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Monopole strength as a measure of nuclear shape mixing
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A survey of observed EO transition strength shows that some of the largest strength occurs for
transitional nuclei whenever large mixing between almost spherical and largely deformed shapes re-
sults. This leads to the conclusion that large EO strength is not an indication of coexisting shapes
but of strong mixing between nuclear states with largely different radii. In addition, we discuss the
variation of EO transition rates in regions where intruder states become the nuclear ground state.
We illustrate this by recent results in the 4 ~ 100 region concentrating especially on the anomalous-
ly large monopoles strength and its variation in the even-even N =60 isotones as compared with the

N =58 isotones.

I. INTRODUCTION

The monopole operator is the quantity whose diagonal
matrix elements give information about nuclear radii (iso-
topic and isomeric shifts). The results from nondiagonal
matrix elements, such as electromagnetic transitions in
nuclei (EO transitions), are more difficult to interpret in a
simple way. Sometimes' ~¢ it has been suggested that the
observation of large EO strength is in itself an indication
for the occurrence of shape coexistence. Here and in
some of the above references too, it is shown that large
EOQ strength is mainly a result of strong mixing of states
with largely different shapes and not an indication in it-
self of shape coexistence.

The measurement of monopole transitions in nuclei off
the line of stability has only recently been possible for a
large number of nuclei through the advances in experi-
mental techniques such as superconducting solenoidal
magnets’ and mini-orange spectrometers.® The emer-
gence of these techniques and the ability to measure level
lifetimes as low as a fraction of a nanosecond through, for
example, the use of the centroid shift technique, have al-
lowed the determination of the absolute rate of EO transi-
tions, i.e., a determination of the monopole strength.
Now, by combining results from several different tech-
niques, it is possible to systematically map the variation
of the monopole strength in a series of nuclei which are
known to possess coexisting configurations.

In Sec. I1, we first review the methods used to calculate
EOQ transitions (shell model, collective geometric model,
interacting boson model). We then show that some of the
largest EO transitions occur in transitional nuclei where
large mixing results between an almost spherical and
largely deformed shapes. Although a large monopole
strength can be expected for the deexcitation of a beta vi-
bration in a nucleus with permanent deformation, EO
transition probabilities between unmixed coexisting
shapes with large differences in deformation will probably
be small. This is well illustrated by the recent measure-
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ment of the EO strength for the transition between the 0%
fission isomer and the ground state in 23%U. These two
states certainly have a large difference in deformation.
However, their individual purity (.e., the fact that they
are not mixed) is reflected in the monopole strength
which was measured to be one of the smallest known
values (p?>~1.7X107%) by Kantele et al.’ This leads to
the conclusion that large EO strength is an indication of
strong mixing between nuclear states with largely
different radii. In Sec. III, we point out that the present
interpretation is consistent with recent on-line isotope
separator (ISOL) and in-beam conversion electron mea-
surements in the 4 ~100 region. In doing so, we show
that there is an anomaly in the EO strength for the N =60
nuclei compared with other nuclei in the 4 ~ 100 region.
We trace the anomalously large jump of a factor of ~20
in the monopole strength in going from N =58 to N =60
isotopes to the fact that the states involved in the N =58
nuclei have a spherical ground state (GS) and a dynami-
cally deformed excited state, while the N =60 nuclei have
a spherical state as the excited state and the GS has per-
manent deformation.

II. E0 TRANSITIONS AND SYSTEMATIC BEHAVIOR

A. EO transition units

Depending on the particular nuclear model, such as
the shell model, the collective geometric model (quadru-
pole vibrator, axial rotor, etc.), or the interacting boson
model that is used, the EO strength can be calculated.
The quantity, mainly used to characterize EQ transitions
is the p? value, which has been defined by Bohr and Mot-

telson'® as
2
2
, <¢f‘2"’jr/’ ¢U>

= , (2.1)
P eR?

where R denotes the nuclear radius.
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Within the nuclear shell model in its simplest version,
single-particle EO transitions ( | /,j)— | 1,j)) are strictly
forbidden (they follow the shell-model selection rules
AN ==2, where N denotes the major harmonic oscillator
quantum number), implying a transition energy of the or-
der of 27iw;~20 MeV. In the more realistic calculations
of a nuclear shell-model potential, differences in radii for
the orbitals of a given major shell will occur and thus
give rise to small EQ transitions, even within a single os-
cillator shell.

Low-energy monopole transitions can, however, result
because of pairing correlations in the nuclear wave func-
tion. When orbitals with N different by one unit are ad-
mixed in the pairing wave function, a shell-model esti-
mate can be obtained.'®~!'? This results in a value that
has been proposed as the EO single-particle unit (SPU) by
Bohr and Mottelson'? and is given by

pspu>=0.54"2*=(1 SPU) , (2.2)

and whose general trend is shown in Fig. 1(a) (for the Sn
nuclei) where it is compared to other types of estimates.
The known experimental data for the 50 < A < 160 mass
region will be discussed in Sec. III.

To the lowest order, the EO operator for harmonic
quadrupole vibrational motion in nuclei can be written

aSlZ— 14

3 2 2
T(EO)=-—ZeR , 2.3
(EQ) o Ze % |, | (2.3)
where the a, denote the expansion coefficients for the nu-
clear surface. This operator results in a selection rule:
An=0,%2, where n is the number of quadrupole pho-
nons. The EOQ transition from the two-phonon state (03 )

W0E T T 17 1T T 3 10 T T 3
E @) 3 F b) 3
102 — . 102 — / —
: - - /7
- o a 7
o rotor - / E
T T T T ] i / )
= spu. | & i / T
x (Vx - -
NQ. a /
o L \/\ . 10 / .
o sph.vibr. ] o / 5
L 4 L / 4
- L -
/

1 | N N . | 1 J 1

112 114 16 18 120 Qo 01 0.2 03
A f

FIG. 1. (a) Schematic representation of the shell-model esti-
mate (SPU), the spherical quadrupole vibrational estimate
(sph.vibr.), and the B—g axial rotor estimate for p* and for the
110 < 4 < 120 mass region. (b) Representation of p? using the
mixed wave functions of Egs. (2.14) as a function of the equilib-
rium deformation S, characterizing the deformed state.
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to the ground state (07 ; the zero-phonon state) results in
a spherical vibrator value

2

3
pgph,vibr. =3

2
o Z? (2.4)

rms ?

where B, is the root-mean-square value related to the
B(E2;2} —07) transition, in a harmonic limit, via the
relation

[B(E2;0f —>21)]'
(3/4m7)ZeR?

For the Sn region, as an example, where B,,~0.12
[see Fig. 1(a)], the value of pgph_vib,. is very near to, but
slightly smaller than, the single-particle estimate.

For an axial rotor, volume conserving vibrations
around the quadrupole equilibrium value S, give rise to
nonvanishing EO transitions. There, using the same
operator as in Eq. (2.3), but transformed into the intrinsic

Brms= (2.5)

system, one obtains'3 13
p2_ =0 (2.6)
ph_.,=4(3/4mZ*BHB)? 2.7
(B)=V#/2VBC) . (2.8)

More detailed expressions for deformed nuclei (axially
nonsymmetric, etc.) have been discussed by Rasmussen'’
and Davydov and Rostovsky.'®

The expression in Eq. (2.7) can be rewritten as

B(E2;07_2})4B5
e’R*
Starting from the EO operator, as described within the
interacting boson model,'” EO transitions can easily be
described, especially in the dynamical symmetries for

even-even nuclei (for modification towards odd-mass nu-
clei, see Ref. 18). The EO operator

2 —
Pp—g=

~1-2 SPU . (2.9)

T(E0)=Byd *d) V" +yys*5)?, (2.10)
can be rewritten as
T(E0)=y,N +Byid
B
=—‘7%ﬁ*/3(',ﬁs, (2.11)

with By=PB,/V'5—¥, fi;(4) the s(d) boson number opera-
tor, and N the total boson number operator.

Within the vibrational limit [ U (5)], EO transitions are
strictly forbidden. In the SU(3) limit, the more important
“B” band 0" to “ground band” 0% EO transition matrix
element becomes

((2N,0)K =0, I =0| T(EO) | (2N —4,2)K =0, 1 =0)

2
8 (N—1? NeN+1 |

9 (2N —-1)> (2N -3)

—_B, (2.12)

Finally, within the O(6) limit, the selection rules are
Ao =0,%2, A7=0 (no change in the seniority quantum
number) and one calculates
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([N],0=N, 7=0,1=0|T(EO)|[N],o0=N —2,7=0,1=0)=—By———[(N +2)(N —1)(N +3)]'/%.

Starting from expressions (2.12) and (2.13), a good esti-
mate of EO transitions in many even-even nuclei can be
obtained using only one parameter in the EO operator,
i.e., By More detailed calculations require the full IBM
Hamiltonian as well as the explicit proton-neutron de-
grees of freedom in the IBM-2."°

B. EO transitions for mixed states

The expectation value of the EOQ operator [see Eq. (2.3)]
within a deformed state gives a measure of the nuclear ra-
dius related to this deformed state. Since the wave func-
tions, corresponding to Ot states with largely different
deformation are only poorly overlapping, only that over-
lap region is relevant when calculating nondiagonal ma-
trix elements of the EO operator and will normally result
in a very small value (see the results of Ref. 9 for an ex-
perimental verification of this point). If such intrinsic
states, corresponding to largely different equilibrium de-
formation (quadrupole, octupole, etc.) result in a single
nucleus at low energy (E, < 1.5 MeV) with an important
potential energy barrier in the deformation coordinate
separating the equilibrium shapes, we speak of shape
coexistence. With a decreasing barrier (and thus for ex-
perimentally close-lying O levels with typical energy
separations of 0.2-0.4 MeV) mixing will increase and
modify the EO transition matrix elements in an important
way.

Assuming, in a schematic way, a maximal mixing be-
tween the two unperturbed configurations, the spherical
(| sph.)) and deformed (|def. ) ) basis states, one obtains

|0F Y=1/V2{ | sph. ) + | def. )} ,

— (2.14)
|0F)=1/V2{|sph.)— |def. )},
resulting in a p? value of
P ;=3B 4er )} (3/4m)Z7 (2.15)

where, in order to obtain the latter expression, we have
neglected the small matrix element connecting states with
wave functions localized at largely different values of the
deformation coordinate.

In Fig. 1(b), we illustrate, for the Sn nuclei, the varia-
tion of p? as a function of the equilibrium deformation for
the deformed shape. Here, it becomes clear that for
B=~0.22, p>~0.1 values can result. Only for the strong
mixing between such nuclear configurations do very fast
EQ transitions indeed occur. These are precisely the cases
such as *8Sr, 190Zr and 92Mo, as we discuss in more detail
in Sec. II1.

Besides the nuclei discussed here, large EO transitions
do occur without invoking the mixing arguments such as
in light nuclei 2c 180 38Ar, 6Nj, and in several
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lanthanides'® and actinides (the latter two classes since
EO transitions from a 8 band head to the 0" ground state
can often be strong). We do not discuss such cases in the
present article.

In extending the above picture of possible mixing be-
tween states with largely different equilibrium values for
the nuclear deformation, we can study the following
schematic model. Whenever in a series of isotopes (or
isotones) one considers a spherical ground state [dashed
line in Fig. 2(a)] and an excited intruder configuration
[solid line in Fig. 2(a)] which corresponds to a much
larger deformed equilibrium shape, compared to the
spherical ground state, the EO transition rate will show a
most interesting behavior. We show this for a schematic
model where the intruder state has a large but otherwise
constant equilibrium deformation (as a function of N or
Z), the spherical state a small and constant equilibrium
value, and crossing the ground state at some point. A
similar picture would apply to odd-mass nuclei as well. If
no mixing (or very weak) near the crossing point occurs,
almost vanishing EOQ transition rates result. On the other
hand, if large mixing occurs near the crossing point so as
to get wave functions for both the O% states as displayed
in Eq. (2.14), large EO transition rates do occur in the
crossing nuclei [Fig. 2(b)]. Although Fig. 2 is highly
schematic, more realistic situations (see the mass 4 ~ 100
region in Sec. III) indeed show such a behavior.
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FIG. 2. (a) Schematic model for relating EO transitions and
isotopic shifts where an almost spherical ground state (dashed
line) and a deformed intruder state (solid line) cross. In the left
part, the figure is drawn without mixing, on the right-hand side,
large mixing is considered. (b) Similar figures but now for EO
transitions between the excited and ground state 0 levels.
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III. MONOPOLE STRENGTH: SYSTEMATICS
AND APPLICATION TO THE 4 ~ 100 REGION

In Fig. 3, we indicate the experimentally known
p3,x 10* values for the 50 < 4 < 160 mass region. Here,
we exclude, however, most of the EO transitions in
strongly deformed rare-earth nuclei (for such values, see
Ref. 20). As can be observed from Fig. 3, most EO transi-
tion strengths are well below the p2py; values (dashed line
in Fig. 3). Therefore, the unit p;y=pipy X 1073 (Where
MMU denotes milli monopole unit) is often a better unit
of the measure of EQ strength. The few exceptions
(around the A4~100 region) are the nuclei
%83r,107r,102Mo, where two close-lying 01 levels are
present and where a large shape change for the unper-
turbed OF levels is indeed expected.>*>¢ This
phenomenon is also at the origin of the EO transitions be-
tween the 0] and OF levels in nuclei near **Zr (Refs. 1
and 4) as well as for the !>~ !!8Sn nuclei where 07 and 05
levels (intruder proton two-particle-two-hole config-
uration and quadrupole two-phonon states as the unper-
turbed configurations, respectively) are strongly
mixed.?!' — %

The specific properties of EO strength in the 4 ~100
region, as shown in Fig. 4, are now emerging because of a
combination of investigation techniques such as ISOL
measurements and measurements using in-beam spectros-
copy techniques with a superconducting electron spec-
trometer’ and the (t,p) reaction on targets of the heaviest
stable isotopes of this mass region, i.e., Zr, Mo, Ru, Pd.?®
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FIG. 3. Comparison for p3,(03 —0f EO transitions) in the
50 < A < 160 mass region (the very light nuclei and strongly de-
formed rare-earth nuclei are excluded). Different symbols are
used for different elements where we include Fe, Ni (O), Zn (@),
Ge (A), Se (), Sr (0), Zr (@), Mo (), Ru (A), Pd (0), Cd
(), Sn (M), Sm (0O), Gd (A). The single-particle estimate
(SPU) is drawn with a dashed line.

These systematics, shown in Fig. 4 as a function of neu-
tron number (N), indicate a striking increase in EO
strength in isotopes when approaching the N =60 neu-
tron number. It is important to recognize that for the
even-even Sr, Zr, and Mo nuclei, it is always in the
N =60 nucleus that the first excited 0% level occurs at its
lowest excitation energy, e.g., 215.5 keV (°%Sr), 331.3 keV
(1%Zr), 696 keV (°2Mo), and thus the largest mixing be-
tween the ground state and this low-lying O% state is ex-
pected.

As is shown in Fig. 4(b), the general trend of the mono-
pole strength for the N =58 and 60 isotones is similar to
that suggested in Fig. 2(b) in the preceding section, where
here, we observe only half of the suggested trend. The
factor of ~10 difference in the average monopole
strength can be understood within the framework of our
recent study where we have shown that coexisting
particle-hole excitations alter the structure of the
A ~100 nuclei.! The mechanism involves the promo-
tion of proton pairs into the 1g4,, orbit and a simultane-
ous polarization of the neutrons to move to the 1g,,, or-
bit rather than into the 2ds,, orbit. We have also shown
in Ref. 27 that these particle-hole excited configurations
correspond to increasing deformation when going from
near vibrational nuclei at N =50 to gamma-soft [or O(6)-
like] character, in the spectra of *Zr* (i.e., the intruder
state structure in *®Zr). Once N =60 is reached, howev-
er, the 1g;,, neutron orbital becomes populated in the
ground state rather than as an excited-state configuration
and these nuclei possess ground states with permanent
deformation. In fact, as we have shown in Ref. 31, when
the intruder states in the N <58 nuclei are juxtaposed
with the N > 60 GS deformed bands, the series exhibits a
smooth onset of deformation rather than a rapid transi-
tion. Thus, at first sight, the large jump in EO strength
seems unaccounted for. That is, of the two states that
are mixing, one remains more spherical (vibrationallike),
while the other is becoming more and more deformed in
a smooth way. However, the main difference lies in the
deformed state which in the N < 58 nuclei is a dynamical-
ly deformed intruder deformed configuration. This is in
contrast to the N =60 nuclei where the deformed
configuration becomes the GS with permanent deforma-
tion and hence has a much larger effective deformation in
comparison with the excited spherical state.

A further manifestation of the nature of the coexisting
structures arises from the general shape of the monopole
strength shown in Fig. 4(b). Since it is the n-p interaction
that gives rise to the coexisting state, we might expect
that the general trend would follow the N N, principle
that has been discussed by Casten.’? As can be seen in
Fig. 4(b), the peak of the values for the N =60 curve is
shifted by two mass units with respect to those for the
N =58 curve. However, if the two curves are considered
as a function of N N, the maximum occurs at the same
value.

IV. CONCLUSIONS

In order to establish the origin of the large monopole
strength observed in a number of 4 ~ 100 nuclei, we first
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FIG. 4. (a) Detailed results for p3, in the A =~ 100 mass region. The data, discussed in the present study, are taken from Refs. 1, 4,
and 25-30. (b) Monopole strength for the N =58 and 60 isotones. The values for the N =58 nuclei have been multiplied by a factor

of 10 for comparison.

reviewed the correct form of the EQ strength within
several different prescriptions. We used this to show that
large EO strengths arise as a result of strong mixing be-
tween states with different shapes and that the observa-
tion of large EO strength in itself is not evidence for shape
coexistence in a particular nucleus. We went on to show
that the difference of a factor of 10 in the monopole
strength between N =58 and N =60 isotones can be un-
derstood within the context of dynamical deformation.
That is, the N =60 nuclei have the deformed state as
their ground state and the spherical state as a low-lying
excited state. This is in contrast to the N =58 nuclei
where the deformed state not only occurs at a higher en-
ergy for the same isotope but exists because of promoted
pairs that produce a dynamical deformation. Further, we

have shown that the maximum for both the N =58 and
N =60 isotones occurs at the same value of N, N, which
should be expected for states arising out of the n-p in-
teraction.
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