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Statistical shape fluctuations are calculated for '*®Er at spins 0 and 40#4. The fluctuations produce
an average shape, which is distinct from the most probable (i.e., mean field) shape. At low tempera-
tures the average shape is similar to the most probable shape, and the shape fluctuations are small.
With increasing temperature the shape fluctuations increase, as does the difference between the
average shape and the most probable shape. The fluctuations smooth out the sharp shape transi-
tions predicted by mean field theories. Although the most probable phase at spin 40# and critical
temperature 1.64 MeV is oblate noncollective rotation, the fluctuations create a high probability for
prolate collective, prolate noncollective, and oblate collective rotations as well.

I. INTRODUCTION

The collective properties of hot nuclei can be charac-
terized by appropriate order parameters. For example,
the order parameters for the spherical-deformed transi-
tion are the shape multipole moments Q;,,. For the nor-
mal fluid-superfluid transition, the order parameter is the
pair gap A. For the liquid-gas transition it is p—p,,
where p, is the density at the critical point.

Consider a macroscopic system which is in an equilib-
rium state. Assume that the system is not at a critical
point and not undergoing a first-order phase transition.
Then the order parameters have specific well-defined
values. These are the equilibrium, or most probable
values which are determined by minimizing the appropri-
ate free energy. There are statistical fluctuations in the
order parameters, but they are negligible in the thermo-
dynamic limit of large N. For example, the fractional
fluctuation in the density is proportional to 1/V'N .

Next consider hot nuclei, which have finite N. The sta-
tistical fluctuations in the order parameters can create
large deviations from the most probable state. It should
be emphasized that these fluctuations would exist even if
the exact density operator were known.

Hot nuclei are often described by mean field theories,
such as the finite-temperature Hartree-Fock-Bogoliubov
(HFB) cranking (FTHFBC) theory!~3 or the Landau
theory of phase transitions.*~% Since these theories are
derived from variational principles, they approximate the
equilibrium, or most probable values of the order param-
eters. For given temperature and angular momentum,
the FTHFBC theory predicts specific well-defined values
for Q;, and A. For given temperature and pressure, the
Landau theory predicts a specific value for p—p,. (If the
nucleus is in the transition region of a first-order phase
transition, the order parameter can be multivalued.)

The mean field theories ignore the statistical fluctua-
tions in the order parameter. Since N is finite, the fluc-
tuations can be large. They can produce an average value
for an order parameter which is qualitatively different
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from the equilibrium or mean field value.

For example, the Landau theory predicts a sharp first-
order liquid-gas phase transition in nuclei for any temper-
ature below a critical value 7.. However, when statisti-
cal density fluctuations are included, the transition is
washed out for temperatures within several MeV of T..*

The FTHFB theory predicts that raising the tempera-
ture induces a sharp second-order transition from
superfluid to normal fluid. However, when statistical
fluctuations in A are included, this transition is smoothed
out.”>!% Similarly, the FTHFBC theory predicts that ro-
tation can induce a sharp first-order transition from
superfluid to normal fluid for any temperature below a
critical value T,. When statistical fluctuations in A are
included, the transition is smoothed out for temperatures
between ~ 1T, and T..'°

Next consider the shapes of hot nonrotating nuclei.
The FTHFB theory'! 3 and the Landau theory’ predict
that a deformed nucleus will become spherical when the
temperature is raised to a critical value T,. Egido et al.'*
have studied the effects of statistical shape fluctuations in
hot '8Er nuclei at spin 0. When the shape fluctuations
are included, the average shape of I38Er retains a
significant deformation even for temperatures above T.,.

Finally, we consider the shapes of hot rotating nuclei.
The FTHFBC theory'® and the Landau theory® predict
that for '®Er, increasing the temperature at fixed angular
momentum produces a transition from a prolate shape
rotating collectively to an oblate shape “rotating” non-
collectively. The purpose of this article is to extend the
calculations of Egido et al'* to include rotations. We
will calculate the statistical shape fluctuations in hot ro-
tating '*Er nuclei. The resulting average shape will be
compared with the FTHFBC shape.

There are several experimental techniques for investi-
gating the shapes of hot rotating nuclei. These include
measurements of the giant dipole resonance (GDR) built
upon excited states,'®~!8 alpha-gamma angular correla-
tions,'® and rotational damping.?® Statistical shape fluc-
tuations are important for interpreting GDR experi-
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ments.'®2! Large fluctuations wash out the structure of
the GDR and increase the GDR width. The shape of the
GDR is a highly sensitive probe of the deformation ener-
gy surface. For example, experiments can discriminate
between a shallow minimum for a spherical shape and a
shallow minimum for a prolate shape.?? This suggests
that a fruitful interaction between theory and experiment
can inform us about the shapes of hot rotating nuclei,
even when the shapes are not sharply defined. Shape
fluctuations may also cause the damping of nuclear rota-
tional motion at modest temperatures ( ~0.5 MeV).2>2

II. STATISTICAL FLUCTUATIONS

For a nucleus with a given temperature T and angular
momentum I, the equilibrium state is the state which
minimizes the free energy

F=E-TS, (1)

where S is the entropy. If the FTHFBC approximation is
used with the pairing-plus-quadrupole (PPQ) Hamiltoni-
an, then each state is characterized by the quadrupole de-
formation parameters B and y and the pair gaps A and
A,. The FTHFBC approximation provides the free ener-
gy function F(B,v,A,,A;I,T). For given I and T, the
minimum in F defines the equilibrium or most probable
state of the nucleus. This state is also determined by the
self-consistent solution of the FTHFBC equation. If we
are interested in shape fluctuations, but not fluctuations
of the pair gap, we can consider the function F(B,y;I,T).
For each combination of 3 and 7, it is implied that one
chooses the values of A, and A, which minimize F for the
given shape. In addition, for each combination of 3 and
v, the angular velocity o is adjusted to yield the desired
spin I, and the chemical potentials ., and p,, are adjusted
to give the correct proton and neutron numbers. It is as-
sumed that the core nucleons are inert and have a spheri-
cal shape.

Statistical fluctuations can produce shapes which devi-
ate from the equilibrium shape. The probability that a
given shape occurs is

P(B,y;1,T)xexp]—F(B,y;I,T)/T] . (2)

For given I and 7, consider an ensemble of nuclei with
this distribution of deformations. The quadrupole defor-
mation can also be characterized by the coordinates

ay=fcosy , (3)
a,=PBsiny . 4)
The ensemble average of a; is
[ aP(B,y)BdBdy
a,=({ay)= (5)
[ PB,y)BdBdy
The mean square fluctuation in a, is
(Mg, *=(a})—{a;)?. (6)

The volume element BdBdy is the infinitesimal area for
the polar coordinates 3,7. Reference 21 uses this volume
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element. Reference 14 uses dayda,, which is equivalent
to BdBdy. Another choice for the volume element will
be discussed in Sec. III.

The coordinates a, and a, refer to the deformation of
the Hartree-Fock potential in the FTHFBC equation.
The mass distribution is characterized by @, and a,,
which are proportional to the multipole moments { Q,,)
and (Q,,+Q, ,). The values of a; and @, are equal
only at the minimum of F(S,y;I,T). All figures are
shown for a,.

III. HOT NONROTATING NUCLEI

Shape fluctuations are calculated for '®*Er. In this sec-
tion we consider nuclei which are heated but not rotat-
ing. Then one 60° sector of the 3,7 plane describes all
quadrupole shapes. The FTHFBC free energy
F(B,y;I1=0,T) is evaluated for mesh points with 3 rang-
ing from O to 0.6 in steps of 0.05, and y varying from 0°
to 60° in steps of 10°. Sixteen temperatures are selected,
varying from O to 1.4 MeV. For each combination of f3,
v, and T, self-consistent pair gaps A, and A, are deter-
mined, and the chemical potentials 11, and p,, are adjusted
to give the correct particle numbers Z and N.

The free energy F(3,7) is shown in Fig. 1 for various
temperatures. The shape is prolate at ¥ =0°, and oblate
at y=60°. The dot in the center of the shaded region
marks the state of minimum free energy which is the
equilibrium, or most probable shape, i.e., Byrp,¥ Hrp-
The equilibrium shape is prolate for all temperatures
below T.=1.74 MeV. At T =0 the shape is very stiff in
both the B and y coordinates. For T=1.0 MeV the
shape is softer in 8 and y. At the critical temperature
T,=1.74 MeV, Byrg=0 and the equilibrium shape is
spherical. The thermal excitations have almost eliminat-
ed the shell effects. The free energy contours are starting
to resemble concentric arcs centered on the origin. This
is the signature of a classical liquid drop.

Since ¥ ypp=0° at all temperatures, then a§*® =Bypp.
The function a§FB(T) is shown in Fig. 2. The FTHFB
theory predicts a sharp phase transition from a prolate
shape to a spherical shape at 7.

Statistical fluctuations create shapes which deviate
from the equilibrium shape. Equation (2) gives the rela-
tive probability P(B,y) that the nucleus has a given
shape. The probability distribution is shown in Fig. 3 for
different temperatures. The normalization is chosen so
that P=1.0 for the most probable state, i.e., Bypp, ¥ HFB-
At zero temperature there are no statistical fluctuations.
For T=1.0 MeV the shape can deviate significantly from
the equilibrium shape, fluctuating over a broad range in 3
and y. Although the HFB shape is axially symmetric,
fluctuations create triaxial shapes. At the critical temper-
ature, T,=1.74 MeV, the fluctuations extend over all
values of ¥ and a wide range in B. Although the HFB
shape is spherical, fluctuations create prolate, triaxial,
and oblate shapes of varying degrees of deformation.

The statistical shape fluctuations create an average
shape, defined by Eq. (5). Figure 2 gives the average
quadrupole deformation @,. The solid line for @, is cal-
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culated with the volume element BdBdy. For T <1.6
MeV, @, is very similar to a{i¥®. However, at higher
temperatures d, retains about one-half the ground state
value, whereas a P vanishes. The conclusion is that sta-
tistical shape fluctuations wash out the phase transition
predicted by the FTHFB theory.

Since yypp=0° at all temperatures, so does a2 =0.
The solid line in Fig. 4 shows the average @,. Gamma
fluctuations are important even at low temperatures.
When the temperature is 2.3 MeV, the average 7 is 30°
which denotes the most triaxial shape.

It should be noted that the shape has been averaged
over the ¥y =0° to ¥ =60° sector. However, for spin zero,
F(B,y)=F(B,—v) at all temperatures. Therefore, if the
average shape would be calculated over the y =—60° to

F(B,Y)
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¥ =60° sector, then the average values ¥ and @, would be
zero at all temperatures.

The fluctuations Aa, and Aa, are given by the solid
curves in Figs. 5 and 6. They increase rapidly as the tem-
perature is raised to 1.4 MeV. At higher temperatures
the fluctuations are relatively constant or decrease slight-
ly.

Egido et al.'* have applied the same analysis to '>3Er at
zero spin. Their conclusions for '>®Er are essentially the
same as ours for '®Er. Statistical shape fluctuations
create large deviations from mean field shapes at high
temperatures. One difference is that '%Er is more de-
formed than ']Er at zero temperature. Consequently,
the critical temperature for 166g T.=1.74 MeV, is
higher than for '*8Er, T, =1.4 MeV.

L 14

FIG. 1. Contour map of the free energy in the 8,7 plane. The lines have constant values of F in units of MeV. Each map corre-
sponds to a different temperature which has units of MeV. The nucleus is '**Er. The angular momentum is zero.
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FIG. 2. The quadrupole deformation a, vs the temperature T
at spin zero.

The average shape @, has been calculated with the
volume element BdBdy, or equivalently dagda,. The
Bohr rotation-vibration model uses the volume elemeni
B*|sin3y |dBdy. We have also calculated the average
shape produced by substituting this volume element into
Eq. (5). The values of a, and Aag, are given by the
dashed curves in Figs. 2 , 4, 5, and 6. Observe that for
all temperatures, this change in volume element barely
affects the fluctuations Aa, and Aa,. It causes an in-
crease in @, at high temperatures, and an increase in @,
at all temperatures. However, the essential conclusion
remains the same. Statistical shape fluctuations wash out
the shape transition predicted by the mean field theory.

IV. HOT ROTATING NUCLEI

The FTHFBC equation has been solved for '$°Er.'*
For any fixed positive spin, increasing the temperature
causes a transition from prolate collective rotation to ob-
late noncollective rotation. In a collective rotation, the
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FIG. 4. The average quadrupole deformation @, vs the tem-
perature T at spin zero.

rotation axis is perpendicular to the symmetry axis. For
a noncollective rotation, the axes coincide. The critical
temperature for this transition is spin dependent. If
I=40#, then T,=1.64 MeV. It should be emphasized
that this shape transition refers to the most probable
shape. The question addressed in this section is whether
the statistical shape fluctuations affect this phase transi-
tion.

When the cranking model is used to describe rotating
nuclei, three 60° sectors of the B,y plane are required in
order to specify the orientation of the rotation axis rela-
tive to the symmetry axis. The Hill-Wheeler convention
for y is chosen.?* The angles y = —60°, 0°, 60°, and 120°
correspond, respectively, to oblate noncollective rotation,
prolate collective rotation, oblate collective rotation, and
prolate noncollective rotation.

Consider the spin 407i. The FTHFBC free energy
F(B,y;I=40#,T) is calculated for mesh points with
varying from O to 0.6 in steps of 0.05, y varying from
—60° to 120° in steps of 10°, and 13 temperatures ranging
from O to 2.4 MeV. At each mesh point the angular ve-

P(8Y)
lssEr 0°

FIG. 3. Contour map of the shape probability distribution in the B,y plane. The lines have constant values of probability. Each
map corresponds to a different temperature, which has units of MeV. The angular momentum is zero.
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FIG. 5. The fluctuation in a, vs the temperature T at spin
zero.

locity o is adjusted to give the spin I=40#, and the
chemical potentials u, and u, are adjusted to give the
correct Z and N.

At spin 407i the neutron pair gap A, is zero even at
zero temperature, and the proton gap A, vanishes at the
very low temperature of 0.13 MeV. Although this state-
ment refers to the pair gaps associated with the most
probable shape, it is reasonable to neglect the pair corre-
lations for all shapes at spin 40%. This substantially
reduces the computation time.

The free energy F(B,y) for I =40%i and T=0.2 MeV is
shown in Fig. 7. The absolute minimum in F describes a
nearly prolate shape rotating collectively. There is also a
relative minimum for prolate noncollective rotation. Ob-
serve that the energy surface is very stiff in f and y. Fig-
ure 8 is the shape probability distribution P(S3,y). Be-
cause the temperature is low and the shape is stiff, the
shape fluctuations are small. They deviate very little
from the most probable shape.

Keep the spin fixed at 407i and raise the temperature to
1.0 MeV. Figure 9 shows F(fB,7). The equilibrium state
still describes prolate collective rotation. However, the
increased temperature has made the shape much softer
with respect to ¥ fluctuations. The shape is also softer
for decreases in 8. Figure 10 is P(B3,y). The shape fluc-
tuations now extend over a considerably larger range in 8
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0.01 } 1=0 J
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0.0 0.4 0.8 1.2 1.6 2.0 2.4
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FIG. 6. The fluctuation in a, vs the temperature 7 at spin
Zero.
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FIG. 7. See Fig. 1. The spin is 40#. The temperature is 0.2
MeV.

and Y. Nevertheless, the fluctuations remain centered on
the most probable shape.

For spin 407 the critical temperature T, is 1.64 MeV.
Figures 11 and 12 display F(B,7) and P(S3,y) for this
temperature. The equilibrium state is an oblate shape ro-

tating noncollectively. The thermal excitations of quasi-

30°

20°

10°

|66Er
I1=-40h
T=0.2 MeV

0.5°30°

FIG. 8. See Fig. 3. The spin is 404. The temperature is 0.2
MeV.
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166, 18,
1 = 40h I =40%
T = 1.0 MeV Tz 1.64 MeV
F(AY) F(8,7)
FIG. 9. See Fig. 1. The spin is 40#4. The temperature is 1.0 FIG. 11. See Fig. 1. The spin is 40%4. The temperature is 1.64
MeV. MeV.

186, 166,
I=40h I=40h
T= 1.0 MeV T.= 1.64 MeV
P(aT) P8,
FIG. 10. See Fig. 3. The spin is 40#. The temperature is 1.0 FIG. 12. See Fig. 3. The spin is 407. The temperature is 1.64

MeV. MeV.
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FIG. 13. The quadrupole deformation a, vs the temperature
T at spin 407i.
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FIG. 14. The quadrupole deformation a, vs the temperature
T at spin 407.

particles have almost eliminated the shell structure. The
free energy contours resemble those of a rotating liquid
drop. Observe that the shape is extremely soft in ¥, and
very soft in B for B<0.2. Although the most probable
phase is oblate noncollective rotation, the statistical fluc-
tuations produce a high probability for also observing
prolate collective, oblate collective, and prolate noncol-
lective rotations.

The average quadrupole deformation (&@,,@,) is defined
by Eq. (5). The range of integration in 3 is 0-0.6. The
range in ¥ is —60°-120°. Figure 13 compares the aver-
age shape @, to the most probable shape aFB. They are
similar for T <1.6 MeV. However, at higher tempera-
tures the average value is much larger than the most
probable value. Figure 14 gives the comparison for a,.
The most probable value a}F® changes from positive to
negative at high temperatures, with a cusp at 7,=1.64
MeV. This marks the transition from prolate collective
rotation to oblate noncollective rotation. Because of the
large shape fluctuations at high temperatures, the average

FIG. 15. The fluctuation in a, and a, vs the temperature T at
spin 4071.

value @, does not change sign. The average shape pro-
duced by the statistical fluctuations does not pass
through the phase transition which is displayed by the
most probable shape.

The fluctuations Aa, and Aa, are given in Fig. 15.
They increase with temperature up to 7~1.2 MeV. At
higher temperatures they show little change.

V. CONCLUSIONS

Because nuclei have finite particle numbers, statistical
fluctuations in collective order parameters can be
significant. For '®Er the most probable shape at spin
zero changes from prolate to spherical at a critical tem-
perature T, =1.74 MeV. However, statistical shape fluc-
tuations create an average shape which does not become
spherical at high temperatures. Similarly, at spin 407 the
most probable phase changes from prolate collective ro-
tation to oblate noncollective rotation at T, =1.64 MeV.
However, statistical shape fluctuations lead to an average
shape which does not pass through this transition.

These calculations do not include angular momentum
projection. Investigations at zero temperature show that
if the unprojected energy surface is gamma unstable, then
spin projection leads to well-defined energy minima and
stiffer shapes.?> If this also occurs at finite temperature,
then spin projection would considerably reduce the shape
fluctuations.

The statistical fluctuations have been calculated for nu-
clei assuming a given temperature in the grand canonical
ensemble. Before drawing final conclusions about the im-
portance of these fluctuations, one should also calculate
the fluctuations for nuclei with a given energy in the mi-
crocanonical ensemble.?6—28

This work was supported in part by the National Sci-
ence Foundation.

IA. L. Goodman, Nucl. Phys. A352, 30 (1981).

2K. Tanabe, K. Sugawara-Tanabe, and H. J. Mang, Nucl. Phys.
A357, 20 (1981).

3M. Sano and M. Wakai, Prog. Theor. Phys. 48, 160 (1972).

4L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon,
Oxford, 1980).

5A. L. Goodman, Nucl. Phys. A406, 94 (1983).

SA. L. Goodman, J. I. Kapusta, and A. Z. Mekjian, Phys. Rev.



37 STATISTICAL SHAPE FLUCTUATIONS IN '$Er

C 30, 851 (1984).

7S. Levit and Y. Alhassid, Nucl. Phys. A413, 439 (1984).

8Y. Alhassid, S. Levit, and J. Zingman, Phys. Rev. Lett. 57, 539
(1986).

9L. G. Moretto, Phys. Lett. 40B, 1 (1972).

10A, L. Goodman, Phys. Rev. C 29, 1887 (1984).

1A, L. Goodman, Phys. Rev. C 33, 2212 (1986).

12A. L. Goodman, Phys. Rev. C 34, 1942 (1986).

13M. Brack and P. Quentin, Phys. Scr. A10, 163 (1974).

143 L. Egido, C. Dorso, J. O. Rasmussen, and P. Ring, Phys.
Lett. B 178, 139 (1986).

15A. L. Goodman, Phys. Rev. C 35, 2338 (1987).

165, J. Gaardhoje, C. Ellegaard, and B. Herskind, Phys. Rev.
Lett. 53, 148 (1984).

17C. A. Gossett, K. A. Snover, J. A. Behr, G. Feldman, and J. L.
Osborne, Phys. Rev. Lett. 54, 1486 (1985).

18K, A. Snover, Annu. Rev. Nucl. Part. Sci. 36, 545 (1986).

197. Majka, D. G. Sarantites, L. G. Sobotka, K. Honkanen, E.

2169

L. Dines, L. A. Adler, L. Ze, L. Halbert, J. R. Beene, D. C.
Hensley, R. P. Schmitt, and G. Nebbia, Phys. Rev. Lett. 58,
322 (1987).

20F, S. Stephens, J. E. Draper, J. L. Egido, J. C. Bacelar, E. M.
Beck, M. A. Deleplanque, and R. M. Diamond, Phys. Rev.
Lett. 57, 2912 (1986).

21M. Gallardo, M. Diebel, T. Dossing, and R. A. Broglia, Nucl.
Phys. A443, 415 (1985).

22C. A. Gossett (private communication).

23R, A. Broglia, T. Dossing, B. Lauritzen, and B. R. Mottelson,
Phys. Rev. Lett. 58, 326 (1987).

24D, H. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).

25A. Hayashi, K. Hara, and P. Ring, Phys. Rev. Lett. 53, 337
(1984).

265, A. Lopez and P. J. Siemens, Nucl. Phys. A431, 728 (1984).

27D. H. Boal and A. L. Goodman, Phys. Rev. C 33, 1690 (1986).

28] Dudek (private communication).



