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t expansion and the Lipkin model
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We apply the t-expansion method of Horn and Weinstein to the SU(2) soluble model of Lipkin.
The method is shown to approximate well both the ground state and the first excited state energies.
An extension to a dynamically determined reference state is explored and shown to dramatically im-

prove results for the region of strong coupling.

I. INTRODUCrxON II. THE METHOD AND ITS APPLICATIONS

Recently a systematic nonperturbative approach has
been developed to calculate ground-state expectation
values of arbitrary operators for any Hamiltonian sys-
tem. ' It makes use of the operator e ' which may be
considered as the imaginary-time many-body propagator
and filters a trial function

l tIt) to the exact ground state
l P) in the limit t~ cc. The method, referred to as the t

expansion, systematically improves the results obtained
through any variational, or perturbative, calculation and
is proving a valuable tool to study field theories in the
nonperturbative domain. It has been applied to two di-
mensional spin systems' and to four dimensional non-
abelian lattice gauge theories.

Since the method is based on a Hamiltonian approach,
it is expected to be of great value for the many-body
problem as well. To test this is one of the purposes of the
present work. Moreover, we want to explore whether
known techniques that work well in many-body theory
can actually extend the utility of the t expansion method.
To accomplish this we examine the validity of the t ex-
pansion within a soluble model, the Lipkin model. Ex-
actly soluble models are of great utility as testing grounds
for many-body theories of finite fermion systems, not
only bee@use they provide exact solutions to be compared
with the approximate results but also because their sim-
plicity contributes to the understanding of the approxi-
mations involved.

We will show that the t expansion yields an excellent
approximation for the ground state and first excited state
energies. A particular extension we will consider is the
use of a dynamically determined reference state. The
particular choice we invoke will be seen to dramatically
improve results in the region of strong coupling.

In Sec. II we present a short review of the method, a
summary of previous applications and an outline of the
present application. In Sec. III we show the results ob-
tained and finally in Sec. IV we draw some conclusions.

A. Short review of the method

The basic idea of the method is that if one has a start-
ing wave function

l ((}o) that has a nonzero overlap with
the true ground state of a quantum system defined by a
Hamiltonian H, then the parametrized wave function

) (y l
e

—tHl y ) —1/2e —tH/2l y ) (2.1)

is a better approximation to the exact ground state for
any finite value of t. In particular, it is shown that in the
limit t~ao,

l Pt) converges to the lowest eigenstate of
the Hamiltonian. Consequently, the energy expectation
value

«r)=&kolHe ' l(bo)/'&((o le
'

l(bo) (2.2)

tends to the ground state energy in the same limit. E(t)
can be written' as a power series in t

co ~m+1 c
E(r)= g, ( —r)

m=O m'
(2.3)

p=0

(2.4)

In any application one evaluates the series in Eq. (2.3) for
a range 0&n &L. The approach proposed in Ref. 1, in
order to obtain a good approximation to E(t) over a
larger range in t, is to use Pade approximants. They em-
ploy two diferent procedures. The first one is to use the
diagonal Pade [Mt/M] and watch for convergence of the
series M =1,2, 3. . . . However, this requires going to
rather high orders in t which is very diScult in realistic

where the connected matrix element of H is defined re-
cursively by

(Hm+l)c (y l

~m+1
l y )
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calculations. Consequently, they turn to the second pro-
cedure which considers the derivative of the function
E(t) and the Pade approximant to that derivative.
Differentiating (2.2) with respect to t one obtains

(2.5)

(2.6)

This is not an upper bound on the exact ground-state en-

ergy but is guaranteed to converge to it in the limit
t ~ ao. As before, E&r(t) is expanded as a power series in
t and Pade approximants are used as the series accelera-
tion method.

which means that dE (t) /dt is a function which monoton-
ically increases to zero. Thus, one obtains an upper limitt,„ from the value at which the Pade approximant to the
derivative becomes positive. Then, one integrates the
[I./I. +Mj Pade approximant for M )2 from 0 to t,„
to obtain E(t,„). This second procedure has been
demonstrated to accurately reconstruct E(t) over a
larger range in t.

Finally, an extension of the formalism is presented in
Ref. 1, called the bistate contraction scheme. It considers
two different starting wave functions

~ Pp& and
~
Xp).

Then the energy is written as

d(»(((p
~

e '
~
Xp&)

E~r(t) =-
dt

the ratio R =M /0. .

C. Present application

J,=T X o,.c
po

(2.7)

which fulfill the [SU(2)] angular momentum comtnutation
rules.

The interaction is a monopole force scattering two par-
ticles from one level into the other. In terms of the
quasispin operators (2.7) the Hamiltonian is written as

In the present work we apply the t expansion to the
Lipkin model. ' This is an exactly soluble two-level
model suggested by Lipkin and co-workers in order to
test new approaches for the solution of the many-body
problem. It involves two N-fold degenerate single-
particle levels, separated by the single-particle energy e,
and N identical fermions. Two quantum numbers
characterize a given single-particle state. One of them
adopts the values cr= —1 (lower level) and +1 (upper
level). The other, which may be called the p spin, singles
out a state within the N-fold degeneracy.

We let p run from 1 to N and introduce the quasispin
operators

B. Summary of previous applications
H=J, + (J'++J' —), (2.8)

The t expansion has been applied to two-dimensional
spin systems the Heisenberg antiferromagnet and the
Ising model in 1+1 dimensions. In the first case the con-
nected coeScients were calculated up to t . The result
obtained by Fade approximating the derivative is accu-
rate to within an error range of 0.27% to 0.75% of the
exact answer.

In the Ising model a mean-field variational state was
used as the starting wave function

~
Pp). The expansion

was carried out up to t, and the energy was calculated
for a range of values of the variational parameter 0.
Equation (2.2) turned out to be a function of two indepen-
dent parameters, E(t,8). For a fixed value of t the best
upper bound on the exact ground-state energy was ob-
tained minimizing E (t, 8) with respect to 8. Both the en-

ergy and the magnetization were very accurately repro-
duced, with a significant improvement over mean-field re-
sults.

The bistate contraction scheme was also applied to the
Ising model' using the exact strong- and weak-coupling
ground states as the starting wave functions

~
Pp) and

~
Xp). The energy, calculated to the same order in t as

before, is less accurate than the variational treatment
over the entire region in the coupling constant. This in-
dicates the importance of a variational parameter in the
method and below we will explore additional variational
treatments.

The t expansion has also been applied to SU(2)- and
SU(3)-lattice gauge theories in 3+1 dimensions com-
puting the vacuum energy density, specific heat, string
tension o, mass of the lowest lying 0++-glueball M and

cosP=, E„„=——cosP——1 N N sinP
v(N —1) ' " 2 4 cosP

(2.9)

1
for v~

N —1

For applying the t expansion one must calculate the
connected matrix elements (2.4). This is straightforward
when using one of the basis states

~
J,M ) as the starting

wave function
~
Pp). In particular we have used the un-

perturbed ground state
~
N/2, N/2) which is a —mean-

field wave function because it corresponds to the HF
state before the phase transition, i.e., in the weak-
coupling regime.

Within nonrelativistic many-body theory there have
been numerous suggestions for methods to produce a
dynamical choice of the reference state

~
Pp). We pro-

where the energy is given in units of the single-particle
energy e. The ground state belongs, always, to the multi-
plet J=N/2 and therefore the exact solutions are found
by diagonalizing a 2J+1=N +1 matrix.

The Hartree-Fock (HF) approach looks for the lowest
state in the self-consistent representation which is ob-
tained through a variation of the original basis. A phase
transition is found at v, =l/(N —1). For v &v, the HF
solution is the trivial one and the HF state coincides with
the unperturbed ground state. In the full HF treatment
the results for EzF can be cast in terms of a single varia-
tional parameter P in the following way

1P=O, E~„= N/2 for v &—
N —1
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pose to use a simple dynamical vacuum generation
method in conjunction with the t expansion. It consists
in applying the Hamiltonian to the weak-coupling state
used before, and keeping the two dominant components
in the basis. We then label the two dominant com-
ponents as

~

1) and
~
2), and we vary the one free ampli-

tude in the new reference state

~ Po) = cos8
~

1)+ sin8
~
2) . (2.10)

III. RESULTS

For obtaining the t expansion results in the Lipkin
model we first take the unperturbed ground state as the
reference state,

~ Po) =
~

N/2, N/2), cal—culate the con-
nected matrix elements (2.4) for the Hamiltonian (2.8)
and so obtain the partial sums

L ~m+1 c

Sr(r)= g ( r)— (3.1)
m=0

that allow the construction of the Pade approximants'

This method introduces a single variational parameter
8, which improves the results in a way analogous to Ref.
1.

Obviously, one could elect to keep the three, four, etc.,
largest components of the result obtained by acting with
H on the reference state. Eventually, many variational
parameters could be introduced so that the level of effort
required approaches that of a HF treatment. However,
the important distinction is that this dynamical basis
method is not limited to a mean field approximation. It is
to be noted that this approach is different from the bi-
state contraction scheme suggested in Ref. 1 by virtue of
preserving the energy E(t, 8) as an upper bound. This
improvement arises due to the fact that there is a single
(but multicomponent) starting wave function.

for any fixed value of t. It is to be noted that the calcula-
tion of the Pade [M/M] requires the partial sum Szsr.
Since one argues that the calculation has converged if
several Pade approximants agree, we accept the max-
imum t value for which this occurs.

Different Fade results are shown in Figs. 1 and 2 for
four and ten particles, respectively, and as functions of
the coupling constant. The approximate energies are ex-
pressed as ratios with respect to the exact ground state
energy and the HF results are also shown for comparison.
It is clearly seen that the agreement with the exact results
increases with the order of the Pade approximant con-
sidered, as it should. Even for low order Fade the results
obtained are very good before and in the vicinity of the
phase transition [U(N —1)=1]. In this region the t ex-
pansion results are better than the HF results. The t ex-
pansion results deviate more from the exact results with
increasing values of v within the strong-coupling regime.
This increasing deviation should be expected since we
have chosen the unperturbed ground state as the refer-
ence state. This effect is even more important for larger
N. Consequently, higher order Fade approximants are
needed for larger values of v in order to get the same pre-
cision. One of the pecularities of the Lipkin model is that
the HF energy tends to the exact ground state energy for
N~ ~ and v~ 00. Thus, for sufficiently large N and v

the HF result will be better than any fixed order Pade ap-
proximation to the t expansion based on the unperturbed
HF solution as the reference state. Of course, the most
logical procedure is to use the new HF state once one
exceeds the critical coupling.

%'e have checked the consistency of our results by cal-
culating the Pade approximants to the derivative given in
(2.5) and verifying that the t value for which it goes to
zero is the same as the one considered previously.

Next we consider the dynamical vacuum generation
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FIG. 1. Ratios of approximate energies with respect to the
exact ground state energy as functions of the coupling constant
for %=4. Discrete points signify the results obtained with
[M/M] Pade approximants to the series E (t)

FIG. 2. Ratios of approximate energies with respect to the
exact ground state energy as functions of the coupling constant
for N=10. Discrete points, except circles, signify results ob-
tained with [M/M] Pade approximants to the series E(t). Cir-
cles represent the results of varying 0 after obtaining the
[10/10] Pade approximant to E ( t, 8)
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method proposed in Sec. II C. Applying the Lipkin
Hamiltonian (2.8) to the unperturbed ground state one
goes to the same state and to a new one,

i
N/2, N—/2+2). Consequently, we take as the new

reference state

1 1sin8=—
2 v'a +4

' 1/2 (3.3)

1.0

~ 0.95

LU

HF

~ po) = cos9 —,——+ sin8 —,——+2) (3.2)
N N . N N
2' 2 2' 2

and recalculate the Pade approximants to the ground
state energy as before but now as a function of t9. In the
weak-coupling regime the minimum energy value is locat-
ed at 8=0 which, as expected, corresponds to the previ-
ous results. But when the coupling constant v increases
the location of the minimum E(t, e) for fixed t moves to
larger values of 8. Typical values are around cosL9=0. 8
for coupling constants of the order of twice the critical
value as is shown in Fig. 3. The energy results obtained
with this improved method are also shown in Fig. 2 for
the [10/10] Pade.

The significant improvement obtained with a single
variational parameter is remarkable. Notice that the be-
havior of this parameter is not expected to signal the
phase transition as it is not a mean-field variational pa-
rameter. Motivated by the realization that it may be
challenging to vary parameters of a dynamically deter-
mined vacuum in realistic situations, we investigated the
hypothesis that it may be adequate to choose our single
parameter 8 by simply minimizing the first moment of
the Hamiltonian, i.e., the energy expectation value
( Pp i

H
i Pp ) ~ In the Lipkin model considered here this

may be done analytically and yields the following result
1/2

1 1cos8= —+ &a+4

TABLE I. Exact and approximate results for the ground
state and the first excited state energies, for N = 10 and different
values of the coupling constant.

v(N —1)

0.18
0.36
0.54
0.81
0.99
1.17
1.62
1.98

i
s, -s)

—5.008
—5.032
—5.072
—5.154
—5.229
—5.303
—5.624
—5.873

E,„{g.s. )

—5.009
—5.037
—5.084
—5.197
—5.306
—5.446
—5.956
—6.523

i
s, -4&

—4.020
—4.079
—4.176
—4.365
—4.540
—4.716
—5.214
—5.625

E,„(f.e.s. )

—4.022
—4.086
—4.194
—4.432
—4.640
—4.883
—5.617
—6.303

with a =2N(N —1)v .
After a Fade, the results are similar to the ones en-

countered by minimizing the Pade approximants them-
selves. A natural extension to obtain further improve-
ments is to take a reference state with three or more com-
ponents, having a corresponding number of variational
parameters which are then fixed through the minimiza-
tion of additional moments of the Hamiltonian.

Finally, we have examined the t-expansion method for
the first excited state. We studied the results obtained
when using as the reference state the unperturbed first ex-
cited state,

i Pp) =
i
N/2, N/2+1)—. They are shown

in Table I for N =10 and different values of the coupling
constant. The Pade approximant used is [10/10]. We
present the exact energies of the first excited state for
comparison. To appreciate the quality of the t expansion
results for the first excited state, we also show in Table I
the results (obtained from

i Pp) =
i
N/2, N/2) ) for —the

same Pade approximant to the exact ground state ener-
gies. It is remarkable that the t-expansion method pro-
vides ground state and first excited state results with the
same precision requiring the same effort. Obviously this
is due to the fact that in this simple model the first excit-
ed state has a different symmetry (parity) than the ground
state and so we may easily choose a reference state that is
always orthogonal to the ground state. By contrast, even
in this simple case, the HF approach would require much
more effort for providing an approximate first excited en-

ergy. Greater effort is required in HF, since one must ei-
ther project states of different symmetry from the HF
ground state or obtain the state of desired symmetry from
the self-consistent solution of the HF equations with a
constraint imposing orthogonality to the ground state.

0.90—

1.0
I

0.6
cos 8

I

0.2

FIG. 3. Ratios of approximate energies with respect to the
exact ground state energy as a function of the variational pa-
rameter for N =10 and v(N —1)=1.98. The curve named
VAR corresponds to the results obtained with the [10/10] Pade
approximant.

IV. CONCLUSIONS

We may summarize the main conclusions of the
present work as follows. The t expansion method works
very well in the Lipkin model which is a standard testing
ground for many-body theories of finite fermion systems.
Starting with the weak-coupling mean-field wave function
one gets very good results before and in the vicinity of the
phase transition occurring in the model at the critical
coupling constant v, =1/(N —1). One may also go
beyond the phase transition, inside the strong-coupling
region, without any problem. It is only when the number
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of particles N and/or the coupling constant v are large
that the t expansion results with the unperturbed HF
state eventually deteriorate. Logically one should then
switch to a new choice of the HF state in order to
proceed even further into the strong coupling regime.

The dynamical vacuum generation method proposed in
this work for constructing the starting wave function for
the t expansion affects a major improvement in the ap-
proximate results in the strong coupling region without
much additional effort. An interesting conclusion is that
one may fix the variational parameter introduced in the
vacuum by minimizing the first moment of the Hamil-
tonian before performing the t expansion. A natural and
convenient extension for further improvements is to in-
troduce more variational parameters to be fixed through
the minimization of subsequent moments of the Hamil-
tonian. This extension of the t expansion method seems
more promising, at least in the nuclear many-body prob-
lem, than the bistate contraction scheme proposed by
Horn and Weinstein. '

We have shown that the t expansion method is capable
of yielding first excited state energies with the same pre-
cision and comparable effort as the ground state energy.
This success assumes an appropriate starting wave func-
tion with the correct symmetry is found. We have indi-
cated how this is an advantage over some other variation-
al approaches.

A final conclusion to be drawn from the results
presented in this work is that a mean-field state is not re-
quired as the starting wave function to get good t expan-
sion results. The only requirement is that the reference

state
~ Po) must have an overlap with the exact state one

is trying to approximate. Calculating the overlaps be-
tween

~
Po) and the exact solutions, which is simple in

this soluble model, we have seen that the lower the over-
lap the greater the error in the approximate result for a
fixed order Fade. Thus, the dynamical vacuum genera-
tion method proposed here is further motivated since it
increases the overlap between the reference state and the
exact solution. In particular, we have checked that the
value of the parameter that provides the minimum ener-

gy, as shown in Fig. 3, corresponds to the point in which
the overlap is maximum.
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