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A microscopic study of the 'H{d,y) He reaction with deuteron and He bound state wave func-

tions which include the D-state components is presented. Cross section and tensor analyzing

powers are calculated for deuteron energies between 1 and 15 MeV. Deuteron D-state effects are
found to be particularly important in the transition amplitude arising from the S2 scattering state.
A detailed comparison between cluster and microscopic calculations is presented. Using an

effective two-body model the analysis of A» data, in the energy range 1 & Ed & 15 MeV, gives for
the asymptotic D/S state ratio in He the value p= —0. 18.

I. INTRODUCTION

In the last few years there has been an increased in-
terest in the experimental and theoretical study of the
H(d, y) He reaction. Measurements of cross section and

polarization observables have been carried out for deute-
ron energies ranging from 50 keV to 95 MeV. ' At very
low energies the radiative fusion of two deuterons is a
process that may be of significant importance in astro-
physics, since it may have an effect on the predicted
abundances of the very light elements in the Universe.
Detailed knowledge of this reaction is also significant in
view of the possible applications in fusion research. The
H(d, y) He reaction can also be used as a tool to study

the structure of the He, particularly its D-state com-
ponent which is generated by the tensor force term of the
N-N interaction.

An important aspect of the mechanism of this capture
reaction is that the identity of the two deuterons in the
entrance channel restricts the scattering states '+'lJ to
those where I and s have the same parity. For elec-
tromagnetic multipoles with L & 2 the allowed transitions
are (El; P&), (Ml; D&), (E2 D2), (E2; S2), (E2; D2),
(E2; G2), (M2; Pz), and (M2; Fz). Considerations
based on isospin conservation indicate that the E2 cap-
ture is expected to be dominant. Assuming a direct cap-
ture model for the reaction, we have shown that both the
tensor analyzing powers (TAP), and the cross section
o (8) at very low energies are sensitive to the a-particle D
state. In this cluster approximation, characterized by a
point deuteron model for the electromagnetic operator,
the structure of the deuterons and of the He come into
the transition amplitudes only through the overlap

(Pd "Pd"
~ P ), which contains both S and D-state com-

ponents in r, the separation coordinate of the two deute-
rons in He. Since the E2 operator is proportional to r,
the calculated amplitudes probe the asymptotic region of
the wave functions. A strong sensitivity to p —the D/S
state ratio in the d + d configuration of He —was conse-

quently observed in the TAP for 2 MeV (Ed ( 15 MeV,
and in the cross section for Ed &2 MeV. It was then
suggested that the reaction could be used in an empirical
way of determining p through measurements of cr(8), or
through rneasurernents of Ayy The latter observable is
preferred since it is the TAP which is less dependent on
the initial state interactions. However, the analysis of
o (8) and A~~ data suggests different values for p, —0.2,
and —0.1, respectively. This discrepancy can be inter-
preted as an indication that the reaction mechanism is
more complicated than the simple direct radiative cap-
ture model that was initially proposed. It should be em-
phasized that the values of the He D-state probability,
PD, inferred from the comparison between theoretical
calculations and experimental data is more model depen-
dent than p, since the capture reaction at low energy is
very sensitive to the asymptotic region of the bound state
wave function.

In recent theoretical and experimental' work, mul-
tipoles other than E2 were considered. The effect of the
inclusion of E1, M1, and M2 was studied in the analyzing
powers. Clear evidence was found for the admixture of
an odd parity multipole, either El (where the contribu-
tion arises from the spin dependent part of the operator)
or M2. Nevertheless, it remains unclear which mul-

tipoles account for the data. While the E1 and M2 tran-
sitions are crucially important to explain the A data, it
was shown that they have only minor effects in the cross
section and in the tensor analyzing powers. This is a
consequence of angular momentum selection rules and
can be understood as follows: (i) No spin tensors of rank
one can be constructed from the interference of the dom-
inant E2 amplitude —(E2;'D2)—and the remaining E2
amplitudes (E2; Sz), (E2 D2), and (E2 G2). There-
fore, the normally most important interference terms do
not contribute to A . (ii) No spin tensors of rank zero or
two can arise from the interference of E1 or M2 with the
dominant E2 transition —(E2; 'D2 ). Thus, these interfer-
ence terms do not contribute to either the cross section or
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the TAP. The E1 and M2 multipoles can also play an im-
portant role whenever the (E2 Dz ) contribution be-
comes very small. This occurs for instance in the angular
distribution of a11 the observables in the region close to
0=~/2.

Our main objective in the present paper is to analyze
the H(d, y ) He reaction from a microscopic point of view
using He and deuteron bound state wave functions
which include both the S- and D-state components. We
will restrict our study to the contribution of the E2 mul-
tipole to the cross section and TAP.

In Sec. II we describe the full microscopic E2 operator
and its matrix elements. Section III deals with an analyt-
ical method used to calculate the E2 matrix elements be-
tween states expanded in an harmonic oscillator basis.

i 4m.

(6)

TLM(0) =aL(0)e g 2L +1 e r YLM(r ), (7)

where ej= —,'[1+T,(j)] and Vj- and P are gradient and

linear momentum operators for nucleon j, pN is the nu-
cleon magneton, and T, (j ) is the z component of the iso-
spin operator related to the jth particle. The spin depen-
dent part of TLM(0), QLM, is known to be negligible in

this long wave length limit" and therefore we only con-
sider the dominant part QLM which can be simplified to

' 1/2

II. FORMALISM

In erst order perturbation theory the interaction Ham-
iltonian for the emission of a photon with momentum k
and polarization c„ is given in the notation of Rose and
Brink" by the expression

H, (k, a„)= —g n "TLM(n. )DM„(R)',
LMn

where ~=0 and 1 correspond to electric and magnetic
operators, respectively, R is a rotation taking the z axis
into the direction of k. We use the Madison convention
coordinate system where the z axis is along the momen-
tum p of the incident particle and the y axis is along
p Xk. The TLM(m ) are multipole operators of rank L and
are given by sums over all nucleons of one body operators
QLM, QLM, MLM, MLM defined in Ref. 11. We have

where e is the elementary charge. Meson exchange
currents are taken into account for the electric transitions
within the LWA (Siegert's theorem).

We use a system of Jacobian coordinates de6ned by

r» ——(r, —r3)/&2,

rz4
——(rz —r4) /3/2,

r = [(r1+r3) —(rz+ r4) ]/2,
where 1,2 and 3,4 stand for pairs of identical particles.
Since only the isoscalar part of the multipole operator
contributes, for the E2 transition Eq. (7) can be written in
a convenient notation as

T2M(0) =E!2M+E!2M +EjM

where

TLM(o) =aL (o) X [QLM(rj )+QLM(r, )]
J

(2)

E[M =az(0)e
5

1/2

—,'& Y2M(r),

TIM(1) =aL(1)g [MLM(r, )+MLM(r, )],
J ' 1/2

(ik)
(2L —1)!!

where r~ is the position of the jth nucleon relative to the
center of mass (c.m. ) of the system and

' 1/2
L+1

(&)
2L

E[M =a,(O)e
5

EPM'=az(0)e
5

—,
' r13 Y2M(r13),

1/2

—,'r24 Y2M(r24) .

(10)

aL(1)= iaL(0) —. (5)

In the long wavelength approximation (LWA), we have
Neglecting' the coupling between channels with different
I and s the scattering state is given by

(r13I24r I

'+'lJ ) =A g (lmso
I JMJ )[pd(r, 3)fd(rz4)]' 1(„(r), (1 la)

-with

[{(d(r13)4'd(r24)] X ( la131a24 I
sa )4d "(r13)4'd (r24) (1 lb)

where pd "(r,") are the deuteron wave functions. The ra-

dial wave functions g&, (r), which describe the relative
motion of the two deuterons, were generated as in Ref. 1

assuming a two body scattering determined by separable
potentials constrained to give the energy dependence of

the phase shifts obtained by Chwieroth, Tang, and
Thompson using the resonating group method. ' This
effective two-body model does not include the coupling to
other partitions of the four-body system, and therefore
does not satisfy the four-body unitarity. Coulomb effects
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were estimated as in Ref. 1 using an energy dependent
Coulomb transmission factor. Since the distortion is very
weak in the 62 channel, we describe the t/i4z(r) wave
function by a simple Coulomb function with /=4. In Eq.
(11)A is the full antisymmetrization operator.

In order to study the sensitivity of the matrix elements
to the description of the bound state using different wave
functions, we carried out three microscopic calculations
where the deuterons and alpha particles were represented
difFerently. In calculation (1) we used for the deuterons
harmonic oscillator functions for the S and D states,
which reproduce the rms radius of 1.96 fm, and with a
D-state probability that was varied between 4 and 7%.
For the alpha particle S state we also used a Gaussian
wave function fitted to the rms radius of 1.42 fm. The al-
pha particle D state

I g, ) was generated in a perturba-
tive way from the S state

I P) and is given as'4

I 1! &=N(i+a")(vP')+ vP'))
I
q'&

with

T2+ II's2 & =»+»+»

» = &'Doll&V'll's2 &

&15
U2 (r)Poz(r)r dr,

80m

a2=('D lie[")+zp') ll's )

»=&'s, llEj"'+Ep') ll's, &

=(2)' fHo (r)$02(r)r dr,

C =(0IIT2+ II D2) =Cl+C2,

=N f [—,'Fo (r)+ —,'Go (r)]go&(r)r dr,
V20~

(14a)

(14b)

(14c)

(14d)

(isa)

a =&ollT,'ll'D, &=&'s, IIEET'll'D &

v'15
Uo (r)$2p(r)r dr,

16~
(13)

where P ' is the exchange operator. To describe V~'J~,

the tensor interaction between nucleons i and j, we used
the tensor part of one-pion exchange (OPE} interaction
with the cutoff of Ref. 15 which corresponds to a mNN
form factor. The normalization N was fixed under the
condition that the overlap function gives the same He
Dz parameter as Schiavilla et a!.' corresponding to the
Argonne (Dz ———0.16 fm } and Urbana (D2 ———0.24
fm ) interactions.

In calculation (2) we improved the description of the
deuterons using the wave function of Reid soft core (SC)
(Ref. 17) while keeping the same wave function for the al-
pha particle. Finally, in calculation (3), we improved the
description of the bound state of the a particle using an
exponential wave function P =N exp[ —Pg]/g, with

( r ]3 + r24 + r ). The free parameter P was deter-
mined by the condition that the overlap (Pd" Pz"

I P )
has the correct asymptotic behavior.

In all the calculations we neglect the second order
effects corresponding to the terms involving simultane-
ously the D-state components of the a particle and the
deuterons. In this framework the E2 reduced matrix ele-
ments of Eq. (7) are given by

with

cl = &'DollEt"'ll'Dz &

(2&15)
U2 (r )$2/(r )» dr,

16~&14 (lsb)

c2=&'D IIE["'+&P4)ll'D &

v'3= —N
2&14m. Gz (r)$22(r)r dr, (15c)

D = (ollT2+ II'G, ) =D i+D2, (16a)

Do IIEL"}II'Gz )

9&15=N — U2 (r)$42(r)r dr,40~&i4 (16b)

D2 ( 5D llgP3} +EP4] IISG )

=N fG4(r)$42(r)r dr .
4 35m.

(16c)

In these expressions Uo(r), U2(r), Ho(r), and Fo(r) are,
respectively, the radial part of the overlaps (17), (18), (19),
and (20)

(r[pd4~]'
I p & = g (io ~31&2gl so)-,'( —} "& Uo(r)I'00(r)

I 3 24

(r[y,y, ]-l~"(v$" +vp')
I
y'. )= g (1~»i~„ls~)g-,'( —} "( '

24I 1 —~»)U2~(r»

(17)

(18a)
~13~24 M'

with

U~M. (r)= U2(r) I'2M, (r),
1/2

& r[4Ad]" I«/M'+EpM }
I 4 & =6~ ».a Mo 2s 20

(18b)

(19)
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~ r(kdkdl" I (~[M +&(M'}(V) "+VV")
I 4& = g (1~»1~24

I
s~) g —,'fiMM ( —) "(2M'1~2411—~»}F0(r}Y~(r}

13 24

(20}

The functions Go(r), G2(r), and G4(r) are, respectively, the radial functions of the L=0, L =2, and L =4 components of
the overlap

~rlkdkd] I
t«/M'+~PA'}P "(VP"+ VV"}]I 4& = g (1~131~24 I

s~) g —,'( —} "(2M'1~24
I

1 —~»}G""(r»

(21a)

with

GMM(r)= g ( —)~(2 M'L—ML
~

2M')(20LO
~
20)Gz(r)YzM (r) .

LM~

(21b)

The overlaps that involve the exchange operator P', corresponding to Eqs. (18) and (21), were evaluated with the
help of the graphical rules of Ref. 18 and are briefiy outlined in the next section.

III. THE P ' TYPE MATRIX ELEMENTS

Let us consider Eqs. (18) that defines the function U2M. (r). Dropping the spin dependence, this overlap can be
represented geometrically by the diagram

,'iy (15)
5

g/p +(insertion of V( l} . (22)

Expanding V$J}g and pd in an harmonic oscillator basis:

13 24 )]2M'

C 'J, , $, 2M, (r J)p, ~(rk&)p, (r), (23)
C

Pl
fly 2n 3

wave function;

U2M'(r) X tt 34 32M'(r)
lf 3

where

u =u~' ~+u~
ll3 n3 83

(25)

(26}

yd(rJ ) = y d„y„(rJ ), (24}

one can apply directly the graphical rules to Eq. (22) and

get the coefficients u „ofthe spectral decomposition of"3
U2M (r} in terms of $„2M (r}, the harmonic oscillator

Figure 1 represents the general diagram involved in the
calculation of the contribution to u „arising from the"3
first term in Eq. (22) which corresponds to the VP l

operator, identified as a ' (n, n2n3, n', nzn3). In the no-

tation [n; I; m; ], n, is the radial exci.tation and I;m; the an-

f}t)d (112)
P1001 Pit[011 }it 03111 Pi'2M']

Pd ( 124)

Relet i ve
motion

Lll 2001

L0, 2+

Ln&001

[0'2007

&~a )Qc

r

FIC3. 1. Cxeneral diagramatic representation of the coefficient u„associated with the first term of Eq. (22}. The absence of the P33"3
propagator is due to the fact that the matrix element [P '

]33 is zero.
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gular excitations associated with the expansions in the
harmonic oscillator basis. The propagators (dashed lines)
also carry excitations, [n;J.l,jm,j ] only shown in the figure
for the P» propagator. Conservation of harmonic oscil-
lator energy (2n + I) and angular momenta selection rules
are assumed in each vertex, and a sum is worked out for
all the intermediate states compatible with such con-
straints. Each propagator P; - is proportional to

2n, +),"
(27)

G (r) = g (2M'LML 12—M)
n3LML

X(20LO! 20)g„L p„ l~ (r), (29)

where the Clebsh-Gordon coeScients appear due to the
presence of the EzM operator which also carries an orbit-
al angular momentum.

It should be stressed, that although the harmonic oscil-
lator basis expansions

where [P' ],J is the ij matrix element of the exchange
operator in the system of Jacobian coordinates. The u„'
coeScient is then given by and

(n;00! P'd);(n;2M! EqMPq)

u„= g u (n)nqn3, n, nqn3)C. . . d„d„l&3l [&33 []3]
"3 1&2ll3 1 2

nln2
I I I

n 1tl 2n 3

(28)

( +)2M +$00 +300! VTlj

can display a rather slow convergence, the compact
structure of P' enforces a rapidly converging series for
both Uz(r) and G(r).

The u„results from equivalent diagrams, as in Fig. 1,

corresponding to the insertion of the VP l operator,
which represents the second term of Eq. (22).

The calculation of G (r) defined in Eq. (21) is per-
formed using the same procedure with the further in-
clusion of the Eg operator in the deuteron lines. Hence,
the expansion of Egad in an harmonic oscillator basis is
also required. As in the previous case, the graphical rules
provide the coefficients of the decomposition of G (r)
in the harmonic oscillator basis:

IV. RESULTS AND DISCUSSION

The amplitude A corresponding to the transition from
the 'Dz scattering state is formally the same in cluster
and microscopic calculations, since we neglected the
second order terms that arise from the interference be-
tween the D-state components in the deuteron and He
wave functions. The cluster components of the other am-
plitudes correspond to the EP part of the E2 operator
and were identified as B1, C1, and D1 in Sec. II, while the

E =10M V

0.3—

~ M I ~

2

Q.1 -i3
1

I
]I

ll t
~ ~

~ I

~ ~ '~ M ~ ~ ~ ~ ~ ~ ~ ~

Il

I
IJ

gPP& ~ ~ ~ ~ ~ ~ ~ ~ ~ ~)' ..2 ~ ~

]' ' ~ ~ ~ ~ ~
~

il 1
l II

~ ~

~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~

~ ~

e ~

~ 1 e ~

D =-0.16fm D =-024fm
I I

120 150
I I

30 60
I

e'Rdeg)

I I

3Q 60
I I

120 150
I

90
g'™(deg)

FIG. 2. C l ulated tensor analyzing power A {p) for H(d, y) He reaction at Ed ——10 MeV. The curves (1), (2), and ( )

(4) ~s a cluster calculation from Ref. 8. The data are from Ref 10
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microscopic components arising from Ef' l and E[
were identified as B2, B3, C2, and D2. The present calcu-
lations of the various contributions to the different E2
amplitudes were performed for deuteron energies be-
tween 1 and 15 MeV.

The microscopic effects in the amplitudes B, C, and D
are very different. In the C amplitude the microscopic
component expressed by the C2 term in Eq. (18) is of the
order of 20% of the cluster component C1, while in the D
amplitude this effect is of the order of 1%. The latter
effect is a negligible correction because it arises from
second order terms. The largest microscopic corrections
are found in the B amplitude. In B there is a contribu-
tion from the S2~'Sp transition which is generated
from the interference between the deuteron D state and
He S state. This contribution, which corresponds to the

B3 term defined in Eq. (14), is an S wave capture and
therefore tends to become more important as the deute-
ron incident energy decreases. The effect of the deuteron
D state is consequently enhanced at low energies. The
other new contribution to B, namely B2, arises from a
S2~ Dp transition. The components of the Dp wave

function which contribute in each case are about the
same order of magnitude, and consequently B1 and B2
are equally important in B. We find a strong destructive
interference between the S2~ 'Sp and S2~ Dp transi-
tions. Furthermore, due to large microscopic effects on
the B amplitude, the quantity Re(B/A) is not propor-
tional to p.

The calculated amplitudes A, B,C, D, including the mi-
croscopic contributions, were used to obtain angular dis-

tributions of the cross section and polarization observ-
ables. In Fig. 2 we show A „as a function of c.m. angle
for an energy of 10 MeV. The dashed lines correspond to
the use of harmonic oscillator wave functions for the
deuterons and of a Gaussian function for the He, and are
referred as (1); the dash-dotted lines correspond to the
use of the Reid soft core wave function for the deuterons
and a Gaussian wave function for the He, and are re-
ferred to as (2); the solid lines correspond to the use of
the Reid soft core wave function for the deuteron and an
exponential wave function for the He and are referred to
as (3). Figure 2(b) also shows the result of a cluster calcu-
lation from Ref. 8 performed with the Schiavilla wave
function, ' which is represented by the dotted line and re-
ferred to as (4). In the angular regions close to 8=m/4
and 8=3m /4, 3 is approximately independent of B and

proportional to Re(C/A). The analysis of experimental

Ayy data is therefore particularly suitable for the deter-
mination ofp.

The inclusion of microscopic terms tends to lower the
predicted value of Ayy as it can be seen by the compar-
ison of curves (3) and (4) in Fig. 2(b). This is a conse-
quence of a destructive interference between the terms C1
and C2, which is analogous to that observed in the B am-
plitude. Consequently we conclude that the value of p ex-
tracted from cluster calculations is overestimated by
about 20%. At 8=m/2 we find that A" depends strong-
ly on B, and therefore the predictions are very sensitive
to the bound state wave functions used in the calcula-
tions. This sensitivity can be interpreted as a conse-
quence of the node in the S2 scattering state wave func-

E =12M V

1.5-

=-0.16fm
I

60
I

30
8 (deg)

90 120 150 30 60 90
(d )

120' 150

FIG. 3. Calculated differential cross section 0.(0) for the 'H(d, y) He reaction at E~ = 1.2 MeV. The curves have the same meaning
as in Fig. 3 ( Ao =0 t t/4w).
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Av v(8 =130 ) Ed= 9.7 Mt. V

0.2—

0-1— 0.1—

T20

0

'2 4 6 8 10 12 44
Ed(Mev)

FIG. 4. Calculated tensor analyzing power A» for the reac-
tion H(d, y) He for 8, =130' as a function of energy. The
data were obtained in Tunl (~ ) and Wisconsin ( X ) and are from
Ref. 21. The curves is a result of calculation (3) described in the
text corresponding to D& ———0.16 fm .

tion, which in our model is associated with the strong
Pauli repulsion. Even for a correct 8 amplitude, one can-
not extract very meaningful information from A „at
8=m/2 beca. use the influence of multipoles other than E2
is of crucial importance in this angular region. The small
asyrnmetries observed in the angular distribution of A ~
are associated with contributions from odd parity rnul-
tipoles.

The sensitivity of the 8 amplitude to the use of
different bound state wave functions can also be observed
in Fig. 3 which shows the angular distribution of the
cross section o(8) for Ed ——1.2 MeV. The curves have
the same meaning as in Fig. 2 and correspond to the
three calculations mentioned. At this energy the cross
section is almost entirely determined by the A and 8 am-
plitudes, and the comparison between experimental
values and theoretical predictions of the ratio
R =o(m/4)/o'(n!2) can provide information on the ra-
tio

~

A
~
/

~

B
~

. At lower energies, below 0.3 MeV, the
transition from the 'D2 state tends to be inhibited and
the cross section becomes just a function of the 8 ampli-
tude. The cluster description is then totally inadequate
to describe the reaction and should not be used, even
with the purpose of a qualitative discussion. ' At these
very low energies the description of the scattering state
should account correctly for the Coulomb interaction
since the use of penetration factors is no more a good ap-
proximation. Recently Assenbaum and Langanke, con-
sidering spherical deuterons, estimated the D-state ad-
mixture in He from a comparison between the results of
a microscopic variational calculation and experimental
data of o(8), for energies Ed &0.3 MeV. One should be
aware that in this energy region to neglect the D state of
the deuteron, and therefore the S2~'So transition, is a
serious flaw in the extraction of reliable information
about the He D state.

In Fig. 4 we show the energy dependence of Ayy for
8=130. The curve is a result of calculation (3) described

~ ~ ~ ~ ~ ~

11

II o
A ~

I I

30 60
I I

90 120
Hc~(deg)

I

150

FIG. 5. Calculated tensor analyzing power T2O (8) for
H(d, y) He reaction at Ed ——9.7 MeV. The dash, dash-dotted,

and solid curves have the same meaning as in Fig. 3. The dotted
line is a result of cluster calculation with a He wave function of
Ref. 16 corresponding to the Urbana interaction with

D2 ———0.24 fm . The data are from Ref. 12.

above, which is expected to be the most realistic since it
ensures the good asymptotic behavior of the overlap
functions. This calculation corresponds to a value of
D2 ———0.16 fm and therefore using the asymptotic ap-
proximation p=D2a (where a is the separation energy
wave number) we obtain p= —0.18.

The present calculations do not yet provide a satisfac-
tory explanation for T20. This can be seen in Fig. 5

where the angular distribution of Tz0 for the various cal-
culations described in the text are shown. This is again a
signature of the importance of the 8 amplitude which is
absent, in first order, in A

Recently Piekarewicz et al. obtained p= —0.40 from
a fit to cross section data at c.rn. energies below 3 MeV,
using a model where the scattering states as well as the
components of the ground state of He are assumed to be
products of internal deuteron wave functions and a func-
tion of the relative motion. The effects of the deuteron D
state were included through the quadrupole moment.
However, we find that in order to account for these
effects in the Sz~'S, transition, it is necessary to use a
microscopic description with a realistic deuteron wave
function. The very low value obtained for p in Ref. 23 is
probably a consequence of the approximations involved
in the inclusion of deuteron D-state effects.

The present results indicate clearly that microscopic
calculations including deuteron D-state effects with a
realistic deuteron wave function are essential to describe
the transition from the S2 scattering state. For a com-
plete understanding of the mechanism of this reaction, a
more consistent description of both scattering and bound
state, satisfying four-body unitarity is required. Calcula-
tions including E1, Ml, and M2 are in progress and will
be reported elsewhere.
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