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Dispersions around mean values of one-body observables are obtained by restoring classical
many-body correlations in Vlasov and Landau-Vlasov dynamics. This method is applied to the cal-
culation of fluctuations in mass, charge, and linear momentum in heavy-ion collisions. Results are
compared with those obtained by the Balian-Veneroni variational principle in semiclassical approxi-

mation.

I. INTRODUCTION

One of the most striking features revealed a decade ago
by the first experimental studies of heavy ion collisions
was the existence of large dispersions of observables like
mass, charge, or kinetic energy.! Numerous theoretical
studies dealt with these issues by investigating either the
dynamical evolution of the one-body reduced density ma-
trix (TDHF, i.e., time dependent Hartree-Fock) or a col-
lective reduced density matrix in transport statistical ap-
proaches.

The TDHF theory, which is based on a microscopic
approach, is known to underestimate dispersions® espe-
cially associated with the mass distribution of the outgo-
ing fragments. The variational principle developed by
Balian and Veneroni (BV) leads to the conclusion that
TDHEF is the best mean field approach to investigate the
mean values of single particle observables but is unable to
provide a correct answer as far as dispersions around
mean values are concerned.’ In this time-dependent pro-
cess, the boundary conditions for the many-body density
are given at the initial time ¢, while those for the observ-
able are known only at a later time ¢,. If, in an attempt
to calculate dispersions, one uses a variational principle
and reduces the problem to one-body dynamics, the evo-
lution of the system depends explicitly on the observable
that one is interested in. To obtain dispersions within
this framework, TDHF-like equations for the density ma-
trix elements should be solved along with the time-
dependent RPA-like (random-phase approximation)
equations for the operator matrix elements. In other
words, the BV variational principle established an inti-
mate connection between dynamical two-body correla-
tions and fluctuations around mean values. One should
mention that this theory properly predicts the spreading
of wave packets. Reference 4 also shows that fluctuations
of single particle observables in the Lipkin-Meshkov-
Glick model are reasonably well described by applying
the BV method. Applications of this formalism to nu-
clear collisions*® indicate that the main defect of the
TDHF theory, namely a lack of success in the determina-
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tion of dispersions, can be overcome.

Statistical transport theories® give the time evolution of
collective variables (defined a priori in most theoretical
studies) by analogy with a diffusion process. Such
theories treat the diffusion process as a random walk
problem.” Coupling between macroscopic variables and
microscopic degrees of freedom is responsible for disper-
sions through the fluctuation-dissipation theorem.
Description of this coupling requires some model of nu-
cleon transport: dispersions around mean values are then
found to be compatible with experimental findings. Nev-
ertheless, these approaches are only semimicroscopic,
some macroscopic models being needed in order to define
relevant dynamical variables.

In this paper we reasses the problem of determination
of dispersions and discuss it in the framework of semi-
classical approximation to TDHF formalism [i.e., Vlasov
equation (VE)] and to the extension of this theory ob-
tained by taking into account residual two-body collisions
[i.e., Landau-Vlasov equation (LVE)]. The Vlasov equa-
tion can be obtained by truncating the expansion of the
Wigner transform of the TDHF equations. Dynamical
evolution of the one-body distribution is identical to the
one obtained from TDHF if one neglects pure quantal
effects. The phenomenological collision term can also be
easily calculated, extending VE into LVE.}? In determin-
ing the approximate solutions of VE or LVE, the distri-
bution function has been decomposed in Ref. 9 into a
sum of elementary Gaussians, each of which represents a
part of the nucleonic distribution function. This collec-
tion of elementary packets can be viewed as a statistical
ensemble; therefore, the mean value of each single parti-
cle observable can be considered as an ensemble-averaged
value. It is now tempting to take advantage of this sta-
tistical interpretation in order to compute higher mo-
ments. This approach corresponds to a ‘““backwards” ver-
sion of the procedure proposed in Ref. 10: there, the au-
thors plugged into TDHF equations Slater determinants
which were built on a cascade statistical ensemble. As a
consequence of the introduced fluctuations, the authors
were able to obtain a dynamical description of a mul-
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tifragmentation process. Our procedure resembles the
one suggested in Ref. 11, where the authors randomly
choose elementary packets in phase space in order to in-
troduce some fluctuations into a collision term. These
fluctuations are due to the fact that a nuclear system in
LVE is a mixture of Slater determinants. A selection of a
single Slater determinant, by choosing as many elementa-
ry packets as particles, allows us to extract some of the
classical many body correlations from the distribution
function. In order to get mean values as well as disper-
sions we used the statistical ensemble of elementary pack-
ets to describe a collision between heavy ions.

In Sec. II we give a brief description of Vlasov and
Landau-Vlasov dynamics. Section III contains a discus-
sion of dispersions in TDHF and in Balian-Veneroni for-
malism along with their semiclassical analogs calculated
with the Vlasov equation. In Sec. IV we present a
method of restoring many body classical correlations
(RMBC) and discuss the results obtained for mass,
charge, and momentum dispersions. We also make a
comparison with transport theory.

II. VLASOV AND LANDAU-VLASOV DYNAMICS

The Vlasov and Landau-Vlasov equations can be writ-
ten as

0 VE

of . p _
+ 2y r-vuv,r=1; lve- (1)

at

coll

Here f =f(r,p,t) is a one-body distribution function,
r and p represent the space and momentum coordinates,
and the single particle potential U is treated in a self-
consistent way. The collision term I, is calculated us-
ing an effective nucleon-nucleon cross section, with the
requirement of energy and momentum conservation and
with an appropriate Pauli blocking factor.’

In order to solve Eq. (1) we write the distribution func-
tion f(r,p,?) as a linear combination of the distribution
functions for a large number NG of pseudoparticles
which behave like classical particles:

NG
f(r)p»t)Zz wi(ri’pf)ff(r’rf’p’pi’t) . (2)
i=1
The pseudoparticle distribution functions f;(r,r;,p,p;,?)
are expressed as uncorrelated isotropic Gaussian wave
packets:

(r—r;” (p—p;)*
fi(r,1;,p,p;st)=N exp _L PP ,
2 o? o}

(3)

with N being a normalization constant and r;(¢) and p;(?)
describing the mean position of the Gaussian *‘/”’ in phase
space.” The decomposition into a sum of Gaussians is
useful for numerical purposes since it follows the phase
space to be filled efficiently. This method corresponds to
an extension of the Thomas-Fermi approximation; i.e., it
effectively accounts for some quantal effects at the level
of an extended Thomas-Fermi approach. Nevertheless,
since the widths of the Gaussians are kept constant along
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dynamical paths (for the sake of simplicity), it is not clear
whether these quantal features are properly approximat-
ed by our procedure. We will avoid drawing any subse-
quent conclusion based on the particular choice of the
Gaussian widths.

The weighting factors w; were treated in the Thomas-
Fermi approximation as

w,=0(ep—¢g;), (4)

where €; is the mean single particle energy for the
coherent state and € denotes the Fermi energy. The
Pauli exclusion principle is satisfied by requiring that no
more than four particles occupy an h* phase-space cell.
At time t =0, we start with random selection of NG pseu-
doparticles (coherent states) in the available phase space.
The spreadings of the Gaussian wave packets were deter-
mined for this static configuration (¢ =0) by requiring
that the distribution function yield the proper values for
the nuclear binding energy and for the root mean square
radius of the nucleus.

We then obtained the time evolution of the system by
following the semiclassical trajectories of the randomly
chosen pseudoparticles (in a self-consistent way). The
width of the Gaussians and the weighting factors are kept
constant. It is important to notice that, in this pro-
cedure, the initial distribution function should be under-
stood as an ensemble averaged quantity. This property of
the distribution function will be used in Sec. IV. The
effective interaction which was used in the following cal-
culations was the same as in the fourth paragraph of Ref.
9, i.e., a simplified Skyrme interaction with an associated
compressibility modulus K =200 MeV.

III. TDHF AND BALIAN-VENERONI DISPERSIONS
IN SEMICLASSICAL APPROXIMATION

In the TDHF formalism, the application of Wick’s
theorem yields the following relation for the dispersion of
a one-body observable:

(AQ)*/t;=({Q?) —{ Q) /1,
=Tr{Qp(t,)Q[1—p(1,)]} . (5)

It is easy to see that if Q is a projection operator, a non-
vanishing value of AQ arises clearly because, in general,
the projection of a TDHF Slater determinant is no longer
a Slater determinant.

The values of dispersion obtained by using the above
procedure strongly underestimate the experimental re-
sults because, in the mean-field treatment the fluctuations
caused by many-body correlations are practically washed
out. They should be restored in order to obtain any real-
istic estimate of dispersions of single particle observables.
As a matter of fact, it has been shown in Ref. 3 that this
underestimation is due to the fact that TDHF formalism
is not variationally fitted to the evaluation of fluctuations.

One could write an equation analogous to Eq. (5) for an
estimation of (AQ)? in the Vlasov dynamics:

(AQP/t,= [ Qf(r,p,1,)Q[1—f(r,p,1,)ldr dp . (6)
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The decomposition of the distribution function into a
sum of elementary Gaussian packets allows a description
of a nuclear system with a finite diffuseness. One then
goes beyond the Thomas-Fermi limit (see Ref. 9), i.e., one
gets a rough account of initial quantal corrections. Nev-
ertheless, a consequence of this smearing procedure is
that f2-«f, whereas p?=p in TDHF. A main contribu-
tion to Eq. (6) comes, therefore, from the widths of the
Gaussians. Since in our calculation the widths do not
evolve in time (see Ref. 9 for a discussion concerning this
approximation), Eq. (6) can only give a crude estimate of
the dispersions which should be compared with the re-
sults obtained in TDHF. The results, therefore, cannot
test the validity of the semiclassical approximation,
which operates only on the mean values of each Gaussian
wave packet. As in TDHF, one should expect to un-
derestimate the dispersions if one uses VE dynamics and
Eq. (6).

The method explained above was applied to study mass
distribution in the reaction of %0 and !°O at the labora-
tory energy of 160 MeV. The LV dynamics led to fusion
for angular momentum below / =33. In Vlasov dynamics
we found a region of transparency for low values of /. A
comparison of standard deviations of the mass distribu-
tion obtained in various approaches is presented in Table
I. In our calculations presented in this table we choose
I =36. To get an estimate of the predictions of Eq. (6) we
took the observable Q =6(z) and therefore performed the
integrations for the half-space z > 0 only. To evaluate the
spurious effect of Gaussian widths, we performed the cal-
culations with o, =0.61 fm, o, =0.15 fm ™' and with the
double widths 0, =1.22 fm, 0,=0.30 fm~! (in the latter
case the system becomes underbound). The extracted
value of A 4 is less than 0.2 u.

In quantum mechanics, the Balian-Veneroni variation-
al principle leads to the following expression* for the
variance associated with a one-body observable Q:

(AQ)?/t, =Tr{Q(to)p(2y)Q(te)[1—plte)]} @)

Here Q(t,) is obtained by solving a system of coupled
equations for the one-body density p and the operator Q
between the time ¢ and ;. This result differs completely
from the result obtained in TDHF when Wick’s theorem
is applied at time ¢, [Eq. (5)]. It can be further shown*!2
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that if p=p? the results obtained from Eq. (7) are identi-
cal to those obtained from the following formula:

2
pltg)—o(ty,e)

€

(AQ )/t = lim 3 Tr (®)
£E—

Here o(t,e) is a solution of TDHF equations with the
boundary condition

a(t,e)=e"Pp(t,)e "2 . 9)

We want to use the Balian-Veneroni variational ap-
proach to evaluate dispersions of one-body operators in
semiclassical dynamics, where the distribution function
f(t) is calculated by solving Vlasov equations. If the
condition f = f? is fulfilled at time ¢, one can use Eq. (8)
with the unitary transformation of Eq. (9) being replaced
by

flt,e)=e"2f(1)),

where Ly ={Q, | is an effective Liouvillian.

If, as in Ref. 9, f is decomposed to a sum of Gaussians,
the unitary transformation (10) describes an elementary
motion of a Gaussian in the phase space. This motion is
determined by the effective Liouvillian Ly. For instance,
one can determine the mass distribution by taking
Q=0(z) where 6(z)=1 for z>0 and zero everywhere
else. In this case the transformation introduced in Eq.
(10) assumes the following form:

(10)

1 (=z}720%)
2€ ’
;

kf—»k,»z—E

(11)
2o

where (z;,k?) is the mean phase space location of each
Gaussian, and o, is the variance of the Gaussians in
configuration space. The Vlasov code was first carried
from the initial time ¢, and ¢;. The transformation de-
scribed by Eq. (11) was then performed on all Gaussian
packets and the Vlasov code was run backwards from ¢,
to ¢, in order to obtain the distribution function f(zy,€).
We then estimated the phase space integral correspond-
ing to the classical analog of Eq. (8). Since, due to the
final widths of the Gaussians f? is not exactly identical to
f, we correct for this effect in our estimate of Eq. (8).

For sake of comparison with Refs. 4 and 5, and with
our method described below, we computed mass disper-

TABLE 1. Mass, charge, and momentum dispersions calculated for '®*0+!°0 at E,,, =160 MeV using various methods discussed

in the text.
TDHF TDHF VLASOV RMBC RMBC V(N,) V{N,) BV BV BV
(Ref. 4) (Ref. 5) Eq. (6) VE LVE VE LVE (Ref. 4) (Ref. 5) Semiclassical

Method (1=36) (I1=36) (I=36) (I1=36)

AA (v 0.81 0.495 <0.2 2.7 1.9 3.2 2.0 1.42 2.5 33
(1=30) (I=30) (I=36) (1=30) (1=30) (1=36)

AZ (charge 0.400 1.8 1.2 23 1.5 0.52

units) (1=0) (1=0)

AP 1.17 2.0 2.0 2.5

(fm~'%) (1=0)

(1=0)
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sions for '°0 + '°0 system at the bombarding energy of 10
MeV/nucleon for an impact parameter b=6.5 fm. We
choose this impact parameter in order to obtain a deep
inelastic collision in both Vlasov and Landau-Vlasov dy-
namics, with the same effective interaction being used. In
Refs. 4 and 5 different partial waves were chosen along
with another effective interaction. It is clear that the
differences between our calculations and those of Refs. 4
and 5 allow only a qualitative comparison. Nevertheless,
in all calculations dealing with deep inelastic collisions
one finds similar reaction times, a crucial feature as far as
dynamical evolution is concerned.

In spite of a high accuracy of the Vlasov code, there
are problems with convergence in Eq. (8) as e—0. For ¢
values smaller than 1073, the behavior of the numerator
in our classical analog to Eq. (8) is logarithmic rather
than quadratic in €. [In Ref. 13 a divergence of the limit
in Eq. (8) was also obtained in the numerical calculations
because of large truncation errors. Nevertheless, the au-
thors of Ref. 4 mentioned that a good control of the sta-
bility for & smaller than 103 can still be achieved.] Con-
sequently, we determined (A 4)? by varying & from 0.001
to 0.5 and by performing a least squares fit of the results
to a parabola. We obtained the value of A4 =3.3 u. The
value compares reasonably with the one found in Ref. 5
and is about 2 times larger than that of Ref. 4. Since
effective forces are not identical in these three calcula-
tions, the deviation between results cannot be used as an
indication that our semiclassical approximation intro-
duces any additional bias in the determination of A 4.

IV. RESTORING CLASSICAL MANY
BODY CORRELATIONS

In order to restore classical many-body correlations,
we started with the VE or LVE continuous distribution
function at a given moment of time. Among all NG pseu-
doparticles, we randomly chose Z, (Z,) pseudoparticles
which, at ¢t =0, corresponded to the proton distribution
in the projectile (target), and N, (N,) which belonged to
the neutrons in the projectile (target). We then identified
their location (within a projectile-like or target-like frag-
ment) and momenta for time ¢ in the solution of VE or
LVE and discretized the corresponding occupation prob-
abilities to O or 1. This procedure, which corresponds to
a random selection of a single Slater determinant out of a
mixture of many Slater determinants, is repeated for
large number of combinations. We then calculated the
first and second moments of the obtained distributions of
fragment mass, charge, or momentum. This method is a
way to simulate, in a statistical ensemble, the classical
many-body correlations which were washed out in the
VE or LVE formalisms. Since NG is large, the number of
random choices of sets of pseudoparticles is very large.
We can therefore get a statistically reliable estimate of
the first and second moments of the distributions of
different single-particle observables.

We applied the method of restoring classical many-
body correlations (RMBC) to study mass, charge, and
momentum distributions of the reaction products in
Landau-Vlasov dynamics and for comparison in Vlasov
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dynamics, considering a broad range of impact parame-
ters which led to deep inelastic scattering. The number
of random configurations was taken to be 10* and the sta-
bility of the results when this number is changed has been
checked. To illustrate the difference between Vlasov and
Landau-Vlasov dynamics, we present the time evolution
of A A for a central collision along with the time evolu-
tion of the relative distance between the centers of the
ions (see Fig. 1). LVE led to fusion while VE led to a
deep inelastic process. The crucial role of dynamics in
determining the width of single particle observables can
be seen by comparing the results of RMBC for VE and
LVE dynamics for / =36, where both cases led to a deep
inelastic scattering (see Table I). The value of A4 ob-
tained with VE is considerably larger than in LVE, be-
cause for VE the interacting system arrives at a much
more compact configuration and reseparates much more
slowly. For all values of impact parameters one observes
that during the deep phase, when the interacting ions
amalgate, the width of mass and charge distributions be-
come larger than the final values after the reseparation of

AA T T T T T T
(u)
7 /,—"— B,
L LVE
25} i
20 ]
1.5 .
10 %ot 10MeV./nucleon) <07
(=0
05 .
0.0 } 1 } } —+ 1
50 100 150 200 250 300 TIME
(fm./c)
Rz %0 (10 MeV./nucleon) +'%
(fm) VE
15 |- (= 0 —
10 - i
5 i
NG L
1 ~-71 S -1 1 1
0 50 100 150 200 250 300 TIME
(fm./c)

FIG. 1. Mass dispersion and distance between the centers of
the interacting ions as a function of time for a central collision
of two 'O ions at E,,, = 10 MeV/nucleon. In the lower part the
solid line shows the relative distance between the centers as ob-
tained in Vlasov dynamics while the dashed line was obtained
with LVE. In the upper part the solid line corresponds to the
mass dispersion obtained with VE, the dashed one with LVE.
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the fragments. The same behavior has been observed in
calculations based on transport theories.'*

In Fig. 2 we present the standard deviations of mass
and charge distributions as functions of the initial orbital
angular momentum. The values of A A and AZ decrease
monotonically with the values of the angular momentum,
because, in the deep phase, the overlap of the density dis-
tributions is smaller and the time of interaction shorter.
We have also calculated the dispersion of the distribution
of fragment linear momentum along the beam direction.
At this low energy the distribution is strongly dominated
by the Fermi motion and therefore does not show any
considerable variation with time or impact parameter.
The values of AP are close to ~2 fm~! for each of the
colliding ions.

Because of the classical nature of TDHF (see Ref. 2), it
is worth comparing the evolution of observables with
those deduced from transport theories, as was shown in
Ref. 15 devoted to tangential friction in nuclear dynam-
ics. Since VE and LVE are obtained from TDHF and ex-
tended TDHF in semiclassical approximation, the com-
parison between VE or LVE and transport theories turns
out to be even more relevant. In transport theories,
dispersion can be obtained on account of stochastic nu-
cleon exchanges. For instance, in a pure random-walk
process the variance in mass % is equal to the number of
exchanged particles N, (Ref. 16). Our Gaussian decom-
position allows us to estimate an average value of N,:

(N )= [dT[0,f7(t,)+6.f,(1))], (12)

where 6, (67) is unity in the projectile-like (target-like)
fragment at time #; and zero elsewhere; f, (f7) is defined
by f(6)=f,(t)+fr(t) at each time 7, and f,(t5)=F,
[fr(tg)=Fr] with F, (Fr) being the static projectile (tar-
get) initial distribution function, and dTI" the phase space
elementary volume element.

We have calculated the value of (N,,) for the
160 4 1%0 system at 10 MeV/u bombarding energy after a
time lapse ¢,, at which point the reseparation is achieved.
The square root of the average number of exchanged par-
ticles V' (N,,) is drawn in Fig. 2, together with o 4 and

30 T T T T T

\

\
25r W <Nex> 1 6 ]

\ 0 (10 MeV/nucleon ) + 0
204 i
1.5F .
1.0} T
05| b
0.0
30 35 %0 L5 50 55 { (K units)

FIG. 2. Dispersion in mass and change as a function of the
angular momentum for 'O+ '%0 at E,,, = 10 MeV/nucleon ob-
tained in Landau-Vlasov dynamics. The solid line corresponds
to the dispersion in mass, the dash-dotted line to the dispersion
in charge, and the dashed one represents the square root of the
average number of exchanged nucleons.
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0,, as a function of the initial orbital angular momentum
I. (N,,) is roughly equal to o?, this latter quantity be-
ing smaller by around 15%. As a matter of fact, this
difference could be explained by a squeezing of the fluc-
tuations resulting from the divergence of the inertia pa-
rameter associated with the mass asymmetry degree of
freedom at the reseparation.'* In spite of this small devi-
ation, the results obtained from our self-consistent semi-
classical description show that some features of transport
theories are included in RMBC, at least for fluctuations
around mean values of one-body observables.

V. CONCLUSION

We have discussed two methods (BV and RMBC) for
evaluating dispersions in the heavy ion collisions where
strong fluctuations of the field can be neglected (i.e., at
low energy). The main contribution to the dispersions is
due to mean field correlations. Using similar arguments
as in Refs. 10 and 11, where the authors are dealing with
strong fluctuations of the field, we could propose a
method where classical many body correlations are re-
stored (RMBC). This method is very convenient since it
is founded on semiclassical simulations of heavy ion col-
lisions which could extend the pure mean field approach.
Consequently a statistical component to the dispersions,
which is produced by the collision term of Landau-
Vlasov, is superimposed to the mean field correlations.
We have compared this method with the Balian-Veneroni
prescription (BV), which is derived from a variational
principle. The application to semiclassical dynamics is
straightforward.

It was shown that the long range correlations intro-
duced by the BV method produce the values of disper-
sions of the same order as those obtained by the RMBC
applied to Vlasov dynamics. The fact that the BV values
are close to those derived in RMBC can be interpreted as
a dominance of the long range mean field correlations in
our calculations, which were performed in the low in-
cident energy domain. One should mention at this stage
that our method is more flexible for practical purposes
than the BV method the main results, in the studied ex-
amples, being quite similar in both approaches.

Finally, the estimate of the number of nucleonic ex-
changes N, during the reaction exhibits a property of
collective transport theories, i.e., the proportionality of
mass variances to N, as long as drift effects remain
small.

We conclude that semiclassical dynamics with restored
classical many body correlations, occurring midway be-
tween microscopic self-consistent quantal models and
macroscopic transport approaches, can be considered a
very flexible and powerful tool for understanding basic
features of low energy nucleus-nucleus collisions.
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