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For an even number of nucleons, we consider collective motion based on any dynamical symme-
try subalgebra A of the valence-shell bifermion algebra; the generators of A are coherent linear
combinations of bifermion operators of the types a a, a a, and aa. A boson algebra is obtained by
Dyson mapping the whole valence-shell bifermion algebra, and then "skeletonizing" the resulting
expressions by deleting all noncollective boson operators from them. This skeleton boson algebra is
shown to have the same commutation relations as the collective bifermion algebra, provided that
the bifermion algebra is self-conjugate. The resulting boson Hamiltonian is not Hermitian, but does
resemble the Hamiltonian of the interacting boson model in containing only one- and two-body
terms. Moreover, the skeleton boson algebra (when restricted to a collective boson subspace that is
free of spurious states) is shown to be physically equivalent to the collective bifermion algebra. It is
shown that by working solely with collective bosons one can identify spurious boson states unambi-
guously, although the procedure lacks convenience. The similarity transformation that connects
conjugate versions of the skeleton boson mapping is discussed, and a general condition for hermiti-
city of the boson image of a Hermitian operator is given.

I. INTRODUCTION

In view of the great phenomenological success of the
s-d interacting boson model (IBM), it is of interest to in-
quire how well more general types of collective motion
can be described by boson models. The present work is a
step in this direction. We first try to understand what
kinds of collective motion are "boson mappable" in the
sense that they can be exactly described by IBM-like
models, allowing as "IBM-like" all models in which the
boson Hamiltonian conserves the total number of bosons
and contains nothing more complicated than two-body
interaction terms. Here we do not exclude models that
use non-Hermitian Hamiltonians; we have previously dis-
cussed the possibility of hermitizing the boson Hamil-
tonian.

Any shell-model problem for an even number of fer-
mions can be formulated in terms of the Lie algebra con-
sisting of all operators bilinear in the valence-shell
creation and annihilation operators. In principle, the
problem can be solved by working entirely within that
algebra. It can be shown that the degrees of freedom of
any exactly separable collective motion (however compli-
cated) must be describable by a "collective" subalgebra of
the full bifermion algebra. The problem, then, is how to
simulate the properties of this collective subalgebra by
means of an equivalent set of operators that act on a bo-
son space. For this purpose generalized Dyson boson
mapping is well suited, because it automatically gives a
boson Hamiltonian of one- plus two-body form, though
at the price of nonhermiticity. However, the complicated
"Pauli-correction" terms of the Dyson boson images al-
ways introduce noncollective ideal-boson creation and
annihilation operators. These noncollective bosons spoil
the simplicity of the resulting boson representation.

For two cases [the Ginocchio SO(S) algebra and the

Sp(4) algebra] Geyer and Hahne have shown that if the
Pauli correction terms of the boson images are mutilat-
ed by omitting the noncollective bosons, the commuta-
tion relations of the algebra are not a+ected, so that the
mutilated algebra is isomorphic to the original algebra.
To such realizations purely in terms of collective bosons
we give the name "skeleton realizations"; Geyer and
Hahne call them "fully collective realizations. " Our
work is partly a systematization and extension of theirs,
but arrives at several new results. First, we generalize
their results to any self-conjugate collective subalgebra.
Second, we insist on the need for equivalence of the boson
realization to its fermion algebra prototype; this is a re-
quirement that goes far beyond mere isomorphism.
Mathematically, equivalence means essentially that the
fermion and boson realizations can be connected by a
similarity transformation; this is just what is needed to
ensure equivalence of all physical consequences. For-
tunately we are able to demonstrate this property for
skeleton boson realizations that are restricted to ap-
propriate "physical" boson subspaces. Finally we ad-
dress the problem of "spurious states, " i.e., boson states
that have no fermion counterparts. We show that, in
principle, spurious states can be identified by operations
intrinsic to the collective boson subspace, without any
reference to the noncollective boson operators.

The plan of the paper is as follows. Section II fixes
some notation and reviews generalized Dyson boson
mapping, to a great extent following the approach of
Janssen et al. Section III shows that a boson realization
of the full fermion algebra trivially gives a Dyson realiza-
tion of any collective subalgebra.

In Sec. IV three simple lemmas are stated, their proofs
being relegated to the Appendix. We hope that reference
to these lemmas will help the reader follow the rather in-
tricate reasoning of Sec. V, in which we show that the
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skeletonized Dyson boson mapping of a collective algebra
is still both isomorphic and equivalent to it. As a further
aid, Fig. 1 gives a diagrammatic outline of the reasoning
of Sec. V.

There are two versions of each skeleton boson realiza-
tion, which we call "right-" and "left-Dyson" mappings.
In Sec. VI we discuss the use of the left-Dyson skeleton
realization of the collective subalgebra, with reference to
the simple-correspondence method of Talmi and Ginoc-
chio and the spurious state problem. In Sec. VII we dis-
cuss the similarity transformation that connects the left-
and right-Dyson boson realizations of the collective alge-
bra. Section VIII summarizes the conclusions.

II. REVIEW OF DYSON BOSON MAPPING

Let a;~ and a; denote fermion creation and annihilation
operators for orthonormal single-particle states nurn-
bered i =1, . . . , q =20. They obey the anticornmutation
relations

We follow Janssen et al. iq defining for the simulation
"Pauli-corrected" boson operators (always denoted by
capitals)

Bi~j =bitj—g b;kbjibki (2.8)
k1

with Hermitian conjugates B;, and boson transition
operators

X—b;kbk, &—b,'kbk; (2.9)
k k

The set of operators IB,~,p, , b, "}h"as the same CR's as
the set

IA;j,p;j, A;j} .

Since both sets are linearly independent, if follows that
the algebras

F =span(B tj,p;, b; ) (2.10)

and

Q~ paj fj

Ia;,a }=Iat, at}=0,
and satisfy

P =span( A;j,p;j, A;j )

(2.1)
are isomorphie, denoted by

P FR

(2.11)

(2.12)

a; i0)=0, (2.2)

where
~

0) is the fermion vacuum. The traceless bifer-
rnion operators

A(J =Qj Q;

A;J =QjQ;

p/j ~& uj +~j +i ~/j

(2.3)

[~ij ~ kl ] ~ik~jl

[bij, bki] = [bj,bki]=0 (i &j,k & l), (2.5)

as well as the vacuum relations

close under commutation, and give a realization of the
Lie algebra SO(2q). Moreover, in its action on the even-
fermion-number part of the Fock space, this realization
also constitutes a particular irreducible linear representa-
tion of SO(2q), characterized by the vacuum relations

A; i0)=0,p; i0)= —5;. . (2.4)

Here
~
0) plays the role of the state of highest weight in

the irreducible representation of SO(2q).
The central idea of Dyson boson mapping is to simu-

late all physical consequences of Eqs. (2.3) and (2.4) by
means of combinations of boson annihilation operators
b; and their Hermitian conjugates b;.. These satisfy
commutation relations (CR's)

into the boson space

Ln =gen(b ) . (2.15)

We use a notation in which, for example, gen(b ) is the
space spanned by all possible products of b operators
acting on ~0). Here, and wherever no confusion can re-
sult, we use a boldface symbol without indices to denote
the set of all generators of a given type. Since Lz is
larger than L&, we actually map L& onto a subspace, the
physical boson space

Lpn=gen(B } . (2.16)

under the unprojected Dyson mapping

A J ~BJ

PrJ~PiJ ~ (2.13)

A; ~b;
which is linear. Thus both P and F" can be regarded as
realizations of the abstract algebra SO(2q).

The isomorphism (2.12) is not yet enough to ensure
that the boson description is physically equivalent to the
fermion description. [As an analogy, the matrices of D'
and D for SU(2) both have the same CR's and both give
faithful representations, but these representations are not
equivalent. ] One has to show that the mapping (2.13) is
induced by a linear mapping of the fermion space

LF =—gen( A ) (2.14)

b, ~0}=0

and are antisymmetric in their indices:

(2.6) This space is invariant under the algebra F:
RF Lp~ =LpB (2.17)

bkl blk (2.7} Usui has shown the existence of a linear operator U that
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maps Lz onto LpB with an "inverse" satisfying UU=1.
These operators linearly transform P into F",as follows:

UA;-U=B; PpB,

UPiJ =PiJ pB ~

UA J U =O'JPpg

(2.18)

This shows that not only is F" isomorphic to P, but F"
(on Lpa ) is actually equivalent to P (on LF ):

F" (on Lpa) =P (on LF ) . (2.19)

FL P (2.21)

where

F =span(b, p, B}. (2.22}

Lpg is not invariant under F; indeed, because bj G F
Lz is the smallest invariant subspace of F that contains
the vacuum state. As Geyer and Hahne point out, this
tends to diminish the convenience of F compared with
F". Nevertheless, F plays an essential role in our
derivations, and can be useful also in practical applica-
tions, as described in Sec. VI.

III. DYSON MAPPING OF COLLECTIVE
SUBALGEBRAS

Consider a set of collective operators, i.e., linear com-
binations of A;, p;. , and A; .. Suppose one wants to con-
struct a dynamical model in terms of such collective
operators, and then isomorphically map the collective
fermion set onto an equivalent set of operators construct-
ed from boson operators. The collective fermion set is
evidently a subset of the algebra P. Since P is an algebra,
the collective set is part of an algebra —either of P or of
some proper subalgebra of P Let A be the. smallest
(proper or improper) subalgebra of P that contains the
collective set of operators. Since the boson mapping
preserves all CR's of P, the same boson mapping of A
will automatically preserve the CR's of the collective
operators. Therefore we can without loss of generality

This ensures that F will lead to the same physical results
as P.

In Sec. III we will extend this result to a class of
subalgebras of P realized by Dyson mapping in terms of
collective bosons. Our method generalizes the Janssen-
Usui method without having to assume its chief result,
Eq. (2.18). Therefore this and other major results can be
precipitated from our more general result by choosing the
particular case where the subalgebra is the full algebra P.

The existence of an alternative mapping, here called
left-Dyson mapping, has been noted by Geyer and
Hahne and earlier by Garbaczewski, who showed that
the following linear mapping of P also realizes the CR's
of the algebra SO(2q):

A t
AlJ ~biJ pij ~pij Aij ~~ji (2.20}

This gives an isomorphism

c = gX',"A.. .
lJ

P.= X0u;,

(3.2)

The collective transition operators p can be chosen as
Hermitian linearly independent combinations of the com-
mutators [c,c ~ ]. Clearly A is self-conjugate in the
sense that

g&A g 6A . (3.3)

This self-conjugacy is essential to much of the develop-
ment of this paper. It holds in many cases of interest,
notably for the Ginocchio Sp(6} and SO(8) models, but it
does not hold, e.g., for Lorazo's" definition of a quasispin
SU(2) algebra with nonuniform pair destruction operators
which are not the Hermitian conjugates of the pair
creation operators.

The generators (3.2} have the CR's of some abstract
Lie algebra,

lg; g, 'j= gf;,"g», (3.4)
k

with structure constants f;". Here g;, g, and g» are
members of the set I c,p, cI. A complete set of coherent
pair creation operators is obtained by supplementing the
c by noncollectiue (though coherent} pair-creation opera-
tors

e'.= A@A",', .
EJ

(3.5)

The corresponding annihilation operators are the Hermi-
tian conjugates of these.

We introduce notations for the images of the collective
bifermion operators under the linear isomorphism (2.13):

c ~c—:gg'J'b;J. ,
/J

p.-p.=—Xk5 V .
1J

(3.6)

The right-Dyson images of the noncollective pair

suppose that the set of operators to be mapped is a
subalgebra of P. Accordingly, we call A the collectiue
subalgebra. The necessity of treating an entire subalgebra
is not entirely welcome, because it severely restricts the
types of exactly decoupled collective motion that can
occur for a given set of shells. For example, it does not
permit collective rotation of particles in a single large-j
shell to be described by an SU(3) subalgebra, though (as
Halse' has recently emphasized) rotation is clearly ex-
hibited by exact solutions of reasonable j"models.

We assume that the generators of

A =span(c, p, c} (3.1)

can be written in the forms

c'.= QX'JA t, ,
lJ
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creation and annihilation operators are defined by

tt~'Rp~ ——g gi]8;t,
IJ

6'g~ntt =—g X$'b,
(3.7}

[ntr, n p ]=5trtt,

[c,cp] =5 .p .

(3.8)

Thus the operators in Eq. (3.8) correspond to indepen-
dent ideal bosons.

From the isomorphism of P and F" [Eqs. (2.13) and
(2.14)] we see that

The operators C, c, N&, and n& are Hermitian conju-
gates of those defined in Eqs (3.5) and (3.6). If we choose
the coefficients X and g so that the partitioned matrix
(X:'g) is unitary, the standard boson CR's hold for the
collective and noncollective operators:

[c,ct]=5 ~

(3.16)

and

p= g(c +n )(c+n)+const. (3.17)

It seems by no means obvious that the noncollective
operators n and n can be omitted without destroying the
isomorphism of A" and A . %'hen Geyer and Hahne
conjectured this result for the Dyson mapping of the
SO(8) bifermion algebra, they were accordingly careful to
check the CR's of the skeleton boson realization. How-
ever, in Sec. V we show, among other things, that this re-
sult is in fact quite general.

The presence of noncollective boson operators in the
realizations so far considered can be seen as follows. One
can express each operator b (or each operator b) in
terms of the complete sets of coherent creation (or an-
nihilation) operators Ic,n ) (or [c,nI ). When the re-
sults are inserted in (2.8) and (2.9) for use in (3.6), one
finds schematically:

C =c —g(c +n )(c +n )(c+n)

A=A" (3.9)
IV. PROPERTIES OF CTD STRUCTURES

where A is the boson algebra defined by

A~=—span(C, p, c) . (3.10)

We call A" the unproj ected right Dyson-mapping of A.
The realization A (on Ltt) can be regarded as a repre-

~ ~

sentation of A, but is not expected to be equivalent to A

(on LF ), just as F" (on Ltt ) is not equivalent to P (on LF ).
If left-Dyson mapping (2.22) is specialized to the col-

lective subalgebra A, a new boson realization immediate-
ly results:

A =A (3.11)

with

A —=span(ct, p, C) . (3.12)

pp=pp (3.14)

which follows from the required hermiticity of p&, togeth-
er with the easily-deduced property

(3.15}

The conjugacy relationship does not depend on the
coefficients X and g being real.

The existence of the boson realizations A and A is
an essentially trivial consequence of the existence of the
corresponding mappings FR and F of the full bifermion
algebra P. In Sec. IV we go beyond these results, to con-
sider what we call "skeleton" boson realizations, which
are realizations in which noncollective boson operators
do not appear.

Of some importance is the "conjugacy" relationship of
AR and A, namely

gR~ A R~gRt~ A L (3.13)

This is obvious for C and c . For p&, we need only the
fact that

For convenience, we abstract some essential features
shared by the realizations of the algebras to be discussed,
and give the name "CTD structure" to any object that
posseses these features. Thus, a CTD structure is a Lie
algebra that has generators of three types, C ("creation"),
T ("transition"), and D ("destruction"), such that we
have the following.

(1) The commutator of generators of types C and D is
of type T.

(2) The commutator of generators of types T and X is
of type X, where X stands for C, D, or T.

(3) The generators are linear operators on a linear vec-
tor space that contains a simultaneous eigenvector of all
D and T generators, with all D generators having zero ei-
genvalue. (This state is called the vacuum state, and
denoted by Io} or

I
0), as appropriate. )

%e often need to consider two CTD structures, say

A'—=span(gc, gT, gD),

A "=—span(gc, g'r', gD ),
(4.1)

(4.2)

that are isomorphic, i.e., have the same CR's. Here the
subscripts C, T, and D indicate the types of the genera-
tors. Consider any matrix element involving generators
of A'. lt can always be written as a vacuum expectation
of a function of the generators of A ', in which each term
contains exactly as many C factors as D factors; for ex-
ample,

By the analogous matrix element for A ",we mean

M"=(o"
I f(sc,sT', gD) I

o")

(4.3)

(4.4)

for the same function f. We now have the following re-
sult.

Lemma M ("matrix element" ) If correspond. ing type-
T generators of two isomorphic CTD structures have
equal vacuum eigenvalues, i.e.,
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k. Io), g,".Io"}=k."10- (4.5)

with k' =k", than aH analogous matrix elements are
equal.

The following is an immediate, corollary.
Lemma Z ("zero ). Under the conditions of Lemma

M, if P is any function of the generators of type C, then

~

g')=P(g' )
~

0')=0 P"((}(g")
~

0")=0,
where P" is the orthogonal projector on the space

L":—gen(gD ) .

(4.6)

(4.7)

L'=ge"(gc) (4.8)

generated by the C-type generators of A'. Then L' is in-
variant under A ', that is

A'L'=L' . (4.9)

The three lemmas are proved in the Appendix.

V. SKELETON BOSON REALIZATIONS
OF COLLECTIVE SUBALGEBRAS

Since we need to define a variety of different spaces, we
extend the system of notation so that L„(x=F, B, PB,
CF, CB, PCB, MB) is a linear vector space, P„ is the or-
thogonal projection operator on L, and d„ is the dimen-
sion of L„. Figure 1 provides a guide to the logical flow

of this section.
Our aim is to find realizations in which only collective

boson operators enter. Accordingly, we first define the
collectiue boson space as

Lcn —=gen(c ) . (5.1)

Finally we state a result that is often useful for deduc-
ing the invariance of certain spaces under the elements of
CTD structures.

Lemma I ("inuariance"). Let A' be any CTD struc-
ture, and define the space

After writing down the CR's of A from those of the iso-
morphic algebra A, Eq. (3.4}, we pre- and post-multiply
by Pcs, and use Eq. (5.3) to get the CR'sof A

A Lcs —Lcs (5.8)

and that no smaller vacuum-containing subspace of Lcs
is invariant under A

Now, to make a skeleton realization out of A ", we be-
gin by noting that the physica! collectiue boson space,
defined by

LpcB=gen(C ),
is invariant under A",

RA Lpcs ——Lpcs s

(5.9)

(5.10)

by lemma I. Typically, neither Lcs nor Lpcs is a sub-
space of the other, because dcs & dpcs while noncollec-
tive bosons are present in Lpcs but not in Lcs. Again

Lpcs is the smallest subspace of Lz that is invariant un-
der A" and contains the vacuum.

We now define skeleton generators

g
a P gnP (ga~ AR)

spanning an algebra

(5.11)

A "=span(g ") . (5.12)

This algebra is isomorphic to A, as can be seen by writing
down the CR's for A from the CR's (3.4) of the iso-
morphic algebra A, pre- and post-multiplying by Pcs,
and using conjugacy as expressed by Eq. (5.4). We define
the model boson space, which is generated by skeleton col-
lective boson creation operators,

LMa=gen(C ), (5.13)

(5.7)

In deducing isomorphism rather than homomorphism,
we assume that the set lg I is linearly independent. It is
clear that

Lemma I immediately gives

A Lcs ——Lcs .L (5.2)
and which, by lemma I, is invariant under A

A LMs ——LMs .R (5.14)

and

PCB PCBg PCB (5.3)

CBg CBg CB (g (5.4)

through the conjugacy relation (3.13).
Equation (5.3} can be shown to imply that A can be

represented by a skeleton version of A, free of noncol-
lective operators, as follows. Define skeleton generators

g =Peag Pcs (g E A ) (5.5)

Clearly, no smaller vacuum-containing subspace of L~ is
invariant under A . Equation (5.2) can be expressed by
means of projection operators, in at least two ways,

A (on LcF ) = A" (on Lpcn } . — (5.15)

Our goal now is to extend this equivalence to the skeleton
representation A " (on LMn).

The representation spaces have the same dimension,

Thus A" is a linear representation of A on the space
LMs.

As we noted in Sec. II, P (on L~) and F (on Lpn) are
not merely isomorphic, but equiualent in the sense that an
invertible linear mapping of Lz onto Lps connects them.
The same mapping automatically connects the collective
subalgebras A (on Lc„) and A (on Lpca) and estab-
lishes their equivalence:

spanning an algebra Ms CF (5.16)

A =—span(g } . (5.6} To see this, suppose that some linear combination
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R = span(c~. p.t:) A - span[c~, p.c} FR = 0 R" span(C+. p.c)

S

span(cr. P (.'}

Lt-B - gen(c~)
j

R Lt fpLt-B
L 1"-span(('. p.c)

LpCB = gen(t-t)

nj to R RRLpCB ~ L pCB

1 LCB = LCB
L B-gen((' ~}

RL AR conj to AL

LMB LMB
R

LCF gen(ctl

MB~ PMB

M, Z

M.Z

1 (on LMB} A[on LCF)

(LMB[on LMB) ~ A(on LCF}

FIG. 1 L gical flo~ of Sec. V. M, Z, and I indicate the use of the corresponding lemmas to obtain the result in the block below
S indicates specialization of a representation to a subalgebra. (5.4) refers to py. (5.4). lsomorphism of algebras is denoted by =;
equivalence by:—.Skeleton algebras are denoted, e.g. by A ", rather than the A used in the text.

f(c t)
~

0& of vectors in Lc„vanishes. Then, with A'= A

and A"= A "so that

L"=gen(c )=Les&LMB

in lemma Z, it follows that (((C t)
~

0)=0. Consequently,
dMB &dc„. The reverse inequality follows by similar
reasoning with A and A " interchanged, so establishing
Eq. (5.16).

Now let

dCF }

dcF} .

By taking matrix elements it follows that

(5.21)

(5.22)

TT =PcF (5.23)

By solving Eqs. (5.21) and (5.22) through the use of (5.23),
we get

( Iy &—= ([ (c'}Io& m=1 dcF (5.17)

I ~P )=—([) (C )~0), m=1, . . . , dcFI (5.18)

be an orthonormal basis for LC„. The corresponding set
of vectors in LM& is

&=T~P ) (m=1, . . . , dcF)

, dcF}

which then lead to

TT=PM~ .

(5.24)

(5.25)

(5.26)

I(P
~

=(0
~ P (c), m =1, . . . , dcFI (5.19)

is a basis dual to Eq. (5.18), so that the biorthonormality
condition

This set is linearly independent (and hence a basis for
LMa} because if some linear combination of Eq. (5.18}
vanishes, by lemma Z the same linear combination of Eq.
(5.17) also vanishes, contradicting the assumed orthonor-
mality of Eq. (5.17). Note that

It is quite appropriate to consider T as an inverse of T,
even though each operator maps one space onto another
space, rather than onto itself.

Now consider how generators behave under the trans-
formation implied by (5.21) and (5.22). Let g be any gen-
erator of A, and let g

"be the corresponding generator of
A " under the isomorphism. We calculate a matrix ele-
rnent between vectors of biorthonormal bases for LMB..

(5.20)

is satisfied. This result follows by applying lemma M to
the orthonormality of the kets (5.17) with A'= A and

Transformation operators are now defined by

(5.27)

The first equality follows from (5.24) and (5.25), while the
second equality results from lemma M by taking A'= A
and A "=A ". Since both bases are complete,
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PMB . (5.28)

The projection operator is needed because we make a
convention that T gives zero when it acts on the orthogo-
nal complement of LMB in LcB. Equation (5.28) shows
that

A (on LC„)=—A" (on LMB), (5.29)

so these representations lead to physically equivalent re-
sults. By (5.21) and (5.22) the transformation preserves
products and linear combinations, so one can transform
any function of generators by taking the same function of
the transformed generators. It is interesting to note that
the proof of Eq. (5.29) has not used Eq. (2.19). Therefore
by taking A =F in Eq. (5.29), and observing that F" is
the same as F", one obtains a proof of Eq. (2.19) that is
independent of the Janssen et al. derivation which used
the Usui operator.

There is another approach to proving the equivalence
(5.29). A theorem given by Racah states' that if two ir-
reducible representations of a semisimple Lie algebra
have the same highest weight, they are equivalent. It is
clear that A (on LcF) and A " (on LMB) have the same
highest weight, because this is determined by the vacuum
eigenvalues of the operators p& and p&. The irreducibility
of either representation (say A ) is easy to prove if A

contains a Hermitian generator JV whose eigenvectors
(corresponding to eigenvalues N) are of the form

fthm(c t)
~
0), where f~(c ) is a homogeneous polynomial

of degree N in the collective creation operators. (The to-
tal fermion number operator is a natural candidate for JV,
but if it is not available in A there may still be other pos-
sibilities. ) If A contains JV, one can connect any two vec-
tors in LcF, say g, (c )

l
0) and $2(c ) 10~ by applying

generators of A in the following way.

(1} Construct a set of polynomials in JV; say Ptv(JV),
each of which is an orthogonal projection operator on the
subspace of vectors of homogeneous degree N in c .

(2) Calculate Ptv (JV)g, (c )
~

0) for a value of N chosen
so that the result does not vanish.

(3) Apply t(t, (c ) =g, (c) to this result, to get a
nonzero multiple of

~

0).
(4) Apply $2(c ) to obtain a nonzero multiple of

y, ("")
~

0).
This approach also applies if A is a direct sum of sem-
isimple algebras, each of which includes an JV' generator.
The question of the irreducibility of A (on L cF ) is also of
interest because it influences the extent to which the col-
lective dynamics is determined by the Clebsch-Gordan
coefficients of A via the Wigner-Eckart theorem.

From the transformation (5.28) a new skeleton repre-
sentation, related to A rather than A ", can be con-
structed. The Hermitian conjugate of (5.28) applied to
the basic generators gives

PMBg ( PMBg PMB )
~ L ~ L (5.31)

(5.32)

is a pseudoskeleton representation of A, and is actually
equivalent to A:

A (on LMB)—:A (on LcF) (5.33)

A is a representation in spite of the fact that LMz is
not invariant under A . The representation A carried
by LcB does not decompose into A " and a representa-
tion on the orthogonal complement of LMB in Lc~. Only
because A is not self-conjugate can this situation arise.
It would be possible in principle to make A self-
conjugate by a similarity transformation, but doing so
would violate the spirit of closed-form Dyson mappings
and embark on the Holstein-Primakoff approach, with its
operator square roots.

VI. SIMPLE CORRESPONDENCE

The isomorphism between A and A maps each fer-
mion pair-creation operator c onto an ideal boson
operator c . This resembles the "simple correspondence"
approach of Ginocchio and Talmi.

By generalizing to subalgebras some more ideas that
Janssen et al. developed for mappings of the full algebra
F, we will show that A (on LCB) can be useful for physi-
cal calculations, even though it is not equivalent to A.
Suppose the fermion Hamiltonian can be written as

H =h (c,p, c), (6.1)

where h is a function with the operators written in stan-
dard CTD order. Then we can construct an analogous
boson operator

H =h(c,p, C) . (6.2)

This is suggested by the isomorphism of A and A, but it
is not in any sense implied by it. In fact, because A is
not equivalent to A there are no general rules for trans-
forming products of the generators that appear in (6.1).
Suppose we solve the eigenvalue problem for H, i.e.,

h (c,p, C)g(c )
~

0)=EQ(c )
i
0) (6.3)

in Lcz. Then, by lemma Z with A'=A and A"=A
Eq. (6.3) implies

h (C,p, c)g(C )
i
0) =Eg(C )

i
0) . (6.4)

where g is the element of A that corresponds to g in
the isomorphism of A and A. It follows that the re-
striction of A to LM~,

:span(PMBc PMB PMBPPMB PMBCPMB)
LMB

T c ~T =PMBc ~,
T c& T =PMBC~

T p&T =PM~p

(5.30}
h (C,p, c)PMB = Th (c,p, c)T= TOT (6.5)

Since A" (on LMB) is equivalent to A (on LcF), Eq.
(5.28) applies, and so

Thus the conjugacy relation between A" and A, Eq.
(3.13), enables us to write

and

P(C ) ~0)=TQ(ct)
~

0) . (6.6)
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By Eqs. (6.5) and (6.6), Eq. (6.4) becomes

TPTTQ(c )
~
0) =ET/(c )

~
0),

i.e., by Eq. (5.23),

Hg(c }
~

0) =Eg(c }
~
0) . (6.7)

(h(C, p, c) E, )f, (c ) ~—0)=0 (6.10)

in Lca. If E, is nondegenerate, it follows [since Eqs.
(6.10) and (6.4) are eigenvalue problems for the same
operator] that

g, (C )
i
0) ~f,(c )

i
0), (0

i g, (C) ~ (0
i f, (c) . (6.11)

If one chooses the phase and normalization of the solu-
tion of (6.10) so that

(0
~ f,(c)g, (c ) (

0}=1, (6.12)

This result can also be obtained directly froin Eq. (6.4) by
use of lemma Z, which assures us that the state in Eq.
(6.7) does not vanish, provided that

l((C')
~

0)~0. (6.8)

Thus each solution of Eq. (6.3) that satisfies Eq. (6.8) be-
longs to a physically meaningful energy. For any two
states satisfying Eq. (6.8) for energies E, and E, and for
any operator 0,
&0

~ q, (e}f(-",p, -.)q, (-")
~

o)

=(0
~ P,(c)Q(C,p, c)lt, (C )

~

0) (6.9)

=(0
i g, (C)Q(c,p, C)g, (ct)

i
0),

by lemma M applied to the mapping from A" to A
Thus, whether one uses A or A, calculation of a tran-
sition matrix element seems to require construction of at
least one of the states from the complicated "Pauli-
corrected" operators C or C. However, one can avoid
such explicit construction by a generalization of the
method of left and right eigenvectors that was suggested
by Janssen et al. First one solves (6.3) for the eigenval-
ue E„so that P, (C )

~

0) satisfies (6.4). Next one solves

term to the collective boson Hamiltonian to shift the
spurious states to high energies so that they cannot con-
taminate the physical results. Perhaps one could use the
Casimir operators of the group generated by all the pti
operators; but one would first have to know what eigen-
values of these Casimir operators correspond to physical
states. An alternative method has been described by
Geyer et al. ' More work on spurious states is clearly
needed.

VII. SIM/LARITY OF A and A"

Both A" and A" are equivalent to 3, as we see
from Eqs. (5.29) and (5.33). We show that the similarity
transformation that connects them directly is

K=T T. (7.1)

We solve (5.28) for g by using (5.23), and then insert the
result in (5.31) to find

g ~=T~Tg "TT~ . (7.2)

The notation K ' for TT~ is justified by the calculation
[using Eqs. (5.23) and (5.26)]

T TTT =T PCFT =(TT) =PMa,

together with the fact that K maps LMB onto itself. Then
(7.2}becomes

gL KIRK
—1 (7.3)

Because A" and A" share the same transition
operators p &, Eq. (7.3) immediately implies that K leaves
these invariant, so that

[K,pic]=0 . (7.4)

(7.5)

In the case of the Ginocchio SO(8} model, this result im-
plies that K is invariant under SO(6), which is the algebra
spanned by the generators pti in the SO(8) model. We
have shown elsewhere how this constraint facilitates ex-
plicit construction of K. The operator K is Hermitian,

K=K

one can be sure that

(0
~ f, (c)=(0

~ lt, (C), (6.13)

If 8 is any Hermitian operator constructed from the gen-
erators of 2, hermiticity of its simple-correspondence im-
age

so that evaluating the right-hand side of (6.9) no longer
presents any special difficulty. Note that Eq. (8) remains
a necessary test for spurious states. Questions of the ex-
istence of solutions of (6.3) and the possibility of degen-
eracy remain to be studied.

The calculational scheme outlined here makes use only
of collective bosons, and is in principle capable [via Eq.
(6.8)] of detecting spurious states without going outside
the algebra intrinsic to the collective bosons. This overs
a possibility of constructing boson models with internal
control of spuriosit;y. For this purpose, a more con-
venient test for spurious states is highly desirable. It
seems possible that the "Majorana operator" method re-
cently described by Park' for F could be generalized to
subalgebras. If so, one could add a one- plus two-body

8= TOT

is equivalent to

e= TeT =T'OZ'

(7.6)

By eliminating 8 through the action of T, T, and their
Hermitian conjugates, we find

O=TT OT T=K 'NC .

Since this argument is reversible,

8=8 [K,O]=0 . (7.7)

This means that the hermiticity of the simple-
correspondence image of a fermion Hamiltonian depends
on its symmetry type, defined in a certain sense. Ginoc-
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chio and Talmi have noticed this fact in some special
cases. Using the simple-correspondence rule c ~ct,
they ask when a fermion Hamiltonian can be replaced by
a Hermitian one- plus two-body boson Hamiltonian that
is equivalent in the sense of reproducing some "collec-
tive" subset of the fermion energies. They conclude that
among the class of Hamiltonians considered in the SO(8)
model, only those with SO(6) symmetry have Hermitian
boson equivalents. We have given a more detailed treat-
ment of the question in Ref. 2.

Within LMz, every expectation value of K is positive,
so E has only positive eigenvalues. The only zero eigen-
values of K correspond to states outside LMz, which are
annihilated by T. The eigenvectors of E have interesting
transformation properties. Suppose

~

k} is an orthonor-
mal eigenbasis of K in LMz, so that

K
~

k)=k
~
k),

then

(7.8)

Many types of collective motion can be kinematically
described in terms of collective bifermion operators. If
the collective bifermion operators close under commuta-
tion, to form a self-conjugate Lie algebra, a skeleton
kinematical description —i.e., one in terms of collective
bosons only —always exists. If the fermion Hamiltonian
is a one- plus two-body function of the collective bifer-
mion operators, the collective fermion dynamics can be
described in terms of a one- plus two-body boson Hamil-
tonian, which is in general non-Hermitian. The boson
dynamics is exactly equivalent to the collective fermion
dynamics, provided spurious states are discarded.

Thus we see that some aspects of the IBM have a great
degree of universality: every self-conjugate bifermion col-
lective algebra can be exactly modeled by a system of col-
lective bosons with a one- plus two-body Hamiltonian.
However, the possibility of using a boson Hamiltonian
that is also Hermitian is much less general, and depends
on whether the fermion Hamiltonian has a certain sym-
metry property [see Eq. (7.7}and Ref. 2].

The derivation of these results involves restricting the
Dyson mapping of the full bifermion algebra to its collec-
tive subalgebra. Subsequently the Pauli correction terms

(k'
I
TTt

~

k) =k (k'
I
k) =k5k k . (7.9)

Thus the fermion states
~

k )—:T
~

k) are also orthogo-
nal, though not normalized in general. We easily see that
the orthogonal fermion set [ ~

k ) I is such that its boson
image under T is also an orthogonal set (which happens
to be normalized). Thus, although T is not unitary, there
does exist a basis I ~

k ) I whose orthogonality is
preserved under T; we call this an invariantly orthogonal
basis under T. The interpretation of k as the norm of

~

k ) confirms that k cannot be zero or negative if
~

k) is
"physical, i.e.," lies in LM~.

Although K reliably distinguishes between physical
and spurious states, it is in general diScult to construct.
This again highlights the need for a simple operator like
the Majorana operator that Park' suggested for this pur-
pose.

VIII. CONCLUSIONS AND OUTLOOK

of the Dyson images must be mutilated by omitting all
terms that refer to noncollective bosons [see Eqs. (3.16)
and (3.17). A major surprise is that the subtle informa-
tion contained in the Pauli correction terms so well sur-
vives this mutilated that it is still always possible to iden-
tify the spurious states by operations carried out entirely
within the space of the collective bosons.

For any given collective algebra, there are a variety of
boson realization; these are divided into two main classes,
left and right, according as the burden of the Pauli
corrections is carried by the boson images of the pair an-
nihilation operators or of the pair creation operators.
Left and right realizations are useful in complementary
ways. We emphasize that the representation-theoretic
equivalence of boson and fermion realizations of the col-
lective algebra is necessary for their physical equivalence;
identical commutation relations are not enough. This
means that the Marumori approach, which sets up a
one-to-one correspondence between fermion and boson
states, plays an essential role and should not be neglected.
Our insistence on equivalence of realizations makes it
possible to maintain consistently the crucial distinction
between physical and spurious states in the collective bo-
son space. It might be helpful if the group-theoretical
analysis of the physical and spurious boson spaces that
was initiated by Park' could be extended to physically
interesting collective subalgebras [e.g., SO(8) and Sp(4)]
of the full bifermion algebra. Alternatively, the method
of Geyer et al. '4 seems to be viable for such cases.

Heuristically, the success of any interacting boson
model suggests the existence of a self-conjugate bifermion
algebra whose generators suffice to express the Hamil-
tonian, at least approximately. The self-conjugacy re-
quirement for boson mappability may seem innocuous,
since it must presumably already be satisfied if the Her-
mitian fermion Hamiltonian can be expressed in terms of
the generators of the algebra. However, in fact, self-
conjugacy is severely restrictive. For example, it rules
out small bifermion algebras that contain coherent pair
creation operators in which different shells are weighted
nonuniformly. Thus with realistic pair structure, self-
conjugacy forces one either to use a large collective alge-
bra or to give up the possibility of skeleton mapping the
entire algebra. In these circumstances, one may resort to
more ad hoc methods in which the fermion commutation
relations are only required to hold on a selected part of
the fermion space. Ginocchio and Talmi's work on bo-
son mapping of SO(8) and the work of Dukelsky et al. '

on boson mapping of deformed states provide examples
of this. Reference 14 uses the interesting idea of mapping
only the number-conserving part of the algebra.

Of course the use of the boson mapping does not en-
able any calculations that could not be done in the origi-
nal fermion formulation. Indeed, as the example of the
fermion dynamical symmetry model' shows, the fermion
formulation has the advantage of being able to describe
noncollective states, for example broken pairs resulting
from the Coriolis antipairing effect at high spin.

This work was supported by the National Science
Foundation.



37 SKELETON BOSON REALIZATIONS OF COLLECTIVE SUBALGEBRAS 2185

APPENDIX: PROOFS OF LEMMAS

1. Proof of lemma M

One can use the CR's of A' to arrange the factors in
each term of f (gc, gD) in the standard order gcgTgD.

I

Because of the isomorphism, the same process applied to
f (g'c, g'T', gD ) gives the same combination of products in
the standard order g&'gr'gD. When this standard order is
used, terms that contain D-type factors do not contribute.
The surviving terms must be of the form

gTk I
o')=(o

I gTl I
o )(o

I gT21o ) (o
I gTk I

o )

=(o
I gTl 10 )(0

I gT2 I0 ) (0
I gTk 10 )

—(o
I gTlgT2ST3 gTk Io") (Al)

In the second equality we have used the equality of the
corresponding vacuum eigenvalues, which can also be
written as expectation values. Eq. (Al) proves the lem-
ma.

2. Proof of lemma Z

=(o'
I gD gD (((gc)10')=0

for every selection a&, . . . , ak of the D-type generators.
Equation (A2) shows that (()(gc)

~

0") is orthogonal to all
vectors of gen(gD ); this does not always imply that p(gc)
vanishes. So the result is correctly expressed by

P"((i(gc)
~

0")=0, (A3)

where P" is the orthogonal projector on the spaceL":—gen(gD ).

This is an immediate corollary, and holds under the
same conditions as lemma M. The proof proceeds by ap-
plying lemma M to show that

(o"
I gD gD 4(gC)l o")

3. Proof of lemma I
The invariance of L =gen(gc) under generators of

type C is obvious. Consider the action of a type-T gen-
erator on a basis state of L, schematically

gTgClgC2 ' ' ' &gCk I
o)

We can apply the CR's of the algebra to move gz one
step to the right. The commutator [gT,gc, ] is a type C
generator, so the resulting state is in L provided that gT
acting on a product of k —1 factors g&2, . . . , g~I, gives a
vector in L. Since gT ~

0) is in L, induction on k shows
that L is invariant under generators of type T.

Finally, consider a product of the type

gDgClgC2 ' ' gCk I
o)

When gD is moved one step to the right, the commutator
introduced is of type T and makes a contribution in L, by
the result of the previous paragraph. Again gD ~

0) is in
L, and induction on k shows that L is invariant under
generators of type D.
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