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We make use of the auxiliary (bilocal) field technique in an attempt to understand the relation
between modern relativistic models of nuclear structure and quantum chromodynamics. The ad-
vantage of the model introduced here is that we are able to discuss and interconnect chiral symme-
try breaking, (nontopological) models of hadron structure, and relativistic quantum field theories
of nuclear structure. The proposed relation of the auxiliary fields of this model to the fields which
play a central role in Dirac phenomenology is an important aspect of our work. It can be seen
that the large scalar fields used in Dirac phenomenology, which serve to reduce the mass of the
nucleon (or the quarks), are a reflection of a partial restoration of chiral symmetry at finite baryon

number, that is, within nuclear matter.

I. INTRODUCTION

In recent years we have seen parallel advances in our
understanding of nuclear physics and of quantum chro-
modynamics (QCD). However, while QCD is considered
to be the basic theory of strong interactions, the relation
of current models of nuclear structure to QCD is un-
clear. In particular, the use of the Dirac equation for
describing nucleon dynamics in nuclei has become quite
popular.’? At the center of the success of the relativis-
tic theories are phenomenological (Lorentz) scalar and
vector fields which are coupled to the nucleons. The na-
ture of these fields is not understood, and one goal of this
work is to put forth a specific interpretation of these
fields.

If we include fields with the quantum numbers of the
pion and the rho meson, as well as the scalar and vector
fields mentioned above, we can create a phenomenologi-
cal model which is highly successful in describing nu-
clear properties."> As we have discussed in detail in
earlier works, the various fields (o,7,p,w,...) can be
considered to be coupled to the quarks in a nucleon.’~>
From their coupling to the quarks we can infer the cou-
pling of these fields to the nucleon, using the techniques
developed in Refs. 3-5. We have stated elsewhere that
these fields should not be identified with the physical
mesons which have the same quantum numbers.'! (For
example, an analysis of the structure of the p and w
mesons leads to the conclusion that these physical
mesons are somewhat larger than the nucleon.®) As not-
ed above, it is our goal in this work to provide some fur-
ther understanding of the nature of the boson fields
which play an essential role in modern theories of nu-
clear structure. At the same time we will provide some
basis for our theory of hadron structure, which we have
called “covariant soliton dynamics.”*~®

It is clear that analytic work in strong coupling phys-
ics is very limited. Therefore, we are interested in creat-
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ing a model for understanding the relation of QCD to
nuclear physics. The construction of this model requires
a series of assumptions. We will outline the series of
steps which are required in our analysis. We first ob-
serve that because of the non-Abelian nature of QCD,
that is, the presence of cubic and quartic gluon interac-
tions, the direct application of functional methods in
QCD is limited. (These methods are, of course, quite
useful for developing Feynman rules after the introduc-
tion of the Faddeev-Popov gauge-fixing procedure.)

We wish to use functional techniques in our analysis.
Therefore our first major assumption is that at an ap-
propriate length scale we can replace QCD with an
effective theory which is characterized by having a
dynamical gluon mass and a “frozen” coupling constant.
That is to say, the running coupling constant of the
effective theory takes on a large, but more or less con-
stant value, in the momentum range in which the
effective theory is applicable. The use of a coupling con-
stant of this type is quite common in studies of chiral
symmetry breaking in gauge theories and requires the in-
troduction of a new mass scale which characterizes the
behavior of the running coupling constant in the in-
frared region.’

The fact that the gluon has a dynamical mass at low
momentum transfer has been demonstrated in lattice
gauge simulations of QCD (Ref. 8) (in a specific gauge)
and has been discussed by several authors, using various
theoretical techniques.” ! The notion of a “frozen” cou-
pling constant has also been discussed by Cornwall and
collaborators.!! (In Cornwall’s work the use of a frozen
coupling constant is related to the generation of a
dynamical mass for the gluon.)

The most attractive scheme for introducing a gluon
mass term is through the Schwinger mechanism.!? This
mechanism allows for a mass term for the gauge field
which does not break the gauge symmetry. For exam-
ple, in the Landau gauge we can write
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for the gluon propagator and assume that as q’—0,
(g%)—mE/q* [Here mi=mi(g*=0) is the value of
the dynamical (running) gluon mass at g>=0.]

We believe that the replacement of QCD by an
effective theory is meaningful at length scales greater
than about 0.1 fm. For length scales shorter than this,
the various dynamically generated masses, as well as the
running coupling constant, will be small.!> [It may be
worth noting at this point, that we will shortly consider
still another length-scale restriction for the purposes of
discussing the formation of hadrons as nontopological
solitons. Hadrons have a characteristic size of about 1
fm or (200 MeV/c)~!; our discussion of hadron struc-
ture will involve the introduction of a second effective
Lagrangian appropriate to this larger length scale.]

We analyze our effective Abelian theory of quarks and
gluons using the method of auxiliary bilocal fields,'
after performing a Fierz rearrangement of the effective
action. The auxiliary fields include some which have the
quantum numbers of those boson fields which are central
to modern nuclear physics. We include some comments
concerning the relation of these fields to the boson-
exchange model of nuclear forces'® and to modern rela-
tivistic nuclear physics."?

We continue our discussion of length scales to clarify
some of the ideas introduced above. Consider a bilocal
scalar field, o(x,y), and introduce relative and center-
of-momentum coordinates,'®

(1.2)
(1.3)

Pu=Xuy=Vyu >
X, =(x,+y,)72,

so that
d4P q-p,iP-X 2
e'dPe’ (g°) . (1.4)
f 217')4 )4 opH

In vacuum, we can write

o p(g)=(2m)*64P)o ,c(q?) . (1.5)

In Sec. II, o,,(g?) will be related to the dynamical
(running) quark mass. The fact that o,,.(g?)0 is a
manifestation of chiral symmetry breaking, which is a
phenomenon characterizing the QCD ground state.
Note that in vacuum we have o(x,y)=0(x —y), where

ag(x —y)=
f 217)4
A term in an effective action of the form

[ d* [ d* g 8(x —p)liy#3,—m ]

etxVg  (g?). (1.6)

—go(x —y)iqy), (1.7)
will then give rise to a quark propagator of the form

Fl@)=[d—m"
upon the use of Eq. (1.6). In Eq. (1.8) we have put

S(gY)+ie]™ !, (1.8)

3(gY)=go,,.(q%) . (1.9)

[Note that for —g? greater than about 3-4 (GeV)? we
expect that o(g?) will be quite small.'3]

It is usually desirable to carry out the analysis in the
Landau gauge where in lowest-order calculations one
need not worry about terms in 2(g?) proportional to 4.
(Such terms are discussed in Ref. 16.) In general, for a
system which exhibits translational invariance, we may
write the quark self-energy as

S(x —y)= (T‘I); e *~V[gA4(¢g>)+B(g)] (110
=—iy#3,4(x —y)+B(x —y), (1.11)
where
Alx —y)= (—2—% =¥ 4 (q?), (1.12)
and
B(x—y)=[ (‘21;‘1)4e"‘1'<*—y’3(q2). (1.13)

As we will see, in the presence of nuclear matter, both
the scalar and vector terms in the self-energy will be of
major importance since these terms are ultimately relat-
ed to the scalar and vector potentials used in Dirac phe-
nomenology.

Now for the purpose of studying hadron structure, or
nuclear structure, we introduce X(P,q), a field which de-
scribes the deviation of o p(g) from its vacuum value due

to the presence of hadronic matter
o p(q)=127)*6%(P)o ,.(¢*)+X(P,q) , (1.14)

and work at length scales for which we can neglect the ¢
variation. Then

o p(q)—(2m)*8*(P)o ,.(0)+X(P) , (1.15)
and
8*(x —p)[04ae(0)+X(X)] .

o(x,p)— (1.16)

Using the last approximation, a bilocal coupling term
is approximated as follows,

g [d% [ d%g(x)o(xp)q(y)
= [ GX[g0 0 +8X(X)]q (X)d*X
= [ G XO[mI +gx(X)]g(X)d*X .

(1.17)
(1.18)

This last form is of particular interest to us in that we

have made extensive studies of the effective Lagrang-
ant—617.18

2

1 mx 2
Lx)= Ta#xmaﬂxu)—Tx (x)

+X)[iyH3,—mIP"—q X(x)]g(x) ,  (1.19)

and have shown that a Lagrangian of this form can give
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a good account of the structure of many hadronic states.
(For the study of the charmonium and b-quarkonium
systems we have to also introduce large current quark
masses which have their origin outside of QCD,'”!® and
which do not “run” at the mass scales considered when
studying QCD.)

To summarize the above comments we can say that
we can identify three length scales in QCD. For mo-
menta greater than about 2 GeV the running coupling
constant is small and dynamically generated masses are
small.!> For smaller momenta the coupling constant is
larger and dynamical mass generation for quarks and
gluons is quite important. If we consider still smaller
momenta, we may, in first approximation, consider the
dynamical masses to be constant. It is in that regime
where simple models of hadron structure can be con-
structed and where we can use the boson-exchange mod-
el of nuclear forces to create a relativistic many-body
theory of nuclear structure.! (In the study of hadron
structure, we can also maintain reference to the momen-
tum dependence of the dynamical quark mass; however,
such calculations have not been completed as yet.)

The plan of our work is as follows. In Sec. II we dis-
cuss the action for an effective theory. We carry out a
Fierz rearrangement and introduce a set of auxiliary
fields. We comment upon recent work which indicates
that, beyond some critical coupling, models of the type
we have introduced will be characterized by chiral sym-
metry breaking. (In that case the scalar-isoscalar field
obtains a vacuum expectation value while the
pseudoscalar-isovector field becomes the Goldstone bo-
son.) In Secs. III and IV we indicate how the model
developed in Sec. II may be used to develop a theory of
hadron and nuclear structure. Section V contains some
concluding remarks. Since functional techniques are
somewhat unfamiliar in nuclear physics we review some
aspects of the formalism in Appendix A.

II. EFFECTIVE ACTION

Here we review the basic idea of the auxiliary field
method. We start with the simplest version which only
requires the introduction of a local auxiliary field. Con-
sider the Lagrangian

2
L(x)=g(x)iy*d,q(x)+ %[q(x)q(x)]z . 2.1
The vacuum-to-vacuum amplitude is, with #i=1,
. i 4x Lix
"= [ (dgldgred “* 4 2.2)

where N is a constant and the g (x) are Grassmann vari-
ables. We can introduce an integral over a field o(x)
without changing the dynamics

e™=N' [ [do][dg][dq]
X exp [ifd“x{L(x)
—1lo(x)+g7(x)g ()}

2.3

=N [ [doldgiidale’ T * (2.4)

where

Lix)=—1oXx)+g(x)[iy*d,—go(x)]lg(x) . (2.5

Thus, the four-fermion interaction is replaced by interac-
tion with the field o(x). This field plays the role of the
generalized fermion self-energy. The next step is the
construction of the effective potential for the theory in
terms of the field o(x). In that manner one can study
the dynamics of symmetry breaking.

In quantum electrodynamics (QED) one can obtain
four-fermion interactions. These interactions arise after
“integrating out” the gauge field; however, these four-
fermion interactions are not local. The replacement of
these interactions by generalized self-energies requires
the introduction of bilocal fields; however, the basic idea
of the method is essentially that described above. The
necessity for the use of bilocal fields and their relation to
the self-energy of the fermions will become clear as we
proceed.

Consider the action in the case of QCD. We have

e™=n [ [d4,][dglldgle" %, (2.6)
where
Sqep= [ d*x[— {6}, (x)GL"(x)
+g(x)[iP —m;*" g (x)} . 2.7)

This expression must be supplemented by various gauge
fixing terms, and ghost fields, if one chooses a covariant
gauge.!” Here m;"" is a quark mass matrix, which we
will not write explicitly from this point on. As discussed
in the Introduction, we wish to introduce an effective
theory, appropriate at length scales where dynamical

mass generation is important. We define
S@p= [ d* [ d* (148 (g,,0-3,3,)6%x —y)
+1I0,,(x —p)]4;(x)
+8%x —p)[ g(x)iy*d,q (x)
+jx) A5 ()]} .
(2.8)

Here I1,,(x —y) is a gluon self-energy term. This term
is assumed to arise from the coupling of the gluon to the
gluon condensate.”!® [We shall assume that the main
effects of the cubic and quartic terms in the QCD La-
grangian, in the momentum regime under consideration,
is to provide the gluon with a (running) dynamical
mass—see Eq. (2.13).] Further, j/(x) is the quark
current,

a

jé‘(x)=gt7(x)y“}\7q (x)

a

=87g;(x) y“)‘?fs,,- g;(x) . (2.9)
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In Eq. (2.9) we have explicitly written the flavor in-
dices, i and j, in anticipation of performing a Fierz rear-
rangement. We can define (in the Landau gauge)

D (x —y)~'=[(g,,0-8,3,)8%x —y)+11,,(x —y)]8,
z{(g#vD 3,9,)[8(x —y)
—Ilo(x =y)}84 »
(2.10)
so that

Stp= [ d* [ d¥[LALxID(x —p)' 4]

+ [ d*% [G(x)iy*3,q (x)+jHx)A%(x)] . (2.1D)
We may now integrate out the gluon field, after mak-
ing a specific gauge choice, to obtain

QCD_——fd4 fdyj“(x D (x —y)j(y)

+ [ d*% g(x)iy*d,q(x) . (2.12)

For simplicity, we continue to work in the Landau
gauge. (The relations necessary for performing a Fierz
rearrangement in a general covariant gauge are given in
Appendix B.) Now consider the structure

)\a
2 g;(x) 7’#—2—80 ‘Ij(x)
_ A?
XD, (x —p) |q ) |¥ 78,(, aqy) |,
where
d4q (g/.w qpqv/q ) ~
D, (x —y)=— elax=y
wlx === &% 2 1—T1(g))]
(2.13)
We also define, for later use,
d4q eiq'(x—y)
Dy(x —y)= . (2.14)
0 / (2m)* ¢ 1—T(g?)]

We need, therefore, |

[(y )ab(yu cd ™ 4)ab cd/q ]
= 7[ l)ad(l)cb +(i75)ad(i75)cb]
=3l (Y")aa (¥

29,4,
+(¥s¥)aa (¥ s¥ e ] gw+¢—]
—H(0*)eg(08)g 18, — 49,9, /97) - (2.15)

We restrict ourselves to up and down quarks and
write

88k =aod;dy;+a (1) () , (2.16)
with ay=1 and a, =1.
Finally, we note that
a a a a
2| 12| et |2 5]
(2.17)
where we will keep only the color-singlet terms. (The

motivation for that step lies in the fact that in nuclear
physics, the quarks are clustered into color-singlet nu-
cleons and exchange of colored order parameters will not
be important for a mean-field theory.) Once we have
made the approximation of keeping only the first term
on the right-hand side of Eq. (2.17), we see that the color
matrices, A% play no role in the analysis. [The factor of
(%) can be absorbed into the coupling constant.] If we
drop the color matrices we see that we have an Abelian
theory with eight (massive) gluons which are uncoupled
from one another. (In this approximation the effective
theory has a local gauge symmetry.)

Let us now concentrate on the scalar-isoscalar term in
the effective action. We have, with agy=(%)(3)ay=1,

Se= [ d*x [ d%[

x)iy*d,q (x)8%x —y)
— 38%ag(x)q (y)
XDolx —y)g(y)g(x)] . (2.18)

Now, without changing the dynamics we can include a
constant of the form

[ ldolexp [i [ a'x [ dy(ilolxy)—glaw) 2Do(x,9)q(x)g (9)ID5 ! (x,0)[0(x,7)—g (ag)*Do(x,9)7(y)g ()]} ] ;

in the vacuum-to-vacuum amplitude, exp(iW).

(2.19)

(Other auxiliary fields may be included for each of the terms which

arise upon Fierz rearrangement of the action.) At this point, we have for the vacuum to vacuum amplitude,

e™=wN [ [do]ldglldg]exp |i

Jax [a¥iio

where g, =g (ay)'"?

X, 9)D 5 (x,9)0 (6, 0) +TX)8x —p)iyhd, —g,0(x,1)]g (9} ] ,

(2.20)

. Inclusion of a pionlike order parameter would yield the more general result,

e™=N" [ [do][dw][dq]ld7 Jexp [i [ d* [ d*%(Lo(x,p)Dg " (x,9)0(x,9) +1m(x,9)D 5 (x,9)-m(x,)

+g(x){8%x —»)iy#d,—g,lo(x,y)+im(x,y)-ys]}q (y)) ] .

2.21
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Equation (2.21) exhibits a manifest chiral symmetry.
This is essentially the action studied recently by Moro-
zumi and So in their analysis of strong-coupling QED.'¢
(A correspondence to the work of Ref. 16 may be made
if we drop the isospin label for the = field and the
dynamical gluon mass.) In the Landau gauge, these au-
thors find a critical value, A, for the coupling constant,
A=3e%/4:

A.=3e2/4=m" or e2/(4m)=m/3 .

[We can compare our action to that of Ref. 16 if we
were to drop the gluon mass term. We would have
AP —g2/6=12%, or g2/(4m)=3mw/2 for the critical
value of the coupling constant of the effective theory.
One should be cautious, however, in that chiral symme-
try breaking is seen in lattice simulations at significantly
smaller values of e?/(4) in the case of strong-coupling
QED.%]

The analysis of Morozumi and So also requires that
the critical coupling constant be an ultraviolet fixed
point.2! The assumption avoids the untenable result that
the dynamically generated mass is proportional to the
cutoff used to analyze an approximate Schwinger-Dyson
equation. [That equation is used to determine the self-
energy, =(¢%).??] We will not discuss this matter here
and refer the reader to the work of Morozumi and So'®
for an analysis of the effective potential for the QED La-
grangian expressed in terms of bilocal fields.

It is also worth commenting upon the limiting case,
where we take the mass of the exchanged gluon to be

quite large. Let us write
Dy(x —y)=—8%x —y)/m¢ . (2.22)

Then Eq. (2.18) becomes
S"‘T=fd4x lq(x)iy“aﬂq(x)
g%y

L1
2 m2

{[7(x)g ()P +[Fiysrqg ()} |,

(2.23)

if we also include the pionlike order parameter, as in Eq.
(2.21). Note that in the large-mass limit we obtain the
Lagrangian of the Nambu-Jona-Lasinio model.* This
model is known to give a quite good account of the pat-
tern of chiral symmetry breaking and has been extensive-
ly investigated. It may be of interest to study this model
|

using Eq. (2.13) for Dy(x —y) rather than the approxi-
mation of Eq. (2.22).

Finally, we note that Weber and collaborators®* have
used the Fierz rearrangement technique to identify vari-
ous fields which play an important role in the nucleon-
nucleon interaction. These authors use a quark-
interchange model which has some basis in QCD.

III. STRUCTURE OF HADRONS AND OF NUCLEI

An essential point of our analysis is the identification
of several length scales for our discussion of QCD. The
first length scale, (2-3 GeV)~ !, is that boundary which
separates perturbative QCD from the region where the
physics is dominated by dynamical mass generation for
quarks (chiral symmetry breaking) and for gluons. To a
first approximation, one can begin to see Bjorken scaling
for momenta greater than about 2-3 GeV. Therefore
the up and down quarks can be considered massless at
that momentum scale. We have suggested that there is
an effective theory relevant to the mass scale below 2-3
GeV. In addition, we can consider the physics of had-
ron formation. The relevant mass scale here is smaller.
Thus we can introduce order parameters which describe
the local condition of the vacuum with respect to the de-
gree of symmetry breaking. More precisely, we assume,
as in the Introduction, that we can write

o p(q)=8%P)2m)0,,.(g*)+X(P,q) , 3.1)

where X(P,q) is a deviation field excited by the presence
of quarks. A quite useful assumption is that the scale of
variation with respect to P can be separated from the
variation with respect to g. To the extent that we do not
investigate small length scales, we can write

o p(q)=8P)(27) 0, (0)+X(P) , (3.2)

which will lead to a model of the kind we have used to
study hadron structure.*> Similar approximations can
be made for the bilocal fields with the quantum numbers
of the p, w, and 7 mesons.

We note that it is necessary to calculate the effective
potential for the auxiliary fields. [Otherwise, each auxili-
ary field would have the same mass—see Egs. (2.21) and
(2.22), for example.] In particular, a study of chiral sym-
metry breaking’ is essential to obtain the correct dynam-
ics for the sigma and pionlike fields. After a calculation
of the effective potential, one can, in principle, obtain a
Lagrangian of the form

Lx)=gx){iy"d,—g,[o(x)+im(x) Ty s]—g, v 0, (x)—g, v p.(x)-T}q (x)+50,0(x)d*0(x)+39,m(x) -3 m(x)

—AMoXx)+7Hx)—02, ] — P (x)p,(x )+mf,pﬁ(x)— 70" (X)o . (x)+m Z,wﬁ(x) .

This Lagrangian contains the various effective fields need-
ed to understand the phenomena of low-energy nuclear
physics. (For many applications it is preferable to use
the Weinberg transformation to replace the pseudoscalar
coupling of the pion by pseudovector coupling.) It is
also useful to introduce the field o'(x)=0(x)—0,., as

(3.3)

[
well as a mass term for the pion. Once the coupling of
the various bosonic fields (o, 7,p,, . . .) to the quarks is
specified, we can calculate the coupling of these fields to
the nucleon. For example, we had>*

GaNN =g0FS(0) (3.4)
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where G, is the coupling constant describing the cou-
pling of the scalar-isoscalar field to the nucleon and
F¢(0) is the scalar form factor of the nucleon, evaluated
at g>=0. Similar relations may be obtained which relate
boson-quark coupling constants to boson-nucleon cou-
pling constants in the case of the p, w, and 7 fields.>*

IV. RELATIVISTIC NUCLEAR PHYSICS
AND DIRAC PHENOMENOLOGY

If one uses the Dirac equation to describe the interac-
tion of a nucleon with a nucleus one finds that the opti-
cal potential gives a good description of the data if it
contains strong scalar and vector fields."*? The
significance of these fields is best understood at the
quark level. For a large nucleus the ambient mean fields
seen by a quark can be taken to be constants and for an
even-even nucleus (N =Z), we need only consider
scalar-isoscalar and vector-isoscalar fields, if we use the
Hartree approximation. We now need to refer explicitly
to the bilocal vector field

J

4 4 . .
a)/*‘(x,y)zf _—L(jﬂ')“ f _(‘;TI;etq~(x—y)ezP~[(x+y)/2]w/,;)(q2) ,

4.1)
and consider nuclear matter, for simplicity.
We can take w¥,(¢?)=0 and write
w(g?)=(2m)*8*(P)oxmd, 0 » (4.2)

where wyy is the ambient field in nuclear matter. Simi-
larly we can put

ap(gH)=2m) 8 P) (0 e+ nm) - 4.3)
Thus

0(x,p) = 8%x — YN0 ype+Tnm) » (4.4)
and

*(x,y) ~8%(x =18, olonm) - (4.5)

We have, for nuclear matter,

fd‘x f d'y §(x)[8%x —»)iy#*d,—g,0(x,p)—g, Y o, (x —y)]q(y):f d*x g(x)Niy*d,—m, —g, v onmg(x) ,

where

fﬁq =84(0yact+onM) - 4.7

The fact that /i, is less than m, reflects a partial res-
toration of chiral symmetry in nuclear matter.

We can estimate oy and wyy in terms of the scalar
and baryon densities of nuclear matter, py™ and pp™.
One has®

INM™= —GaNNPI;M/mg ’ (4.8)

and

onm=Gonnpp " /ml (4.9)
where G N and Gy are the coupling constants of the
o and o fields to the nucleon. These can be taken from
some typical boson-exchange models of the nucleon nu-
cleon interaction.!* One has G,y ~7.6 and Gy =13
s0 that oy~ —37 MeV and oy =~32 MeV. If we now
estimate the scalar and vector fields seen by the nucleon,
we would find in the Hartree approximation,
US zGUNN'O'NN:-—ZSI MeV and UyszNN-a)NM
~422 MeV. There is a significant correction due to
correlations to be made for U, which brings U, down
to about 300 MeV.! Further, exchange (Fock) terms
give a contribution to Ug of the order of —100 MeV.'
Thus, after corrections are made for short-range correla-
tion effects and Fock terms, one can estimate Ug ~ —400
MeV and U, ~300 MeV, which are values typical of
those used in Dirac phenomenology. (Similar numbers
are obtained in relativistic Brueckner-Hartree-Fock
theory.')

(4.6)

V. DISCUSSION

We have presented a simple model which we suggest
describes QCD at relatively low momentum transfer. As
we have seen, the model is closely related to the model
of Nambu-Jona-Lasinio.?* (The latter model may be ob-
tained from ours if we make a large-mass approximation
for the exchanged gluon.) It is well known that the
Nambu-Jona-Lasinio model gives a good account of the
dynamics of chiral-symmetry breaking.

Our model also leads to order parameters with the
quantum numbers of p and » mesons. These order pa-
rameters are required in any boson-exchange model of
the nuclear force or in relativistic models of nuclear
structure.!?

For example, in one particular boson-exchange model
of the nuclear force?® one finds the following fields:

J T=0 T=1

0+ o (500 MeV) 8 (960)

0- 7 (548.5) 7 (138.5)

1- w (782.8) p (763)
¢ (1020)

The number in the parentheses represents the masses as-
signed to these fields in the study of nucleon-nucleon
scattering. From the point of view adopted here, the as-
signment of the masses of the physical mesons to the
field with the same quantum numbers can only be a
rough approximation. (In principle, these masses should
be obtained from a study of the effective potential of the
model.) It is interesting to note that we find bilocal
fields describing axial-vector mesons with 7T'=0 and
T =1. These appear to be rather unimportant in phe-
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nomenological studies of the nucleon-nucleon force.
Indeed, in the boson-exchange model one can make sa-
tisfactory fits using only the fields with the smallest
masses: o, p, T, and .

We believe that we can use the model introduced in
this work to understand the significance of the fields
which play an important role in Dirac phenomenology.
(Thus far, there has been only minimal understanding of
the nature of these fields.) From our work, we see that
the large scalar fields of the relativistic theories are inti-
mately connected to the modification of the quark self-
energy in the nuclear medium. (Essentially one is seeing
a partial restoration of chiral symmetry in nuclear
matter.) The quark self-energy is, in general, a gauge-
dependent quantity and for detailed calculations one
needs to make a choice of gauge. While the vector-
isoscalar order parameter can be taken to be zero in vac-
uum, it has as its source the quark baryon density.
Therefore, the mean-field value of that field is nonzero in
nuclear matter.

It is well known that it is the interplay of the scalar
and vector fields which leads to the success of the rela-
tivistic approach to nuclear structure physics."? This
work represents an attempt to relate these fields to
QCD, the fundamental theory of strong interaction.

[Note added in proof. Since completion of this work
we have gained further understanding of dynamical mass
generation for quarks and gluons in the gluon conden-
sate (see Ref. 27).]

This work was supported in part by the National Sci-
ence Foundation and the Faculty Award Program of the
City University of New York.

APPENDIX A

In this paper we have carried out our analysis in real
(Minkowski) space, with the understanding that our cal-
culations can be justified in Euclidean space. However,
the path-integral formalism has a well-defined meaning
only in Euclidean (or imaginary-time) space. Therefore,
we review the functional method, in this appendix, using
Euclidean space. (To obtain physical quantities in real
space, we have to perform an analytic continuation.)

In Euclidean space, we use the variable X, to replace
Minkowski variables: X,=(X=x; X,=ixo=it). Fur-
ther, E#=(E=k; k,=ik,). Here x, and k, are real,
since ¢ and k, have been taken to be imaginary.

J

o(x)

2

Z)=N [ [d¢1expl~% J =

=N [ [dglexp

(A10)

2
_i___vl_‘_#z
p

—1 [d*% [ d% ¢()A~ =, 7)85)+ [ d2T(2)$(Z)

We consider a (real) scalar field theory for simplicity.
The generating functional Z[J], which is the vacuum-
to-vacuum amplitude in the presence of an external
source J (x), is given by

Z[J1=N [ [dglexp |i [ d*x{L[$(x)]+](x)$(x)} |,

A1)
where
LI$(x)]=Lo[d(x)]—V[$(x)], (A2)
with L, given by
2
Lo($)= 53,800 ()~ - g2(x) . (A3)

The corresponding quantity in Euclidean space is

Zp[J1=N [ [dglexp [f A% { Lo[¢(X)]—V[(%)]

+J(X)(%)) ] . (A9)
where
2
sy _ L ||9¢ )
Lo[op(x)]= > | |5 +(V¢) S8 (A9
The Euclidean generating functional
2
_|1]d
ZE[J]:Nf[d(,b]exp —fd“x 5 E‘Tﬁ +1(Vg)?
2
+E-024v(4)
—J(X)$(X) ] (A6)
may be written as
_ _ 4c | O 0
ZplJ]=exp |~ [ d*s ¥V 57 | |Z8071 (A7)
where
ZYI1=N [ [dlexp fd“f(_ljo+1¢)] (A8)

is the free-field generating functional.

The quantity —(34/37)>—(V4$)* in Eq. (A6) can be
replaced by $(3?/37°+V?2)$ because the difference is a
total four-divergence. Then, Z2[J] becomes

|

(%) —J(Z)P(%)

(A9)

I

is the inverse propagator of the scalar field in Euclidean
space. Note that

d*k eiE-(E—F)
(277,)4 E2+”2

Ax5)= [ (A1)
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As X and y are continuous indices, Z2[J] of Eq. (A9)
can be considered an infinite-dimensional (M — )
Gaussian integral of form

fd¢l... —%2¢,(A_1),/¢1+2Jk¢k]
ij
EJA,J ]

dop exp

=[detA™ ]2 exp |4 (A12)

In this way the functional integral in Eq. (A9) can be
performed and we obtain, up to an inessential multipli-
cative factor,

Z2[J]1=N'exp

L[’z [a5i@aEs o).
(A13)

The corresponding formula in Minkowski space is given
by

{g?[1—TI

d4k e—ik~(x —y)
Qm)* k:—pl+in
In the main text, the corresponding result is given by
Eq. (2.12).

For convenience in passing between the Euclidean and
Minkowski-space formalism we present the correspon-

dence between various quantities in the two spaces in
Table I.

Ap(x,y)= (A15)

APPENDIX B

In this appendix we provide some relations which are
useful if we are to introduce auxiliary fields in the Lan-
dau gauge. The Landau gauge is usually used when
studying chiral symmetry breaking, since if one wrltes
the quark self-energy m the form Z(p)=A4(p)p
+B(p?), one can put 4 (p?)=0 in lowest order calcula-
tions in that gauge. [This choice is made by Morozumi
and So.!® Further, Larsson discusses the general form
for 2(p) in the deep Euclidean region, —p%— . His
analysis also yields 4 (p?)=0 in the Landau gauge in the
presence of quark and gluon condensate parameters.'?]

Consider D “B(g?) of Eq. (1.1). Then,

a1} 718 45 - (B1)

= As(Dg (L) ey + Ap(i¥Y5)aq iV 5)ep + Ay (Y*)aa (¥ o + Apy (¥ ¥ )aa (V¥ et

+ A0 )0 (0 u)op + Ay (8)aa (f) s /a7 + Apy (¥ 5 )aa (VY 5 ) /0* + A7(07°q,)0a(0 00" ) /9, (B2)

Zo[J]=N'exp | — fd4 fdyJ YW (y)
(A14)
where
J
( (4)
(Yﬂ)abD:f(qz)(yv)cd__ (yy)ab(y,u)cd_ bz 2
We have,
(4)ab(4)cd
q2
with
AS__‘%’ APZ%’ AV=‘4’ Apy=—1, Al,/‘_—%’
Using

Ar

oo|—
N‘-—-

TABLE 1. Correspondence between Minkowski and Euclidean-space quantities.

Euclidean space

Minkowski space

f(®)
[ a
8(x—y)
[ d's f)8%x—3)=1 ()
8'2

AX—5)=

f(x)
ifd“x
—i8%x —y)
[ d* f084(x —p)=f(p)
—a?
iAF (x —y)
IAFY(x —y)=—i(3*+p?)8%x —y)
—i [ d*%
iAp(x —y)
. d'k e
' f Qm)* k*—ul+in
[ d*z A7\ (x —2)Ap(z —y)=5%x —y)

—ik{(x —y)

iAF(X —y):
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a general covariant gauge:

[V*)ap (Ve — (1 =) oy (4 )ea /9]

= [(Dag(Dep + ¥ 5)aq (0¥ 5)ep 1= (1 =) ]+ [V )aa (¥ oo + (¥ s¥*)aa (¥ sV )y L — 5+ (1 — )]

1—a
2

~[(f)aa(@)ep + (76 )oa (7 )cs ]

—(o*¥ )aa' ( Upv )cb

l—a
2

l—a
8

(al’qu )ad ( prqp )cb

q2

(B3)

The general result for a Fierz transformation in a covariant gauge has previously been given by Shrauner'® in a partic-

ularly transparent notation.
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