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We introduce a new numerical method for calculating continuum excitation probabilities of com-

plex physical systems under the influence of external, time-dependent, and nonperturbative fields.

The method utilizes a discretized form of the Hamiltonian on a space lattice and is particularly suit-

ed for large scale computations involving many-body systems. We perform a comparative study for
a model problem by solving the same time-dependent Schrodinger equation in spherical and cylin-

drical coordinates. As a realistic example, we apply the method to the problem of prompt nucleon

emission in low energy heavy-ion reactions.

I. INTRODUCTION

A large class of problems in nuclear and atomic phys-
ics involves the excitation of continuum states by a time-
dependent external field acting on a complex many-body
system. Processes such as the prompt nucleon emission
in heavy-ion reactions or electrons ejected in ion-atom
and atom-atom collisions convey information about the
details of the collision dynamics. While the data are
commonly interpreted in terms of classical methods or
the Born approximation, more satisfactory approaches
incorporate the dynamical evolution of the collision pro-
cess. Examples of dynamical formalisms include the
semiclassical description of nuclear and atomic col-
lisions. ' Continuum excitation problems also occur in
nonperturbative quantum field theories, e.g., lepton-pair
production in relativistic heavy-ion reactions and in-
clusive y and ~ production in intermediate and high-
energy heavy-ion reactions. ' Although we will confine
ourselves in this paper to nonrelativistic problems, the
method is readily applicable to relativistic systems.

The calculation of continuum excitation requires the
knowledge of both bound and continuum states for the
system. In general, the computation of scattering states
for a many-body system is far more difficult than the cal-
culation of bound states. In most practical calculations,
the Hamiltonian is represented numerically on a discrete
mesh. In principle, the continuum excitation problem
can be studied by diagonalizing the resulting 5nite Ham-
iltonian matrix, which yields a fixed number of bound
states and discretized continuum states with standing
wave boundary conditions. Projection of the time-
evolved states onto the continuum states, followed by an
averaging of the discrete amplitudes over a finite energy
interval, gives the desired approximation to the continu-
um excitation spectrum. However, this straightforward
approach gives rise to serious problems:

(a) For a realistic two- or three-dimensional calcula-
tion, the size of the matrix to be diagonalized is prohibi-

tively large.
(b) Other methods for the calculation of scattering

states such as the solution of the Lippmann-Schwinger
scattering equation, and the R-matrix approach' are
also impaired by the requirement of a small Hamiltonian
matrix. Due to numerical inaccuracy, the calculated
scattering states are no longer orthogonal to the bound
states and they do not satisfy the Schrodinger equation.
Accurate numerical computations are only possible under
very special circumstances, for example when the poten-
tial can be written in a separable form, "' or when it is
naturally given in terms of basis functions of Slater's
type. '

Therefore, it is highly desirable to develop a formalism
which makes effective use of the discretized Hamiltonian
to calculate the continuum transition amplitudes for
complex systems. In our formalism, the Hamiltonian
matrix is never explicitly stored. Rather, it is known im-

plicitly through its action on the state vectors, thus mak-
ing the problem tractable. In Sec. II we introduce the
formalism. In Sec. III this formalism is applied to a mod-
el problem, and in Sec. IV to the problem of prompt nu-
cleon emission in low energy heavy-ion reactions.

II. FORMALISM

Let us consider an isolated many-body system which is
described by the free Hamiltonian Ho; the kets

~ P ) and

~ Pt, ) denote the bound states and exact continuum
eigenstates, with standing wave boundary conditions, re-
spectively

During the time interval —T & t & + T, the system is sub-
jected to an external time-dependent potential V(t) The.
time evolution of the system is given by the state vector

~ g (t) ) which is determined by the time-dependent
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Schrodinger equation

H(r)
~ p.(t)&=[H, + V(r)]

~
l(.(r)& =~A' —

~ p.(r)&,~ a

dP (ek } =C (ek),
Ek

(12}

subject to the conditions

lim H(t) =Ho,
t ]~ac

lim
( P (t) &=e

(2)

(3)

and it can be used to calculate differential and total cross
sections.

The left-hand side of Eq. (8) can be computed numeri-
cally. In evaluating the action of F (E) on the
ket

~
P (T) & in Eq. (5) we use the power series expansion

of the exponential operator. However, a direct expansion
of the exponential gives nonconvergent results for a
reasonable number of terms. This problem can be cir-
cumvented by making use of the operator identity

Consider the operator
' 1/2

F(E)=
—(Ho —E) /25

[
A /N]N

(4) which yields from Eqs. (5), (7), and (8)

(13)

where, in practice, Hp is an operator acting on state vec-
tors, and 6 is a parameter which wi11 be discussed short-
ly. Using F(E), we form the new ket f" (E)—. (14)

~
X,(E) & =F(E)

~
f~(7) &,

which is normalized to unity

f dE(X (E)
~

X (E)&=1,

(5)

(6)

f (E)=(X (E) ~X (E)& (7)

can be used to extract the differential excitation probabil-
ity. To this end, we insert a complete set of eigenstates of
Ho into Eq. (7)

f~(E)= g (P~(7)
~

F (E)
~ P3 &(P3

~

F(E)
~

Q~(7)&

=f.'(E)+f.'(E), (8)

where f and f, denote the bound and continuum state
contributions to the summation, respectively

After a change of variables, the quantity f can be writ-
ten as

—te —E& /5f (E)= f dekC (e„)e (10)

where

as can easily be seen by expanding
~ g, (t) & in terms of

the complete set of states of Hp ~ The following overlap

Here, the value of N is adjusted to ensure the conver-
gence of the exponential series, in addition to the conver-
gence of the entire operator. This series can be generated
by repeated operations of (Ho E) on —

~ g (T)&. This
procedure was used to obtain convergence to 1 part in
10 or better. The quantity f can be computed directly
from (9), since we have full knowledge of the bound and
time evolved states. Consequently, Eq. (14) enables us to
calculate f (E) which allows the extraction of the
differential excitation probability via a deconvolution of
the Gaussian integral in Eq. (10). This deconvolution is
most easily done by assuming a parametric form for
C (e) and adjusting the parameters to obtain the desired
equality. The full amplitude could be similarly obtained
by making a deconvolution in both energy and angle.
Here, the Gaussian operator acts as a smoothing or
averaging tool over an energy interval b, . For this reason
the value of 6 should be chosen to cover an energy range
which includes a reasonable number of continuum states.
This is tested numerically by changing the value of 6 and
looking for convergence. However, we should keep in
mind that in a discrete approximation to the continuum
spectrum the spacing between states increases with in-
creasing energy. Therefore, beyond a certain energy the
results may become unreliable. In two- and three-
dimensional calculations the large number of states en-
sures that this limit is very high. Another consideration
in the choice of 5 is the widths of the possible structures
in the excitation functions. In such a case, the size of the
parameter b should be comparable to the width of the
structures, otherwise a smoothing of the structures will
take place.

1 2mC(~ )=-a k 2

We see from Eqs. (9}—(11) that the quantity C is the
angle-integrated differential excitation probability for
state o.

III. A MODEL CALCULATION

The numerical formalism described in the previous sec-
tion can be most reliably applied to problems in two- and
three-dimensions where the density of continuum states is
large and therefore an accurate calculation of Eq. (14) is
feasible. Consequently, it is difficult to find realistic prob-
lems that can also be solved analytically. In order to be
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able to perform a realistic comparison with a soluble
problem, we study the time-dependent Schrodinger equa-
tion using spherically symmetric static and time-
dependent potentials with two different approaches:

(a) We make a partial wave decomposition of the
Schrodinger equation and solve the resulting time-
independent and time-dependent radial equations. Since
the radial equation is essentially a one-dimensional prob-
lem, the calculation of the continuum transition ampli-
tudes can be done by direct diagonalization of the
discrete Hamiltonian.

(b) In the second approach we solve the same set of
equations in cylindrical polar coordinates and calculate
the excitation probability via Eq. (14). Furthermore, we
repeat the radial calculation using a very large one-
dimensional box which has a reasonable number of low
energy continuum states and allows us yet another way to
calculate Eq. (14).

We choose the static potential parameters such that
there is only one bound s-wave state which we then time
evolve using an external potential, thus preserving the
spherical symmetry. Of course the comparison of the ex-
citation probabilities, calculated in (a) and (b), will be lim-
ited by the intrinsic numerical differences arising from
the employment of radically different numerical pro-
cedures in the two calculations. We now proceed to de-
scribe the numerical solutions of the steps (a) and (b).

Consider the time-dependent Schrodinger equation for
a particle of mass m

V'+ V+ W(t)
~ g (t)) =i%

~ P (t)), (15)
2m

V(r) = Voe

—r /r
W(r, t ) = Woe 'e

(16)

where the static and time-dependent potentials V and W
are local potentials given by,

subject to the boundary conditions

+a0 0 +a N+1

Equation (20) can be written as a matrix problem

(21)

+a, 1 +a, 1

H0.
a, 2

+a, N

a, 2

+a, N

(22)

with

H0 ——

a b s ~ ~

1

b a, b

0 b a3
(23)

The elements of H0 are given by

b aN

a;=
f2

+V;,
m (hr)

fi

2m (b, r )

Diagonalization of H0 gives N„eigenvalues and the cor-
responding eigenvectors evaluated at the mesh points.
The bound state (for simplicity we choose the potential
parameters to have a single bound state) is then evolved
in discrete time steps tn = n ht using the Crank-Nicholson
approximation to the propagator'

1

~ P, (t„+ b, t)) = 1+i H" +'"n 1/2

In the asymptotic past (t~ —oo) Eqs. (1) and (3) are
satisfied.

In case (a) we make a partial-wave decomposition of
Eq. (15) obtaining the radial Schrodinger equation (s
wave)

where H" +' is the half-time-step Hamiltonian,

d AtHn+1/2 +V+W t„+
2m dr2 2

(24)

(25)

d
, +V iX.)=e. iX.),

2m dr2
(17) In practical calculations we have used the following

values for the potential parameters for both (a) and (b)

where

X (r)=rP (r),
and r denotes the radial coordinate. This equation is then
discretized on a coordinate mesh

r, =ibr, i =1, . . . , N„, X;=X (r;), (19)

2 (X;+1—2X;+X; 1)+VX; =e X
2m ~ gr i2 a, i+1 a

(20)

using the three-point finite-difference approximation for
the second derivative

V0 ———20 MeV,

a=3 fm,

W0 ——50 MeV,

r, =5 fm,

v.=10 fm/c .

With these values of V0 and a the potential has a single
bound s wave with an energy eb ———4.34632 MeV. The
parameters of the time dependent, external potential, I@0,
r„and ~ are chosen to give a substantial total continuum
transition probability. For the solution of the radial
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The choice of a large box size compresses the discrete
continuum spectrum giving us 97 states between 0 and
100 MeV. In Fig. 1 we observe the time development of
the total excitation probability

P(r)=I —~(g, (r)~X, ) ~'. (26)

Notice that we have a substantial probability for continu-
um excitations, and P(t) approaches the constant value
P(t = ac )=0.52347. The projection of the time evolved
state onto the positive energy eigenstates of Ho yields the
quantity dP/dn where n denotes a discrete eigenfunction
index. However, this quantity does not contain the ap-
propriate energy weights which is the case for all matrix
diagonalizations. The quantity dPidn should be multi-

plied by the density of states dn /de to give dP/de. This
can be done approximately by using the Stieltjes method
which has been extensively used in the study of photoion-
ization and electron impact collisions. '

dP ~n +~n+1 Pn +Pn+1 1

dE 2 2
(27)

&n+ i
—&n

This expression is exact when the number of states be-
comes infinite.

In the second part of the study, we solve the static and
time-dependent Schrodinger equations in cylindrical po-
lar coordinates using the same potentials as in the case
(a). For the numerical representation of these equations,
we use the "variation on the mesh" method, ' which is
described in Appendix A. This method yields a stable
numerical algorithm for the solution of such large scale

equation we have used the following space-time lattice
parameters

N„ = 1400,

Dr =0. 1 fm,

N, = 1400

Et=0.05 fm/c .

problems and does not require the storage of large ma-
trices since we only use the action of the Hamiltonian on
the state vectors. For the calculation of the bound state,
we used the gradient-iteration method as described in
Appendix A. For mesh values N, =100, N, =160, and
hr=hz=0. 2 fm, the agreement between the lowest s
wave eigenvalues of the two calculations is 0.2%. For
the time-evolution we have used the Peaceman-Rachford
method (see Appendix A for details) and the same N, and
At as in the solution of the radial equation. The total in-
tegrated continuum excitation probability differed from
the spherical case by approximately 0.3%. In view of the
rather drastic differences between the numerical methods
used to solve the spherical and cylindrical problems,
these results are impressively accurate. However, we also
note that the difference between the two methods will be
reflected in our comparison of the excitation spectra.

We next calculate the excitation spectra for the cylin-
drical problem using the method described in Sec. I, Eq.
(14). This is accomplished by a 25 term series expansion
of the exponential operator which is generated by repeat-
ed applications of (Ho —E) on the state vector. For a
given E and 6, the desired convergence (1 part in 10 ) is
achieved by choosing a large enough value for power N.
The value of N is closely related to the change in the en-

ergy averaging parameter h. This quantity approximate-
ly satisfies the equation Nh =constant. The constant can
be determined by making a quick run with a large 6
which requires a small value for N. Consequently, for a
given 5 the value of N can be estimated quite accurately.
In Fig. 2 we plot the quantity f (E) of Eq. (6) as a func-
tion of E and for various values of A. Of course, this is
still convoluted with the Gaussian operator. The decon-

1p—
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D.D
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0
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75 150
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-50 -25
I

25
E (Mev)

50 75 100

FIG. 1. Time development of the continuum excitation prob-
ability P(t) as a function of time (fm/c) for the model problem
studied in Sec. III.

FIG. 2. The quantity f (E) of Eq. (8) as a function of the aux-

iliary energy E (MeV) for various values of b, . Deconvolution of
this quantity (after the subtraction of the bound state contribu-
tion) yields the continuum excitation functions.
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volution is done by assuming an analytic form for the ex-
citation spectrum

dP =Il:~ eke
k

(28)

Here, K and T are parameters determined by a nonlinear
least-squares fit to satisfy the equality in Eq. (8) [recall
that f (E) is obtained by subtracting the bound state
contribution from f (E)]. In Fig. 3 we plot the excitation
probabilities obtained by the two methods. As we see,
the curves agree quite well in general with small excep-
tions. The discrepancy between the two curves is due to
the different numerical methods used in the one- and
two-dimensional calculations, and to the approximate na-
ture of the Stiltjes imaging method used in the radial
problem. Consequently, the small disagreement between
the two calculations should not be interpreted as the ac-
curacy limit of the formalism. The 5 values used in these
calculations were 30, 40, and 50 MeV. The correspond-
ing N values were 900, 500, and 300, respectively. The
curves for all these 6 values overlie one another and the
differences will not be observable on Fig. 3. We have also
repeated the above calculations for the large one-
dimensional box. We find that the radial projection re-
sults are in agreement with the cylindrical ones to within
two significant digits. However, the value of N required
for the convergence of the exponential operator was
about 3500 for 5=30 MeV. This implies that the numer-
ical work required for the projection remains approxi-
mately constant as we increase the dimensionality of the
problem.

IV. PROMPT NUCLEON EMISSION

We have also applied the method to the problem of
prompt nucleon emission in low energy heavy-ion col-
lisions. Here, the experimental differential singles yield
dN/de is characterized by a Lorentzian energy distribu-
tion. In the mean-field theory of prompt nucleon emis-
sion, the classical limit for the relative motion of the two
nuclei is taken. Consequently, the full many-body prob-
lem is reduced to an external field, generated by one ion,
acting on the emitting nucleus. The emitting nucleus is
represented by a determinantal wave function in the
Hartree-Fock (HF) approximation. The model was pre-
viously tested by using a separable, phenomenological in-
teraction which simplified the numerical computation of
the continuum states.

Here, we solve the time-dependent Schrodinger equa-
tion, with Ho =HHF, on an axially symmetric spatial grid
with mesh spacings Ar=hz=0. 25 fm and number of
mesh points N„=25, N, =50, using the numerical
methods described in Ref. 16, the Skyrme force, and a
time step of b t =0.4 fm/c. The ions approach each other
on a classical Coulomb trajectory. The problem is formu-
lated in a rotating frame in which the internuclear dis-
tance vector is always directed along the z axis,
R(t) =Z (t)e, . The external nuclear field has the form

V[r,z;Z(t)]= Vo (, , x =r +[z —Z(t)]
1+e

(29)

The strength Vo and range r, of the nuclear potential are

WQ «3
10 = L

10 =

0 15 30
I

45
~ (Mev)

I I

60 75 90 0 10 20 30 4Q 50 60.(Mev)

FIG. 3. The continuum excitation function, dP/de (1/MeV),
as a function of excitation energy (MeV) ~ The solid curve is the
result of the spherical calculation, whereas the dashed curve
corresponds to the cylindrical calculation and using the projec-
tion method discussed in this paper.

FIG. 4. Energy spectrum do. /de (mb/MeV) of prompt nu-
cleons emitted in the deep-inelastic reaction ' 0+ Nb, using
the new projection method discussed here.
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do ",„dP (s&,b)
=2m gn f dbb

dE'
l mjn

(30)

where we have solved the time-dependent equations for a
series of impact parameters b, and n is the occupation
number for Hartree-Fock single-particle state a. The
theoretical differential cross section peaks around 8 MeV
and decays exponentially at higher energies as observed
in the experiment. ' The curve can be approximated by a
function of the form K&ee '~ with a temperature
T=4.8 MeV and /=250. Other methods failed to
reproduce any of these properties, resulting, for example,
in either Oat nucleon energy spectra or unphysical peaks.

calculated self-consistently by a folding procedure which
utilizes the empirical values of the total volume integral
and the radius of the nucleon-nucleon potential. ' The
numerical computations were performed to study neu-
tron emission in the deep-inelastic reactions ' 0+ Nb at
E] l:204 MeV. For this system, Vo =60. 5 MeV,
r, =5. 1 fm, and a =0.8 fm. Our calculated total neutron
emission multiplicity is within the experimental uncer-
tainty. ' The value of b for the numerical projection was
determined to be 20 MeV. The exponent N in Eq. (14)
was about 1700 to give the desired numerical accuracy.
Figure 4 shows the differential cross section (in the labo-
ratory frame) obtained from

84OR21400 with Martin Marietta Energy Systems, Inc. ,
and with Vanderbilt University under Contract No. DE-
FG05-87ER40376.

APPENDIX A

In this appendix we will discuss the numerical methods
employed for the solution of the time-dependent
Schrodinger equation in cylindrical coordinates. In order
to obtain discretized equations which satisfy the conser-
vation laws, we use the variation after discretization
method of Ref. 16.

Consider the energy functional

F&y~ q&=&/~ ~
~
q)

$2*r — V+V r, A1
2m

where r= (r, P, z ) denotes the cylindrical coordinates, and
we have omitted the subscripts distinguishing the
different eigenvectors and eigenvalues of the Hamiltoni-
an. To generalize all of the equations below, just add sub-
scripts to wave functions and energies. Equation (Al)
can be written in a more symmetric fashion by perform-
ing an integration by parts

2 2 '

V. SUMMARY Efdrdzr ~X~ = fdrdzr
2m

ax ax
Br Bz

+

In summary, we have introduced a method for the cal-
culation of excitation probabilities in external field prob-
lems represented by discretized Hamiltonians. The
method is most suitable for large numerical problems in
two and three dimensions where the storage of the full
Hamiltonian matrix is not feasible. As a demonstration
of the formalism we have computed the excitation proba-
bilities for a model problem by solving the Schrodinger
equation in spherical and in cylindrical coordinates, using
the numerical formalism described in this paper. As a
realistic problem we have studied the prompt nucleon
emission in low energy heavy-ion collisions. We believe
that the utilization of the method will significantly im-
prove our ability to extract dynamical information from a
large class of nuclear, atomic, and quantum field-
theoretic problems.

This research was sponsored in part by the U. S. De-
partment of Energy under Contract No. DE-AC05-

$2 2

+ V+ ", )X['
2mr

(A2)

where we have used the explicit form of the V operator in
cylindrical coordinates and the transformation

e IPQ

1((r)= X(r,z) .
&2m.

(A3)

The discretization of Eq. (A2) in spatial coordinates r
and z is implemented by using the following mesh

r, =(j —~ )br, j =1,2, . . . , N„,
(A4)

zk
——( k N, /2 )b,z, k =—1, . . . , N, ,

as follows

2

g=l k=1 j=l k=1

pe 2+ v,k+, I X,k I

'
2m p~

(A5)

where the multiplicative factor r +,&2/r in the first term is included because for this term the r in the integration
weights should be evaluated at the midinterval point (due to the derivative in r), and we have defined X &

——X(r, z& ). In
the next step we make the transformation
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jk (A6)

to obtain

jkjk
Egbrbz lg/k l

= ghrhz
2 2 2

(~ )z ~ ~— j+1/2+
2 (~ )p

l gj, k+1 gjk l

g+1 J

$2p2
+ I'Jk+

2m'~
(A7)

(~g )jk + ( Vg )j k Egj k (A8)

where the quantities %,V denote the horizonta! and Uerti

cal Hamiltonians, respectively, and they are defined by
their action on g

(Ag) k
——— gj, k+1+gj, k —1 gjk( —2 )

2m (hz)

1 Rp
jk + 2 gjk2mr

(A9)

2m (br) j gj + I, k +Cj ~gj ~ k
—2gjk )

1 Rp+
2 jk+ 2 gjk

2m 7j'

(Vg)p, =—

with

(A 10)

The normalization and boundary conditions are

g Ariz
I gjk l

I& gok gN +1 k gjo gjN+I
2

jk

The variation of Eq. (A7) with respect to g~'k. yields the
eigenvalue equation

t

damping matrices D, and D, are defined as

D„=( 1+T„/Eo )

D, =(1+T, /Eo)

where T, and T, are the kinetic energy matrices in r and
z directions, respectively, and Ep determines the frequen-
cy cutoff scale for the damping procedure. The generali-
zation of Eq. (Al 1) to more than one state can be
achieved by adding a quantum label to the wave func-
tions and energies. However, in this case the set of wave
functions must be orthonormalized at each iteration.
Further details of the gradient iteration method are given
in Ref. 19. In practical calculations we have used
xo ——0. 1, and ED=10 MeV. These values yield an energy
convergence of 1 part of 10' in approximately 150 static
iterations.

Next, we solve the time-dependent Schrodinger equa-
tion

(A12)

where the primes of & and V indicate the addition of
time-dependent contributions , W( t) Th—e tim. e-evolution
operator over a small time interval At is approximated by
the Peaceman-Rachford expression'

g" +' =g" xoD„D,[(&g"—)+(Vg") E"g"], —(A 1 1)

To find the lowest energy eigenstate corresponding to
the potential discussed in Sec. III, we use the gradient
iteration method (p =0);

g(t„+()= 1+ V'

X 1+ 5t

1—
2A

V' g(r„),At
(A13)

where the superscript n denotes the iteration index and
E" is the expectation value of the Hamiltonian evaluated
using the nth-step wave functions. In Eq. (Al 1) the
quantity xo is a small multiplicative constant and the

where t„=(n —X, /2)ht is the discretized time. Note
that this expression only requires the inversion of small
matrices in r and z directions, and is accurate to order
(b, r )'.
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