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Analytical number-projected BCS nuclear model
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Transforming both the overlap energy kernel and overlap functionals into polynomial forms, the
well-known integral of the number-projected BCS theory is performed analytically. We then obtain
the projected ground state BCS energy in the closed form.

Recently we reported' a result, in which a generalized
Bardeen, Cooper, and Schriefer (BCS) neutron-proton
wave function is projected in a state with definite isospin
and number of particles, by transforming both energy
kernel functional and overlap functional in simple poly-
nomial forms. In that paper the complex treatment of
the isospin projection obscures the simplicity of the ana- '

lytic solution of the number projection. Therefore it is
worth presenting the procedure used previously in a
separated paper, solely about the treatment of number
projection, since it can be more useful than the isospin
projection. For the illustration of the importance of
number projection in BCS theories, let us mention a re-
cent paper of Grotz and Klapdor, in which they used the
projected BCS wave function in the well-known problem
of neutrinoless beta decay.

The problem of nuclear number projection is almost as
old as the BCS theory; Ring and Schuck, quote 16 pa-
pers that treat it. Here, we only quote those that are
needed to show the achievement obtained in the present
paper.

The first paper which established the problem of num-
ber projected BCS theory, in the mathematical sense, was
made by Bayman in the early sixties. He found the well-
known Darwin-Fowler type integral, which he solved us-

ing the saddle-point approximation, but he only got the
usual BCS approximation as a solution. This approach
was improved later by Iwamoto and Onishi for a large
number of particles. Dietrich, Mang, and Pradal (DMP)
realized that the integrand of the already mentioned in-
tegral can be replaced by a Laurent series and the in-
tegration picks up only the components of the desired
number of particles. However, in order to solve the ener-

gy kernel integral some recursion relation is needed
which can be time consuming for realistic cases. Ma and
Rasmussen reported a different recurrence relation to
overcome this difficulty. Finally, it is necessary to men-
tion that the projection integral is also solved numerical-
ly, ' in most cases associated with angular momentum
projection.

In the present paper we look again at this almost 30
year old problem and exhibit a solution in which both the
overlap and energy kernel are transformed into polyno-
mials and the integrals are solved analytically without re-
strictions. Let us show, then, the procedure used to

reach this goal.
Given u and U as the coeScients of the Bogoliubov-

Valatin" transformation, it is shown in many places (see,
for example, Ref. 4) that the ground state energy of a sys-
tem of only one type of fermions in some mean field (eJ }
subjected to a pure pairing force (G) is given by

n(8}= II (u +v, e' ) ',
J

(2)

where 0j=j+—,', with j being the angular momentum of
level. The integration of the above overlap function with
weight e ' J ', as in Eq. (1}, is easily performed if we
transform expression (2) into

n(8)= g II F e'
l' ~ ~ el'jjlJ l J~

with

n l

J l. J J

and l =g I, , by use of repeated applications of Newton's
binomial formula. Then finally, the integral of the
denominator of expression (1}becomes

II FJ
l =W/2 j=jl

(5)

The above expression (5) can also be obtained if we
take z =e' and transform the overlap integral form (1) in

~
II(uJ +zv ) '

I0 N/2+ 1
(6)

e
—i(NI2)tth (8}d82' 0 E

2"
gatv Jz)e„(8}—d8 Io

2' 0

where N is the total number of active nucleons of the sys-
tem. From now on we shall call IF (Io) the energy ker-
nel (overlap) integral. The overlap function n (8) is writ-
ten as (see also Ref. 4}
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and one solves recognizing that the integrand can be re-
placed by a Laurent series (in the above case it is only a
simple product of binomial series) and the integration just
picks all the components with z ', or, in other words, all
the members of the polynomial with component! =N/2.
To solve the energy kernel integral is more problematic.
DMP need some recurrence relation which make the
solution a little more complicated, whereas in the present
case the recurrence relation is not needed as we are going
to see. In the present case, to transform the energy ker-
nel functional into polynomial form is not as straightfor-
ward as (3) but it can be done very easily. Let us begin
writing h (8) as

and hence cannot be replaced by a polynomial form in
the case of 0 =1 and it is necessary to have a Laurent
expansion in the term (u + v e' ) '. However, in our
approach the factor Q.(Q. —1) gets rid of this difficulty
quite obviously.

Let us now use the procedure of repeated applications
of Newton's binomial formula to the kernel energy func-
tional h(8) in order to get a polynomial expression in

gauge angle e' . For this purpose let us call the three
terms of Eq. (6) as h (8)=hi(8)+hz(8)+h3(8) and we
will present only the method to obtain h, (8) in polynomi-
al form, h2(8) and h3(8) can be derived in a similar way
and hence it will not be done here.

The first step is to write h, (8}as

h, (8)= g (u'+v e' ) '

0 0'u Vju'Vj. e i8
G y J J J J 1 1

(u +v e' )(u +v e'
'J J J J J

adding and subtracting a term xQ (2e —G), (9)

Gg[Q (Q —1)u v~e' ]/(u +v~e' )

in the above expression (7), and after soine algebraic ma-
nipulation we obtain

!i(8) Q (2e —G)v e' QJ(Q& —1)uj vj e '

n(8} +
( 2u+ 2vi e)9+ (u 2+ 2 ie)2

Qj 0jiQj VJ QJiVJ' ei8

,» (u, +v, e' )(u, +v, e' )
(8)

g (u +v e'e) i(u +v e'e) i
~ Q., ~ A. —2

J J J J
J &J

The above expression can also be expanded, as we men-
tioned before, into the polynomial form with the help of
Newton's binomial, since the expression n (8)2!e"=g(u, +vj e' ) ' multiplies all the three terms of (8).
Some doubts may appear in the second term because it is
proportional to

here 0& I & 0 —1. Then, using the following identity of
binomial coefficients:

(10)

and redefining !=l~ —1, h, (8) will vary from !1=1 to!=Q . Since now we have h, (8}proportional to l~ due
to the factor which appears in the above binomial identi-
ty (10), we can shift the initial value to! =0. Rewriting
the expression (9) with the help of Newton's binomial as
we did in (3) and collecting everything together we have
simply

hi(8)= g g F g (2e. G)!e"—
I. . . .l. j

Jm

It is easy to see that the above term is in polynomial
form since lj is an integer and then the sum! =pl is
also an integer. The same procedure can be applied easi-
ly to h2(8) and h3(8) and therefore after some trivial
algebraic manipulation we get

l. . . .I.
Jm

2

gFJ g [(2e~ —G)lje' G!(!——1}]—G g!!' e'
J . . J J jwj' j j

(12)

Let us now discuss whether all the terms above are expansions in the polynomial form or not. We have already dis-
cussed the first term in (11) and it is not worthwhile to repeat it here. The second term, as we see, is proportional to
l~(l~ —1)e" ";it will not be a polynomial unless! =! +!1 + . ! =0, but since all I&'s) 0, then! =0 only when all

Jm

!J's are equal to zero, and, consequently, due to the factor! (! —1) this term wil. l not exist anymore. Consequently, the
different values of the sum will form a polynomial in the gauge angle e' . The same reasoning is valid for the third
term, where I. and I 's cannot be zero in order to provide a 6nite nonzero term.

Now, with the established polynomial, we can easily get the following form for the numerator of the expression (1)
after performing the integration
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QI = g gF g(2e G—}1 —G g gF g 1(1.—1)+ g 11.
1=%/2 j j I =N/2+ 1, j J Uj j&j' j j

(13}

In order to illustrate the usefulness of the formulas (5) and (13) together with (1), let us apply it to the case of the de-

generate model, where one can get easily from (5) the following formula for the overlap integral:

0
(u 2)Q —N/2(v 2)N/20—

2

(14)

and for the energy kernel solution (13) we obtain

0 0 Q N
( u 2)Q N/2( v

—2)N/2(2e G) G (u )" '(v } +' (N/2+ 1)N/'2+1 U2 2

2

(15)

using (1), we simply get, assuming a=0

E = ——N(2Q —N+2),G
4

which is the well-known exact result for the degenerate
model. Then, one notices that if the number symmetry is
restored in the degenerate model, no place is provided for
quasiparticle interaction and the exact result is recovered.

In conclusion we would like to mention that the
present approach of transforming the kernel and the
overlap functions into polynomials forms, from where the
integration can be performed analytically, it is not limited
to the present case of pure pairing force and gauge angle.

As we mentioned already it was implemented in the case
of isospin projection where additionally the integration in
one Euler angle is needed in the case of axial symmetry.
In the case of the nonconstant matrix element in (13) the
generalization is quite straightforward but with general
force and angular momentum projection, some courage is
needed to tackle a somewhat big and tedious algebraic
manipulation, but I guess it is feasible.
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