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Equations-of-motion treatment of pairing correlations: Seniority-one states
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In prior work we have developed an equations-of-motion method for treating seniority-one states
in pairing-force theory. Here we present a new and simpler version of that method. Some numeri-
cal applications to Sn isotopes show its considerable practical value.
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where H is the pairing Hamiltonian,
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and the notation is the same as that adopted in I.
In contrast to some earlier approaches to the pairing-

force problem based on the full treatment ' of the equa-
tions of motion (1) and (2), our method completely decou-
ples the problem of even nuclei from that of odd nuclei.
This is indeed a key element for its practical usefulness.
The reader is referred to Ref. 5 for a detailed discussion
of this important point.

The object of this paper is to present a new version of
the method developed in I which provides an even
simpler (and more clearly formulated) treatment of
seniority-one states in pairing-force theory.

The wave function for a seniority-one state with
(N + 1) particles can be related either to the seniority-
zero states of the system with N particles or to the
seniority-zero states of the system with (N+2) particles.
That is, we write

and

I
N+1,pjm ) = pc p(N+1)a

I
N, p)

P

I
N+ l,pjm ) = g g (N+1)a

I
N+2, a),

(4)

where, as before, the notation is the same as that of I.
In I we made use of Eq. (1) in conjunction with the

In a previous paper' (hereafter referred to as I) we pro-
posed an equations-of-motion method to treat pairing
correlations in odd nuclei. The essence of the method is
to solve the equations of motion for single-particle opera-
tors making use of the solution of the seniority-zero prob-
lem which can be obtained through a chain calculation
involving only even nuclei. The formalism necessary to
treat the latter problem is based on the use of the equa-
tions of motion for pair operators and is described in de-
tail in Ref. 2. The explicit form of the equations of
motion used in I is

wave function (5) and of Eq. (2) in conjunction with the
wave function (4). In fact, given the arrangement of the
creation and annihilation operators on the right-hand
side of Eqs. (1) and (2), this option is the one which leads
to the best approximation scheme. The complete descrip-
tion of this approach is to be found in I.

Here, we start by recasting the equations of motion (1)
and (2) into the form

[K,a~~ ]=ejal —g GJ~'AJ'a
J

[H, a ]=(GJ E)a —g—Gli'A 'aj
J

This seemingly trivial change in the exact statement of
the equations of motion provides what we consider to be
the most convenient way of solving the seniority-one
problem within the framework of our approach.

We now make use of the equations of motion for the
creation operators a in conjunction with the wave func-
tion (4). Taking matrix elements of (6) we then obtain the
eigenvalue equation

Q MjppSp~p(N+1)=Ep, (N+1)S~~p(N+ I ),
I3'

where

The various quantities occurring in (8) and &9) have the
following definitions:

Xp (N)=(NPI At IN —2,y),
py(N)= g GJJ'X'p (N. ),

J
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at

I

N P),

(1 la)

(1 lb)

(1 lc)

and Q.=j+—,'. The quantities d ',(N —2) are the ele. -
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and where we have used the closure relations
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ments of the inverse of the "reduced metric matrix" of
the states a. ~N —2, y). This reduced metric matrix
can be obtained from the metric matrix

d~rr(N —2)=IN —2, y f
a a. /N —2, y')

(12)

where

X (N+2)=(N+2, a
~ AJ ~

N+4, co),

(N+2)= g G,,'X,' (N+2),

(18a)

(18b)

through the procedure described in Ref. 6. Here

p~rr (N —2) are the elements of the density matrix for the
(N —2)-particle system:

T~J (N+1)=(N+I,pjm
~

a
~

N+2, a), (18c)

pjrr(N —2)=(N —2, y ~

a a
~

N —2, y') . (13)

The spectroscopic amplitudes S &(N+I) are related
to the coefficients cz&&(N + 1 ) of (4) through

S p(N+ I )= g cpjg(N+1)djpp(N) . (14)

From the normalization condition for the states
~

N + l,pj m ), it follows that

g cp)p( N + 1 )Sp)p(N + 1 ) = 1 .
P

(15)

Clearly, the preceding equations allow one to solve the
seniority-one problem in terms of the solutions of the
seniority-zero problem. The formalism set up thus far is
exact in the sense that all the existing seniority-zero
states of the N-particle system are taken into account. As
in our previous treatment, ' however, the use of an over-
complete set of basis vectors a,~ ~

N, P) in (4) gives rise to
spurious solutions. We refer the reader to Ref. 6 for a de-
tailed account of how to remove the redundant states
within the framework of our formalism.

In the above, we have given the formulation of the
theory in terms of particles. The hole formalism can be
readily derived by proceeding precisely as before. In this
case, one has to use the equations of motion (7) in con-
junction with the wave function (5). This leads to the
eigenvalue equation

gM, T ,(N+1)=Epq. (N+1)Tpj~(N+I) . (16)
a'

with

~
N+ 1jm ) =c (N+1)at

~
N, O),

and the eigenvalue problem (8) reduces to

(19}

EJ(N+1)=ED(N)+I J, (20)

with

and hj„' (N+4} are the elements of the inverse of the re-
duced metric matrix of the basis states a

~
N+4, co).

Of course, when the sums on 13 and a run over all exist-
ing core states [seniority-zero states of the N or th-e

(N+2)-particle system], both formalisms permit one to
solve the seniority-one problem exactly. In the approxi-
mate versions of the method, however, one has to use the
appropriate formalism depending on the considered j and
on the number of valence particles. We shall discuss this
point in detail in the context of the lowest order of ap-
proximation.

The exact statement of our method provides the frame-
work for a sequence of approximations depending on the
number of core states which are included in the expan-
sion (4) [or (5)]. In the following we shall focus attention
on the simplest stage of approximation, which we call
first-order theory, wherein the core states are restricted
to a single state, the seniority-zero ground state

~
N, O)

(or
~
N+2, 0) ).

In this case, the wave function (4) becomes (from now
on we drop the index p)

MJ = [E ( N+2) +G e]5 ~—
+ g h J.„'„(N+4)bj .„(N+2)X& „(N+2),

J Q)M

(17)

XJ.(N)

Q~ [1 pj (N —2)]—
The wave function (5) is written as

~
N+ 1,jm ) =g~(N+1)a

~
N+2, 0),

(21)

(22)

TABLE I. Values of the energies Ej (in MeV) of the various seniority-one states for the Sn isotopes. The columns labeled I, III,
and VIII list the results obtained from the first-, third-, and eighth-order calculations, respectively.

5
2
7
2
1

2
3
2
11
2

—1.67
—1.83
—0.87
—0.62
—0.07

—1.57
—1.69
—0.90
—0.62
—0.07

VIII

—1.57
—1.69
—0.89
—0.63
—0.08

2.56
2.36
1.53

1.64
2.18

115
III

2.63
2.45

1.51

1.76
2.31

VIII

2.62

2.43
1.51

1.77
2.30

10.22
10.02
8.79
8.66
8.79

119
III

10.27

10.08
8.80
8.73
8.96

VIII

10.26
10.07
8.80
8.74
8.99



2230 BRIEF REPORTS 37

TABLE II. Values of the spectroscopic factors S, for the Sn isotopes.

5
2
7
2
1

2
3
2
11
2

0.283
0.419
0.901
0.921
0.947

0.275

0.384
0.921
0.939
0.962

VIII

0.275

0.384
0.921
0.939
0.961

0.088
0.094
0.754
0.859
0.909

115
III

0.070
0.088
0.874

0.911
0.949

VIII

0.070
0.087
0.874

0.910
0.949

0.051
0.060
0.433
0.606
0.786

119
III

0.055
0.065
0.418
0.592

0.823

VIII

0.055
0.065
0.419
0.593
0.823

and it is easy to verify that the analog of Eq. (20) for
holes is

E (N + 1. ) =E (N +2 ) + I' (23)

where

XJ(N+2)
I J =(GJ —ej )+ b,, (N+2) .

Qipl N+4 (24)

We now give the criterion of how to decide, for each N
and for each j, whether to use the particle or the hole for-
malism. This criterion, which is essentially the same as
that used in I, stems from the fact that either of the two
wave functions (19) and (22) may contain components
which violate the Pauli principle. Therefore, we have to
choose the one which is less aP'ected by the lack of
antisymmetrization between the core and the added par-
ticle. A measure of the violation of the Pauli principle in
the states aj ~

N, O) and a
~
N+2, 0) is given by the

values of their norms. In fact, a large violation causes the
norm of the corresponding vector to be close to zero.
Consequently, we select as basis state the vector with the
larger norm, namely, a

~
N, O) if dj(N) & hl(N+2), and

a ~N+2, 0) if d. (N)&hj(N+2). In other words, we

use the particle formalism if the quantity

dj(N) 1 pj(N)—
h (N+2) p, (N+2) (25)

is & 1, and the hole forrnalisrn if it is &1. It should be
mentioned that this criterion may be extended to higher-
order approximations by considering the ratio of the
determinants of the reduced metric matrices d and h.

To illustrate the practical value of our approach, we
now give the results of a numerical application to the odd
Sn isotopes. The single-particle energies and the coupling

strength G (we consider a constant pairing force, G 1'=G)
are the same as those of Ref. 7.

In Table I and II we give the energies and the spectro-
scopic factors S for the various seniority-one states of
'"Sn, " Sn, and " Sn obtained from the first-, third-, and
eighth-order applications of the theory (the results of the
eighth-order calculation may be considered exact). In the
first-order calculation we have used as input data the re-
sults obtained from the first-order theory for the even iso-
topes according to the method of Ref. 2. In the third-
and eighth-order calculations [the v =0 core states in (4)
and (5) are restricted to the lowest three and eight states,
respectively] we have used the solutions of the seniority-
zero problem obtained from the highest-order approxi-
mation considered in Ref. 5, to which we refer the reader
for details.

From the results obtained, it appears that the accuracy
of the lowest-order approximation is already very good,
while the third-order calculation suSces to obtain results
which are practically exact.

It should be noted that expression (20) [and (23)] is for-
mally similar to that giving the energies of the one-
quasiparticle states in the Bardeen-Cooper-Schrieffer
(BCS) theory. Thus, we may conclude that our approach
retains the main attractive feature of this theory, namely,
its calculational simplicity, while being free from the
drawback of particle-number violation. It can be easily
verified that our first-order results are considerably better
than the BCS ones.

Finally, it should be mentioned that the formalism
given here for the seniority-one states can be generalized
to treat states of any seniority v &0 (v =g. v ) in essen-
tially the same way. This will be the subject of a future
publication.
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