
PHYSICAL REVIEW C VOLUME 37, NUMBER 6 JUNE 1988

Evidence for state dependence of the imaginary part of the empirical optical potential

C. H. Johnson and R. R. Winters*
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

(Received 5 October 1987)

From the observed neutron scattering from ' Y and ' 'Pb at energies from 5 to 10 MeV, there is

empirical evidence that the shape of the surface imaginary part of the neutron optical model poten-

tial depends upon energy; the radius increases and the diffuseness decreases with decreasing energy.

It is shown that the empirical energy dependence for the radius of the surface imaginary potential is

approximately the same as that for the positions of the surface nodes for those partial waves which

have the same orbital angular momentum l and total neutron angular momentum j =I+—,
' as for the

unoccupied bound single-particle states. The fact that those nodes are clustered near the center of
the imaginary potential has the effect of reducing absorption for those partial waves. Therefore, the

empirical variation in radius can be reinterpreted by a model for which the radius of the imaginary

potential is constant but its strength depends upon the neutron orbital. This dependence can be

adequately described by dividing the partial waves into two groups, one with the same quantum

numbers I and j as for the bound unfilled orbitals and the other for the unbound states. In the case
of n+' 'Pb, for an assumed constant imaginary radius, the quality of the optical model descriptions
to the data is improved and the dispersion-relation constraint is more nearly satisfied if the partial
waves associated with the quasibound single-particle states are also included with those associated
with the unoccupied bound single-particle states. However, since the surface nodes for wave func-

tions associated with the quasibound states are not clustered with those associated with the bound

states, this optical model potential is not equivalent to the more conventional model which does not

have a state dependence but does have an energy-dependent radius for the surface imaginary poten-
tial. Furthermore, this model cannot be replaced by one with only a parity dependence in the imag-

inary potential depth because the parity of the quasibound states is opposite to the parity of the

dominant bound states.

I. INTRODUCTION

There have been at least two optical model analyses of
neutron scattering data which show an energy depen-
dence in the shape of the surface imaginary component of
the neutron optical model potential for energies of a few
MeV. Finlay et al. ' and Armand et al. found such an
energy dependence for scattering from Pb, and Lawson
et al. found it for Y. For both cases the radius in-
creases and the diffuseness decreases with decreasing en-

ergy.
One influence of the imaginary potential on neutron

scattering is described by the transmission factor TI for
neutron orbital angular momentum 1 and neutron total
angular momentum j=I+—,'. The transmission factor T&

is proportional to an overlap integral of the square of the
radial wave function ul. (r) and the imaginary potential,
%(r;E). The empirical imaginary potential is a sum of
surface and volume terms. For energies below about 10
MeV the surface term IV, (r;E) is dominant; therefore,
for energies of a few MeV, we have

T~z(E) ~ J%,(r;E)
~

ul (r)
~

dr . (1.1)

Since lV, (r;E) is peaked near the nuclear surface, the
contribution from absorption into the compound nucleus
for a given partial wave will be enhanced if 'lV, (r;E) is
centered near an antinode of the radial wave function;

and, in contrast, the contribution will be attenuated if
'N, (r;E) is centered near a node and is narrow relative to
the separation of the nodes. The enhancement or at-
tenuation can exhibit a shell effect because the scattering
wave functions associated with the orbitals of adjacent
major shells are roughly n/2 out of phase at the nuclear
surface.

The importance of the position of 'N, (r;E) relative to
the nodes and antinodes was recognized long ago in rela-
tion to neutron scattering for low neutron energies, E & 1

MeV. In that region the transmission factors can be mea-
sured individually for s-wave and p-wave neutrons. The
resulting s- and p-wave "size resonances, " which appear
in plots of strength functions versus A, are interpreted in
terms of the overlap integral in Eq. (1.1). Moldauer con-
cluded that, in a mass region where the strength function
is near its maximum, the imaginary surface potential is
centered near an antinode; whereas, in a mass region
where the strength function has it minimum, the imagi-
nary potential is centered near a node. To account for
the fact that the minima are quite deep, Moldauer intro-
duced a model with a very narrow surface term in order
to adequately attenuate the overlap integral of Eq. (1.1).
A recent survey of global models showed that
Moldauer's model continues to be better than others for
E &1 MeV.

As the neutron energy increases, the positions of the
nodes move inward. The relative reduction of absorption
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for a given partial wave, either s wave or p wave, persists
if the center of "W,(r;E) tracks inward with the node.
Furthermore, other partial waves that are associated with
the same major shell will have attenuated effects because
the surface radial nodes are clustered in the same radial
region for orbitals within a major shell. This
phenomenon could also be described by a model in which
the radial position of 'lV, (r;E) remains fixed while the
depth is allowed to be different for partial waves corre-
sponding to different shells. The two depths might be
equal at some energy where the surface nodes for one
shell are clustered near the peak in 'N, (r;E); if so, the
depth for that shell would have to decrease at other ener-
gies to compensate for the movement of the clustered
nodes away from %V, (r;E).

Our purpose is threefold. We first show that the
empirically derived energy dependences in the radius of
the surface imaginary potentials for n+ Y and for
n+ Pb track the nodes for partial waves which have
the same I and j as do the unoccupied bound single-
particle states. Secondly, we demonstrate, using n + Y
as an example, that an equivalent phenomenological
description of the data can be achieved using a constant
radius for 'lV, (r;E) but an ij dependence such that
'lV, (r;E) has one depth for partial waves having the same
l and j as for the unoccupied bound states and a different
depth for the other partial waves. Finally, in the case of
n + Pb, we refer to a recent study by Johnson, Horen,
and Mahaux (henceforth JHM) in which the dispersion-
relation constraint (DR) was invoked to develop a mean
field for n+ Pb for a very broad energy region from
—20 to 165 MeV. In that study it was found that the
description of the scattering data' for energies of a few
MeV can be improved if the depth of 'N, (r;E) is given a
modified shell dependence in which the partial waves
with lj associated with single-particle states that are
quasibound by the centrifugal barrier are grouped along
with those associated with the bound single-particle
states. This modified state dependence is not equiva1ent
to an energy-dependent radius because the nodes for the
partial waves associated with the quasibound states do
not cluster with those associated with the bound single-
particle states. We review this modified shell dependence
and find that it not only gives a good description of the
data but also is more nearly consistent with the DR con-
straint than are various other models.

In Sec. II we define notations to be used throughout
the paper. In Sec. III we discuss the case of n+ Y. In
Sec. IV we discuss the empirical energy-dependent
geometry for n+ Pb, and in Sec. V we discuss the
empirical state dependence for that nucleus. Section VI
is our conclusion.

II. THE NOTATIONS "B"AND "U"

The nuclei Y and Pb have closed neutron shells
and have similar structures for the bound states of the
next unoccupied major shell. The nucleus Y has 50
neutrons; the even parity states of the next major shell
are 3sl/Q 2d3/p 2d5/Q and 1g7/p and the only odd parity
state is 1h»/z. The Pb has the next two major shells

III. MODEL FOR n+ Y

Lawson et al. analyzed the experimental scattering
distributions for 1.5- to 10-MeV neutrons on Y using a
conventional optical model consisting of a central real
component of Woods-Saxon shape, a spin-orbit term of
the Thomas form, and an imaginary component of the
Woods-Saxon derivative shape. (We do not discuss their
other model, which had a real surface dispersive term. )

We are interested particularly in their surface imaginary
term, which has the Woods-Saxon derivative shape,

lV, (r;E)= 4a, (E)W, (E—)d Idrf [X,(E)],
where

(3.1)

f [X,(E)]= I 1+exp[X,(E)]I

X,(E)=[r R, (E)]la, (E—),
(3.2a)

(3.2b)

(3.2c)

The analysis for 5- to 10-MeV neutrons gave the follow-
ing energy dependences in fermis:

r, (E)= 1.5336—0.0255E,

a, (E)=0.1661+0.0284E,

(3.3)

(3.4)

where the neutron energy E is in MeV. The volume in-
tegral per nucleon was found to be independent of ener-
gy'

J@ /3 = —66.47+1.29 MeVfm (3.5)

The curves in Fig. 1 represent radial wave functions,
uIJ(r), calculated at E =5 MeV from the real part of the
potential and normalized to unit amplitude at large radii
for partial waves l =0 to 5. The U and 8 scattering wave
functions are represented in Figs. 1(a) and 1(b), respec-
tively. The dashed curves represent the shape of the sur-
face imaginary potential 'N, (r;E) from (3.1). We see
that nodes for the 8 partial waves cluster near R„
whereas antinodes for the other partial waves are near R, .

filled to give 126 neutrons; hence, the structure of the
next major unoccupied shell is similar to that for Y, ex-

cept for the increase of one unit in principal quantum
number. The even parity states for Pb are 4s, /z, 3d3/p,
3dsn, 2g9/2 2g 7/2, and li»/z, the only odd parity state is

1jI5/2 ~

In Secs. III and IV, we use the notation "B"to desig-
nate neutron wave functions which have the same quan-
tum numbers I and j as for bound single-particle states of
the next unoccupied major shell. These are scattering
waue functions; in no case do we discuss bound stat-e waue

functions In S. ec. V we expand the definition of 8 to in-

clude partial waves for which l and j are the same as for
single-particle states that are quasibound by the centrifu-
gal barrier. These scattering wave functions are not the
wave functions of the quasibound states, except in the
special case where the neutron energy coincides with the
energy of the quasibound state. In all sections the letter
"U" will designate the remaining partial waves, which
have Ij associated with "unbound" states.
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IU. THE n+ Pb MEAN FIELD

The optical model analyses of Refs. 1 and 2 showed
that the shape of the surface imaginary component of a
conventional local optica1 model potential is energy
dependent in the case of neutron scattering from Pb.
More recently those experimental data for Pb were in-
corporated into a broad study by JHM (Ref. 8) which led
to a unified description of the neutron- Pb mean field
for energies from —20 to + 165 MeV. This unified
description was achieved by imposing the DR con-
straint, which connects the real and imaginary parts of
the field. The imaginary field is the sum of surface and
volume terms, but the volume term is negligible for
scattering below 10 MeV, which is the region of particu-
lar interest here. The dispersive contribution b, V, (r;E)
to the real potential from the surface term is given by

BV,(r;E)=m ' J dE"N, (r;E')i(E' E) . —(4.1)

where the principal value integral is to be calculated.
A difficulty with the integral in Eq. (4.1) is that it can

be evaluated in algebraic form for only a limited set of
functional forms for %', (r;E). In particular, an energy
dependence in the radial shape of 'lV, (r;E) would not
yield a Woods-Saxon derivative shape for b, V, (r;E).
The study by JHM (Ref. 8) was done primarily with the
approximation that all of the potential shapes are in-

dependent of energy. With that assumption, the DR in-
volves only the well depths of the potentials. In particu-
lar, the surface potentials, b, V, (r;E) and %', (r;E), have
the same shape and the DR reduces to an equation for
the well depths,

similarities between the two nuclides in regard to the po-
sition of the surface potential relative to the nodes of the
radial wave functions. The solid curves in Fig. 4
represent radia1 wave functions calculated at 10 MeV
from the real part of the potential that was developed by
JHM (Ref. 8) in connection with Eqs. (4.5) and (4.6). The
B and U scattering wave functions are presented in Figs.
4(a) and 4(b), respectively. [The j»&2 partial wave is om-
itted from Fig. 4(a) because the contributions to the
scattering are negligible for I &6. j The dashed curves
represent the shape of %',(r;E). Here, as in Fig. 1, the
empirical imaginary potential is centered near the surface
nodes for the B wave functions. In Fig. 5 the solid curves
represent the variations in the positions of these surface
nodes for 5 & E & 10 MeV. The dashed curve represents
the empirical energy dependence for the imaginary radius
R, (E). We see here, as for Y in Fig. 2, that R, (E)
tracks the surface B nodes. We expect, therefore, that
the empirical energy dependence R, (E) could be replaced
by a shell or state dependence in the depth.

U. STATE DEPENDENCE FOR n+ 0 Pb

In Sec. VII of JHM (Ref. 8) the scattering distributions
for n+ Pb were analyzed once more for E &10 MeV
using the constant r, =1.27 fm, Eq. (4.3), but allowing
the depth of the imaginary potential to depend on the
quantum numbers of the partial waves. The partial
waves were separated into two groups; however, these
were not B and U, as suggested above, but groupings of l
values which were chosen to give the best fits to the data.

EV, (E)=sr ' J dE'R, (E') l(E' E) . —(4.2)
1.5

(~)
The surface shape parameters determined by JHM (Ref.
8) are

1.0

0.5

and

r, =1.27 fm

a, =0.58 fm .

(4.3)

(4.4)

o

-0.5 .-

-1.0

With this model a remarkable description of a large
body of data was achieved over a broad energy range
from —20 to + 165 MeV. Even so, there remained evi-
dence that the shape of the surface imaginary potential
should be allowed to vary with energy for E & 10 MeV.
In fact, in Sec. VI of JHM (Ref. 8) the shape of '1V, (r;E)
was allowed to vary, and an energy dependence was
found similar to that deduced in the original publica-
tions' of the low energy data. For the experimental re-
gion, 4 & E & 10 MeV, the dependences were described by
JHM (Ref. 8) by the equations

-1.5
2.0
1.5
1.0
0.5

o
-0.5
-1 0
-1 5

—2.0

r (fm)

r, ( E)= 1.46 —0.0189E fm,

a, (E)=0.067+0.0513E fm,

(4.5)

(4.6)

where E is in MeV.
This empirical energy dependence in the shape of

"lV, (r;E) for n+ ~ Pb is quite similar to that quoted in
Sec. III for n+ Y. Furthermore, there are striking

FIG. 4. Neutron scattering radial wave functions u&, calcu-
lated for n + Pb at 10 MeV using the real part of the optical
model potential developed in Sec. VI of Ref. 8. The curves in

(a) represent partial waves which have the same Ij as do the
bound unoccupied single-particle states in Pb; the curves in

(b) represent the other partial waves. The dashed curves
represent the surface imaginary potential, with arbitrary nor-
malization.
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In fact, the resulting empirical grouping yields better fits
than obtained by the model of Sec. IV with its energy-
dependent radius. This new model has the partial waves
for I = 1, 3, and 6 in one group, designated "b" by JHM,
and all other I values in a second group, designated "c."
This c and b grouping would be transformed to the B and
U groupings, respectively, if i»/2 were moved from b to c
and h9/2 h»/p j»/2, and I & 7 were all moved from c to
b. However, this transformation would cause the quality
of fits to deteriorate such that the transformed model
would be no better than the one with the energy-
dependent radius. The deterioration does not result from
moving the i»/2, j&s/2, and I & 7 partial waves from one
group to the other; those transfers have negligible eA'ects

on the predicted scattering distributions. It is the
transfer of the I =5 partial waves which worsens the
quality of fits. A primary purpose of the present section
is to gain a better understanding of the special role of the
partial waves with I =5.

For our version of the optimum" model we transfer
only the partial waves which do not disturb the quality of
fits. Thus the definition of B is now expanded from that
used in Secs. III and IV; it includes not only the s, /2,

3/2, ds/2 g7/2 g9/2 i»/2, and j&s/2 partial waves, i.e.,
those with the same Ij as for the unoccupied single-
particle bound states, but also the odd parity h9/2 and

h»/2 partial waves. From the viewpoint of a strict neu-
tron shell dependence, the h9/2 and h»/2 partial waves
are intruders into the B group. In Fig. 4 the h9/2 and

h»/2 wave functions are included in the lower figure
rather than the upper figure; they have antinodes rather
than nodes near the nuclear surface. On the other hand,
h waves are kindred to the bound particle orbits because
the h-wave single-particle states are quasibound, as we
now show.

In Fig. 6(a) the solid curves represent the angle-
integrated cross section for I =5 calculated from the
model, and, the dashed curves represent the correspond-
ing h9/Q and h»&2 components. In Fig. 6(b) the curves
represent the cross sections predicted from only the real
part (W, =O) of the potential. The latter curves show

FIG. 6. Angle-integrated cross sections for the n + ' 'Pb par-
tial waves with l =5. The short-dashed and long-dashed curves
represent cross sections for h, ~/2 and h9/2 partial waves, respec-
tively, and the solid curves represent the total for h waves or
I =5. The curves in Fig. 6(a) are ca1culated for the "optimum"
model described in Sec. V and the curves in Fig. 6(b) are calcu-
lated from the real part of that model.

that, in the absence of the spreading due to %', (r;E), the

h»/2 and h9/f cross sections exhibit well defined reso-
nances at energies where the scattering phase shifts pass
through m/2. The peak cross sections are 4m.g /k,
where g. is the statistical factor; the energies of the peaks
are 2.9 MeV for h»/2 and 4.75 MeV for h9/2 These res-
onances occur because the 2h9/2 and 2h»/2 states are
quasibound by the centrifugal barrier. In Fig. 7 the
curves represent the total real potentials found by sum-
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FIG. 7. Total real potentials and quasibound states for h-

wave neutrons on 'Pb. The solid and dashed curves represent
sums of the dispersive, spin-orbit, centrifugal, and real central
components for the "optimum" potentia1 discussed in Sec. V,
and the solid and dashed horizontal lines drawn within these
potentials represent the energies of the h„/2 and h9/2 reso-
nances shown in Fig. 6. The potentials are calculated at the
neutron energies of the resonances.
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ming the centrifugal, spin-orbit, dispersive, and central
Woods-Saxon components of the model. The dashed
curve is calculated at the 2h»/2 resonance energy using
the spin-orbit potential for h&&/2, and the solid curve is

calculated at the 2h9/p resonance energy using the spin-
orbit term for h9/p The corresponding solid and dashed
horizontal lines represent the energies of the 2h9/p and
2A

~ & /2 resonances. The 2h
& ~ /2 state is relatively tightly

bound so that the resonance width in Fig. 6(b) is narrow,
whereas the 2h9&z state is just below the centrifugal bar-
rier such that its width is large and its position is not so
well defined.

We study the roles of the various partial waves by
making a series of least-squares searches on the
data' ' ' for 4 & E ~ 14 MeV, using various perturba-
tions of the orbital groupings of our optimum model.
Obviously we cannot consider all possible perturbations
and so we consider only those for which the 8 partial
waves, as originally defined in Sec. II, are kept together in
the same group. The spin-orbit and volume potential pa-
rameters are held constant at the values of the "fixed
geometry" model described in Secs. II and III of JHM.
The spin-orbit parameters are given in Eq. (2.2) of JHM,
the shape parameters for the central Woods-Saxon poten-
tial are given in Eqs. (3.1) and (3.3) of JHM, and the cen-
tral depths are represented by the solid curves in Fig. 2 of
JHM.

There are now two surface DR equations correspond-
ing to groupsBand U:

EV,&(r;E)=m ' f dE'lg, &(r;E')/(E' E), (5—.1)

AV, U(r;E)=m ' f dE"N, U(. r;E')/(E' E) . —(5.2)

We assume that the two imaginary potentials have the
same derivative Woods-Saxon shape:

%',&(r;E)= —4a, (E)W,&(E)d/drf [X,(E)], (5.3)

'N, U(r;E)= —4a, (E)W, U(E)d/drf [X,(E)], (5.4)

ad(E) =a, (E)=0.58 fm for E p 10 MeV, (5.7b}

and later in this section we return to the fact that, for en-

ergies near 10 MeV, these equations are inconsistent with
the large empirical values which give the minimum 7 /X.

The DR constraint is not imposed during the searches
on the parameters of the imaginary potential because the
energy dependences of "W,s(r;E) and "lV,U(r;E) are re-

quired prior to evaluating the dispersion integrals. The
procedure is to adjust the well depths 8',z, 8',U, Av, z,
and 5 V, U for both imaginary and dispersive components
and, after determining optimum values, to check for con-
sistency with the DR constraints.

Searches are made for the "optimum" model and three
perturbations.

M. The "optimum" model for which 8 includes partial
waves associated with the bound orbits and with the
quasibound h orbits. All other partial waves are in U.

P1. The same as M except h9/2 is moved from 8 to U.
P2. The same as M except that both h»/2 and h9/2 are

moved from 8 to U.
P3. Only the h&, /2 and h9/2 partial waves are in B.

All others are in U.

We compare the results of the least-squares searches on
the basis of three criteria: (i) the quality of fits as indicat-
ed by the least-squares 7 /X for the scattering distribu-
tions' ' ' from 4 to 14 MeV, (ii) the relative values of
the fitted imaginary well depths, and (iii) the consistency
of the fitted real surface depths with the DR constraint.

In Fig. 8 the four symbols represent the values of
X /N, where N is the number of data points for a scatter-
ing distribution at a given energy. Lines are drawn to

siderable variation; for energies from 4 to 7 MeV the
values are about 0.4 fm, but for 9, 10, and 11 MeV they
are very large, 3 to 4 fm with large uncertainties. We use
the following approximation:

ad(E) =0.34+0.024E fm for 4 & E & 10 MeV, (5.7a)

where the radius is constant, r, =1.27 fm.
Since r, is assumed to be constant, the dispersive terms

on the left-hand sides of Eqs. (5.1) and (5.2) remain sym-
metric about the same radius as for the imaginary poten-
tial; however, these terms cannot be represented by
derivative Woods-Saxon shapes if the diff'useness a, (E) is
energy dependent. In some cases the deviation from the
derivative shape can be significant. ' We assume, never-
theless, that the effect of the dispersive term can be ap-
proximated using a derivative Woods-Saxon shape with
the same diffuseness, ad(E) for both groups;

CV

X

20

10

b V,&(r;E)= 4ad(E)b, Vs(E)d —/drf [Xd(E)],
b V,U(r;E) = 4ad(E)b V U(E)d/drf —[X.d(E)] .

(5.5)

(5.6)

We believe that this approximation is a good basis for in-
tercomparison of the various perturbations of the model.
The diff'useness functions ad(E} and a, (E) were deduced
by including ad and a, as variables in six-parameter
searches. The resulting values of a, are well described by
Eq. (4.6). However, the resulting values of ad show con-

30
E (MeV)

15

FIG. 8. Best fit values of X'/N obtained from least-squares
searches on the n+ Pb scattering distributions for the model
M and the perturbations P1, P2, and P3 discussed in Sec. V.
The symbols are crosses for model M, triangles for P1, circles
for P2, and X's for P3.



2346 D R R. WINTERSC. H.H JOHNSON AN

I I I I II I ~
-60 ~i~i~I''

+—
~

37

re forh set. crosses ats within eac
f this model is

connec " timum" desig
t the poin s

nation or
all or much

Qur op
2/Q are as sma

mode &

h f ct that the X
V than for the

rtedby t e ac
at 9 MeV,

support y
or all energie,

ations. ethe three perturbahes on any of t e
ation P1, for w ic,.;...„d .U'

sent the 7
These 7 a

l. %'e note that
h partial wave is m

eV than for the opbelow 9 Me
es are very

d 5
the increases

quasiboun
re for perturbation. The circles are

from 8 to
MeV.

artial wave is
ies below 6.5 eg'er increase in

2h 2 state is q

be
t re returned

ts in Secs. III
and h9/2 t reor its are

e ar uments inare included in
ial waves whic act that those partial

ould be kept
tdb7 /X which are rep

mbol ")&" in ig.sym 0 ig.

ad'usted imaginary
p

1 M'nd F
d P3, vel .bations P1, P2, an12 are for the pertur a ion

I I I II I I I
I

I ~ I I II I I l
i

t I I

(o)
rs

X
~~ —20—

r 0
oo

I I I I I I I I I I II III I I I I I

I I I I I40
I I t I I I I I' I

-20

X

0

oo

o

I iI i i i i I I I I I

10
20

0 5-5
E (MeV)

solid symbols represent, re
8 d U defi dbsp

ll
'be the aver-

P' '

dU, i j.e endences orage energy dep

1 ' I I II l I I l
I I I I 1 ~I I I

(o)

d for the surfacearticle founl e integrals per p
Pb scattering

. 10. Volume in

s on the n+
r erturbationd' tributions for pis r

the same as in Fig.

-20E

0

0
CI

I I I I I I I II I I
-I

I I I I I

~ -20—

0
-4,0

E -20)

~ e
6er 6'6

6
6

Lrl I I I I I I I I I I II I I I I I I

I I I
I

I I I II I I I
I

I I I I to6 I
I

I I I

o

I I I I I I I I II I I I I I I I I I

10 15
20

0 5-5
E (MeV)

d for the surfacer article foun o. 9. Volume inintegrals per p
on the n+ ' 'Pb scatteringres searches on

d solid sym-

potentials by q

p "B"fartial wave gthe values or p
lines for 8 an

bols represent the
anel the dashed line

. The
In the upper pane

Fi . 22 of Ref. 8. el

rsive volume integra s, a sispe

0
6

I I I l I I II I II I I I II ) I I I I

10
20

0 5-5
E (MeV)

15

d for the surfacee integrals per p article foun or
Pb scattering

. 11. Volume in
s on the n+po en ti lsby a -q

erturbation odistributions for per ur
the same as in 'g.Fi . 9.



37 EVIDENCE FOR STATE DEPENDENCE OF THE IMAGINARY . . ~ 2347

1 1 1 1 ) l 1 1 1
)

111 I 111
0

Ev- —4P
O

~~ -zp

qO

0
r&

E -20

0
CI

I 1 I 1 I I I I I I I

I 1 I 1 t l 1 I 1
1

1111 1 11

aX0
Q

These curves are reproduced in Figs. 10(a), ll(a), and
12(a).

In Fig. 9(a) for the optimum model, the symbols for
groups B and U are well described by the corresponding
empirical curves. The significant fact is that, in the ener-

gy region from 4 to 10 MeV, the least-squares adjusted
depths for the surface imaginary potential are smaller for
B than for U. This is a statement regarding averages be-
cause each group includes several partial waves; more de-
tailed information is obtained by studying the three per-
turbations. In Fig. 10(a), for which the h9&z partial wave
is moved to U, the depths are seen to be decreased on the
average for that group. A reasonable conclusion is that
depth is relatively small for h9&2. In Fig. 1 1(a), for which
the h»/2 partial wave is also moved to U, the depths are
further reduced for U. The conclusion is that the depth
is also smaller for h»&2. In Fig. 12(a) for P3 the average
depth for U is again smaller than for the optimum model.
For this perturbation only the h waves are contained in
B. In other words, the partial waves with the same lj as
for the unoccupied bound states are now included in U;
the fact that the resulting depths are decreased for the
perturbed U leads to the conclusion that the depths are
smaller, on the average, for partial waves that are associ-
ated with the bound states.

This last observation was expected from the discussion
of radial nodes in Secs. III and IV. In Fig. 5, for which
the imaginary potential was assumed to be independent
of 1 and j, the empirical radius of %', (r;E) was found to
track the clustered nodes of the partial waves associated
with the bound states. In the present case, since the ra-
dius is held fixed, the imaginary volume integral must be
reduced for those partial waves to maintain small absorp-
tion. However, this argument does not apply for the h9/2

00

~o I I I I I I I I I I I I I I I I I I I A

-5 0 5 10
F (Mev)

FIG. 12. Volume integrals per particle found for the surface
potentials by least-squares searches on the n+ ' Pb scattering
distributions for perturbation P3 of Sec. V. The notations are
the same as in Fig. 9.

and h»/2 partial waves because these are associated with

quasibound states and do not have nodes near the center
of%, (r;E). Thus it becomes clear why the good fits ob-
tained with the "optimum" model were not achieved by
the model with an energy-dependent imaginary radius
but without any Ij dependences in the depth.

Finally, we examine the least-squares adjusted values of
AV, for consistency with the DR constraints. The DR
equations for the volume integrals are

bJ~ (E)=n. ' f dE'J~ (E')/(E' E)—, (5.8)

bJ~ (E)=n 'f dE'J~ (E')l(E' E).—(5.9)

The curves in the lower panels of Figs. 9—12 were calcu-
lated by JHM (Ref. 8) under the assumption that the
linear segments for the upper panels extrapolate linear to
zero and are symmetric about the Fermi energy of —6
MeV. Our discussion is based on the fact that, if the
parametric form of'N, (r;E) is poorly chosen, the param-
eters for EV, (r;E) will be erroneously adjusted to com-
pensate for the poor parametrization and will not be con-
sistent with the DR constraint. This logic requires that
the parameters for the other real and imaginary com-
ponents be well chosen. We believe they are; the volume
imaginary component is small at these energies, the
volume real component includes the DR constraint and
provides a good description of data from —20 to 165
MeV, and the spin-orbit component yields good descrip-
tions of observed spin-orbit effects at both positive and
negative energies.

We first examine our optimum model by reference to
Fig. 9(b). For E &9 MeV the fitted dispersive terms
agree well with the DR constraints. The good agreement
in that energy region is important for our conclusions re-
garding the h, l/z and h9/2 partial waves because that is
the energy region of the 2h9/2 and 2h»/2 quasibound
states. For perturbation Pl, Fig. 10(b), the h9&2 partial
wave is omitted from B. We see that the least-squares ad-

justed J&& /A for B are now inconsistent with the DR
constraint for 5.5 to 7 MeV. In Fig. 11(b) the symbols
represent the fitted values for P2, for which both A»/2
and h9/2 are removed from group B. The disagreement
now has a different character; the least-squares adjusted
values of J&& /A are erratic for energies from 4 to 7 MeV.

In Fig. 12(b), for which only h„&2 and h9/p remain in

group B, the degree of consistency with the DR con-
straint for group B is better than for Pl or P2, but still
not as good as for the optimum model M. This relative

improvement achieved by returning h»/2 and h9/2 to
group B suggests that the real dispersive term is more
crucial for locating the nearby quasibound 2hl&/2 and

2h9" states (see Figs. 6 and 7) than it is for the more dis-

tant bound states. . In summary, the best consistency with
the DR constraint for the energy region near the 2h9/2
and 2h„/2 quasibound states is achieved for the model
which has a separate, relatively weak, imaginary poten-
tial for partial waves associated with both quasibound
and bound single-particle states.

In the energy region from 9 to 14 MeV the least-
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squares adjusted dispersive terms for group B for both
the model and the three perturbations are in poor agree-
ment with the DR constraint. A possible explanation is
obtained by examining the original searches by JHM. In
Fig. 22(b) of JHM, which is similar to our Fig. 9(b), there
is good agreement with the DR constraint. However,
those were six-parameter searches in which the dispersive
diffuseness parameter ad was varied. For energies near
10 MeV the fitted ad were very large, about 3 fm, whereas
we have set a maximum value of 0.58 fm. A reasonable
conclusion is that our approximation of a derivative
Woods-Saxon shape with ad ——0.58 fm for V, (r;E) is a
poor approximation for energies near 10 MeV.

Further empirical evidence supporting the "optimum"
model comes from the volume components of the poten-
tial. One can expect that a poorly chosen parametriza-
tion of %', (r;E) would also be reflected in the least-
squares adjusted depth of the real volume component if
that depth, V, were also varied in the search. The DR
constraint for the volume component predicts a plateau
in V, near 10 MeV as a consequence of an inflection in
the energy dependence in the imaginary volume depth.
In JHM (Ref. 8) the depth V„was varied in searches with
three models, namely, a "fixed-geometry" model, an
"energy-dependent —surface-geometry" model, and the
"angular-momentum-dependent" model. The least-
squares adjusted V, for the first two models showed rela-
tively poor agreement with the plateau, but the V, for the
last model, which is the forerunner of the present model,
showed good agreement. [See Figs. 2(b), 16, and 20 of
Ref. 8.]

VI. CONCLUSIONS

For neutron energies of a few MeV, energy depen-
dences have been reported' ' for the radius and
diffuseness of the surface imaginary component of the op-
tical model potential for n+ Y and n+ Pb. We
point out that the empirical dependences for the radius
are essentially the same as the dependences on energy of
the positions of the surface radial nodes of partial waves
that have the same I and j as do the bound unoccupied
single-particle states. In other words, the imaginary po-
tential "tracks" those nodes. This implies that essentially
equivalent models can be developed by use of a constant
imaginary radius, providing that those partial waves
which have the same lj as the bound states have a
different imaginary depth than do other partial waves.
This equivalence is demonstrated in Sec. III using the
specific example of 5-MeV neutrons on Y.

For the case of n + Pb, Johnson, Horen, and
Mahaux improved the fits to the data for E & 10 MeV by
a model which has a constant imaginary radius and a
particular angular momentum dependence in the depth of
the potential. Their discussion was empirical with no
reference to the bound unoccupied single-particle states.

We have studied their model further by making a se-

quence of comparisons with perturbations of the model
for which we examine the quality of fits to the data, the
variations in the imaginary potentials, and the consisten-
cy of the least-squares adjusted surface real depths with
the dispersion relation constraint. We find that an essen-
tial character of their model is that the partial waves
having the same Ij as do the 2h»/z and 2h9/p states,
which are quasibound by the centrifugal barrier, are
grouped together with partial waves having the same Ij as
do the bound unoccupied single-particle states. For
E & 10 MeV, the depth of the imaginary potential for the
partial waves in this "bound and quasibound" group are
smaller than for other partial waves.

The partial waves having the same lj as the bound and
quasibound orbitals consist of the s, d, g, h, i»/z, and

j»/z partial waves. Actually, the data do not contain
enough information to establish with certainty that every
one of the partial waves associated with the unoccupied
bound states must be included in this group. In particu-
lar, the s-wave component contributes relatively little to
the scattering cross section and there is some evidence '
from low-energy s-wave scattering that it should not be
included in the group. A conservative conclusion is that
for neutron energies from 4 to 10 MeV the partial waves
for l =2, 4, and 5 have smaller imaginary potentials than
do the partial waves with I = 1 and 3.

This model cannot be replaced by one which has an
energy-dependent radius but does not have an lj depen-
dence, because the radial nodes of the scattering waves
having the same Ij as do the bound states are not
clustered about the same radius as are the nodes associat-
ed with the quasibound states. Also, since the bound and
quasibound states are of opposite parity (except for the
bound j&&&z state), a model which groups the partial
waves according to parity will not give as good a descrip-
tion of the scattering data.

The grouping together of partial waves corresponding
to the bound and quasibound states is a simple concept.
However, it is an unexpected result. Our study gives
compelling evidence that the quasibound 2h» /p and

2h9/p states are important for neutron scattering from
Pb for E &10 MeV. It is reasonable to expect quasi-

bound states to have a significant influence on 1ow energy
nucleon scattering from other nuclei.
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