | T™R |k,) . @21

The target is clearly moving nonrelativistically so it is
convenient to remove its energy factors by introducing

(k.| SRk )=2M (k.| S R |k ), (22)

and then cancelling the mass M , against the target ener-
gies. This then yields for the optical potential
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(k.| ZNR k) =[20,(k" 20,k )]~

[ dky  dki
X
2EN(ky) 2En(KY)

X Ckky |t [k kn) (k| p | kn) -

(23)
|
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To reach the conventional results, we rewrite the density
in terms of nonrelativistically (NR) normalized wave
functions
(ky | pNR | kn) =[2En (k)] VX ky | p | kn)
X [2EN(ky)1712, (24)

and must also rewrite the two-body ¢ matrix in terms of
its noninvariant counterpart as in Eq. (20),

(Kky | 1 |k kn) =[20,(k")2EN(k")20,(K)2E N (k)]28(K,+ ki —k,— k) (K[| VR ||k )

=[20,(k"2E\(k')20,(k)2EN(K)]V2 (ki ky | R | k ky) - (25)
Rewriting Eq. (23) in terms of the nonrelativistic quantities gives
(k;,]21k,,)=fd3k{qd3kNI‘(k’,k;k;,,k,,,k{.,,,kN)(k;,k;,]tNR|k,,kN>(k§,,|pNR|kN> , (26)
where
o (k"o (K)Eg(k")Ex(k) |'?

Tk ksk' ko ki k=
NN o (k) (k )EN(

Thus utilizing noninvariant normalizations [i.e., omitting
the energy factors in Eq. (18)] and incorporating the extra
phase-space factor I' will produce the correct invariant
result.

The original momentum-space code PIPIT (Ref. 2) in-
corporated this factor (following the derivation given in
Ref. 11) and the full delta-hole approach* did also, gen-
erally by splitting I' into two parts and incorporating the
parts into the vertex operator. However, this factor was
not included in the work of Ref. 5.

In constructing the optical potential in Eq. (1), a model
for the off-shell behavior of the pion-nucleon ¢ matrix is
required. Following Ref. 5, we would like to use the
model of Ref. 12. This presents a problem, however.
How an amplitude is to be taken off-shell is a question
that can only be addressed in the context of a many-body
problem. There, if the two-body model derives from a
Hamiltonian, many-body theory, such as the theory
presented in Ref. 13, provides an unambiguous prescrip-
tion for the off-shell behavior. The model of Ref. 12 does
not derive from an underlying Hamiltonian, leaving the
off-shell prescription ambiguous. We take the following
approach to this situation.

The model of Ref. 12 is a Lee model with one change;
the linear or relativistic Schrodinger propagator which
occurs in the Lee model has been replaced by a quadratic
or Klein-Gordon (KG) propagator. We assume that this
replacement has been done for numerical convenience be-
cause the quadratic propagator allows the necessary in-
tegrations to be performed analytically. If this point of
view is adopted, then the off-shell behavior that should be
used is that of the original Lee model. From Ref. 14 we
find

(K| (o) | k) = 2‘ (K| 190) [ )

(20,)12

kN)EN(ky)

where ¢XC is the separable interaction utilizing a quadra-
tic propagator. The square roots of the off-shell energies
in Eq. (28) just cancel against the identical factors which
occur in I', Eq. (27). The net effect of our incorporation
of the relativistic phase-space factor ' and this
modification of the off-shell behavior is to replace in the
optical potential a factor (20,)~', with w, the on-shell
pion energy, by a factor (2w,.)!"%(20, )", with w;. and
) the off-shell energies.

Although we will here follow the approach of those
who have used the delta-hole model and utilize a Lee
model for the pion-nucleus interaction, we remind the
reader that this model, like the separable-potential model,
does not include the pion-nucleon pole. The neglect of
this singularity in the two-body amplitude produces'® ad-
ditional cutoffs in the pion-nucleon form factors in
momentum space. This results in an artificially large
range in coordinate space for the pion-nucleon interac-
tion which, in turn, produces an optical potential with a
slightly increased!* effective radius.

We also note that in PIPIT the optical potential is
scaled by (4 —1)/A4 and then after the Lippmann-
Schwinger equation has been solved for the T matrix, the
results are scaled by 4 /(A —1) as was derived originally
by Kerman, McManus, and Thaler.!® This scaling does
not occur in the formal development of the delta-hole
model, nor does it occur in the formal multiple scattering
theory of Watson'” or in the formalism of Ref. 13. There
is no consistent way the Aj;; contribution to the optical
potential can be combined with the contribution of the
other partial waves if the contribution from the non-
resonant partial waves is scaled by (A4 —1)/ 4. The sim-
ple resolution to this problem is simply to drop the scal-
ing of the nonresonant partial wave contribution. The
first order term without the scaling and without Pauli
blocking on the two-body ¢ matrix still forms the leading
order term to a well-defined!® multiple scattering theory.
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Also in PIPIT the approximate relative momenta ks
and k, were defined by taking ky~—k,/4 and
ky~—k,/A -k, +k, . It was noted in Ref. 6 that this
asymmetric factorization violates time-reversal invari-
ance. We therefore follow Ref. 6 and use the approxi-
mate relative momenta ks and k, defined in Eq. (17) in
the nonresonant partial waves. For these partial waves
we also use Eq. (17) to approximate the recoil term in the
Green’s function,

(k,+ky)? (k. +ky)? (k! +k,)?
Aoy +My)  Aop+My) — 8wy +My)

(29)

In summary, we have used the “optimal factorization”
approximation to the relativistic momenta as defined in
Eq. (13) to remove the form factors and the k' -k terms
from the Fermi integral. This maintains the mixing of
the P, ; partial wave into other partial waves under the
transformation to the pion-nucleus reference frame. We
incorporate the phase-space factor I' into the part of the
optical potential generated by the P;; channel. The
(A —1)/ A scaling is removed from the part of the opti-
cal potential generated from the nonresonant partial
waves. The treatment of the kinematics for the non-
resonant partial waves was also modified to make use of
the results of Ref. 6.

In Figs. 3 and 4 we present the results for 7% elastic
scattering from '2C and “°Ca at 162 MeV. The data are

[ R R R
60 90 120 150 180

0. (deg)

FIG. 3. Angular distribution for elastic scattering of 7+ from
12C at 162 MeV. The solid curve is the result of this work, the
dashed curve the result of the work of Ref. 5. In both cases, no
Pauli blocking and no delta-nucleus interaction is included.
The data for angles less than 120 deg are from Ref. 18; the back
angle data are from Ref. 19.
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from Refs. 18—-20. As the calculations do not include any
second-order effects, agreement of any curve with the
data should not be taken too seriously; we include the
data only to demonstrate the qualitative success of the
theory. The dashed curves represent the results of utiliz-
ing the approach of Ref. 5, while the solid curves are the
results of the modified local-density approximation to the
delta-hole model as derived here. We note that the
modifications made here make a significant change in the
predictions.

IV. COMPARISON WITH THE
MOMENTUM-SPACE APPROACH

If no approximations were made, then the
momentum-space approach and the delta-hole approach
[with U,(R,,)=0] would be equivalent ways of calculat-
ing Eq. (1). However, at this level the delta-hole ap-
proach contains approximations which are not present in
the momentum-space approach. The full delta-hole ap-
proach contains two approximations. The first is the use
of the definition of the relative momentum from Eq. (14)
rather than the fully relativistic definition given in Eq.
(13). The validity of this approximation has been exam-
ined in Ref. 6. The second approximation is the lineari-
zation of the propagator in Eq. (5). The local-density ap-
proximation to the delta-hole model then makes addition-
al approximations. These are the factorization of the
pion-nucleon form factors out of the Fermi integral [us-
ing Eq. (15) for the nucleon momenta], the local-density
approximation to the sum over the target wave functions
as given in Eq. (10), and the use of the “‘optimal factoriza-

WCa(rt,n*)*Ca
Tpr = 1630 MeV
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FIG. 4. The same as Fig. 3 except the target is °Ca. The
data for angles less than 120 deg are from Ref. 20. The large an-
gle data are from Ref. 19.

I 1

1
30



2658

tion” approximation throughout the part of the optical
potential coming from the nonresonant partial waves.

In Figs. 5 and 6 we present the differential cross section
for elastic scattering of 7+ from '>C and *“’Ca at 162
MeV. The solid curves represent the results from the
computer code ROMPIN (Ref. 3) which serves as the
model-exact solution. The dashed curves represent the
results of the local-density approximation to the delta-
hole model. We utilize for the purpose of comparison a
separable-potential model for the pion-nucleon ¢ matrix
in the nonresonant partial waves. The optical potential is
used in the relativistic Schrodinger equation to generate
the pion-nucleus scattering amplitude. Neither a Pauli-
blocking effect nor a delta-nucleus interaction is included.

For the case of “°Ca, Fig. 6, we see that the model-
exact calculation and the results from the local-density
delta-hole approach are in reasonable agreement. The re-
sults for '2C are surprisingly different. We can trace this
difference if we also note in Fig. 5 the dash-dot curve
which corresponds to our model problem but with the en-
ergy of the two-body ¢ matrix shifted by the mean-
spectral energy of Ref. 21. We see that the local-density
delta-hole model lies nearly midway between the other
two curves. From this we can conclude that there is an
effective downward shift in the energy of the two-body ¢
matrix when using the local-density delta-hole approach.

n " A i 1

1
150 180

10° L~

L 1
90 120
acm.(deg)
FIG. 5. Angular distribution for elastic scattering of 7+ from
12C at 162 MeV. The solid curve is the model-exact result from
the computer code ROMPIN; the dashed curve is the result of the
local-density delta-hole model approximation; the dash-dot
curve is the result of the model-exact calculation but with the
energy at which the two-body ¢ matrix is evaluated shifted by
the mean spectral energy. In all cases, Pauli blocking and the
delta-nucleus interaction are not included.
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FIG. 6. The solid and dashed curve are the same as Fig. 5 ex-
cept the target is “°Ca.

The shift for '2C is approximately 15 MeV while it is
much smaller for “°Ca. The origin of this shift is under
investigation. The two most likely causes would either be
the linearization of the delta denominator or else the
local-density approximation to the delta propagation. In
either case, one must keep in mind that in using the
local-density delta-hole model to do phenomenology the
extracted real part of the delta-nucleus interaction will be
shifted in light nuclei from its actual value.

V. CONCLUSIONS

The local-density delta-hole model provides an attrac-
tive approach to studying the physics of a pion interact-
ing with a nucleus. It shares with the delta-hole model
the desirable feature that it treats the phenomenological
aspects of the problem via a delta-nucleus potential. This
holds not only an aesthetic appeal but also provides the
phenomenology with a connection to the true pion ab-
sorption channel. Introducing the local-density approxi-
mation makes the model computationally much simpler.
This will allow the model to be applied to a large number
of nuclei, including heavy nuclei. The nature of strong
interaction physics is that consistency with a large body
of data is necessary to fully understand the underlying
dynamics.

We have incorporated features which have been
learned from the momentum-space approach to modify
and extend the work of Ref. 5. These include the use of
the optimal factorization approximation to approximate
some of the nonlocalities in the optical potential, invari-
ant normalization of wave functions, a more consistent
treatment of the off-shell behavior of the two-body ¢ ma-
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trix, and a removal of the (A — 1)/ A4 scaling factors from
the nonresonant piece of the optical potential. We have
also used the results from the computer code ROMPIN
(Ref. 3) to calibrate the approximations used in the local-
density delta-hole approach. This provides a bench mark
for the accuracy of the theory and provides an estimate
of the reliability of phenomenological parameters deter-
mined by the model. In particular, we have found that
the local-density delta-hole model contains an effective
shift in the energy at which the two-body ¢ matrix is eval-
uated. This shift is largest in light nuclei.

At this point we are in a position to begin an examina-
tion of the phenomenological results of the model—i.e.,
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what does the model imply about the behavior of the
delta-nucleus interaction? This will be examined in a fu-
ture work.
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