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Quenching of g „ in the nuclear medium
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The numerical values of g& are evaluated using quantum-chromodynamic sum rules. The nuclear
medium effects are taken into account by modifying the chiral symmetry breaking correlation,
(qq). Our results indicate a quenching of g„ in a nuclear medium. The physical reasons for this
fundamental quenching are noted to be the same for the effective mass of the nucleon bound in a nu-
cleus being less than its free space value.

It is widely believed that the properties of nucleon as a
free particle are modified when the nucleon is in a nuclear
medium. Of particular interest is the axial-vector cou-
pling constant gz. In a world where chiral symmetry is
exact, g~ is expected to be unity. The significant devia-
tion of g„ from this bare value is adequately explained by
postulating a partially conserved axial-vector current. '

In a nuclear medium it has been suggested that the re-
normalization of the axial vector current is intrinsically
modified. As a consequence g„and other weak couplings
are expected to be significantly different from their free
nucleon values.

Recently Perez and Buck performed a new and model
independent analysis of beta decay and magnetic mo-
ments in mirror nuclei 3(A (39 and concluded that
g„-1.00+0.002. Rho has analyzed the (p,n) data on gi-
ant Gamow-Teller resonances based on the study of
Horen et al. and Gaarde et al. and -concluded that
g„—1.00 fits the data extremely well. Quite recently
Rho himself offered an explanation for the quenching of
g„(in addition to f„) and for the enhancement of the
rms size of the nucleon on the basis of a Skyrmion picture
of nucleon, using the axial Ward identities in a nuclear
medium.

In this paper we shall consider this problem from the
point of view of quantum chromodynamic (QCD) sum
rules. The magnetic moments and the axial vector re-
normalization constants ' of the nucleon have been suc-
cessfully computed by the method of QCD sum rules, by
studying the nucleon current correlation functions in the
presence of an external electromagnetic or an axial vector
field. In particular the departure of g„ from unity has
been shown to arise from the polarization of the QCD
vacuum by the external field and the interaction of the
external field with the vacuum fields of the quarks and
gluons. The nucleon mass according to Ioffe" is basically
determined by the chiral symmetry breaking correlator
(qq ). On the other hand, we know from nuclear physics
that the effect of the interaction of a nucleon with the
remaining nucleons in a nuclei is to introduce an effective
mass m * for the nucleon which is smaller than its free

space value m. From Ioffe's work" we know that the nu-
cleon mass is given to a first approximation

m ~
~ (qq &

~

'" .

This suggests in turn that the effect of nuclear medium on
other nucleon properties as well can be deduced in an
analogous fashion from that of the free nucleon if we re-
place the nuclear medium effects by an effective chiral
symmetry breaking parameter. ' Given this view point,
it is straight forward to account for the quenching of g„
in a nuclear medium due to a reduction in the chiral sym-
metry breaking parameter, using Eq. (1).

The axial coupling constant g„ is computed by study-
ing the following correlation in the presence of an exter-
nal axial vector field Z„:

g(p )=i f d x exp(ipx)(0~ T[t)(x)ri(0)] ~0)
~ z, (2)

where

ri(x)=u'(x)Cy&u "(x)y„ysd'(x)e' ', (3)

with C as the charge conjugation matrix, u'(x) and d'(x)
are the up and down quark fields, and a, b, c are color in-
dices. In the sum rule approach g (p ) is calculated as
an asymptotic expansion in p using the operator product
expansion (OPE) for the product ri(x)ri(0). The nonper-
turbative aspect of a QCD vacuum enters by assigning
nonzero vacuum expectation values (VEV) for the objects
like qq, G„' 6""',etc. ' While in the absence of the exter-
nal field Z„, only Lorentz invariant scalars can have
nonzero VEV. In the presence of Z there will be exter-P
nal field induced correlations such as qy ysq; q G y~,p 5 ~ pv(6„„=—,'e„„ttG ), etc. , will also be present which should
be taken into account. The details of the derivation of
these sum rules can be found in Refs. 8—11. To arrive at
the value of g~ from an analysis of the sum rule, we shall
follow here the procedure of Ref. 10. This is based on the
fact that the sum rule in the presence and in the absence
of the external field are closely similar and the departure
from unity of g„can be derived from the following ratio
function:
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M /8L +M b/32L +a L ( '+—')—+M Ka/6L6 9

M /8L +M b/32L +a L /6

=go+AM +[y+5(W —m +M )]exp[ —(W2 —m )/M ] . (4)

Here M is the Borel mass parameter,

L =ln(M /A )/In(iu /A ),
A is the QCD scale paraineter ( —100 MeV), p is the re-
normalization scale (-500 MeV), b =4m. &a, G„'„6""'&
(the gluon condensate), a = —(2ir) &qq & is the chiral
symmetry breaking correlation, K = gf 0—.2 GeV /
&qq &, f =133 MeV, and y and 5 are the coefficients of
the continuum state contributions to the sum rules.

In the above, the numerator of the left-hand side is the
Borel transform of the correlator [Eq. (2}]in the presence
of external field while the denominator is the Borel trans-
form in the absence of the external field M, the Borel
mass parameter. It is seen that the asymptotically lead-
ing terms of the numerator and denominator in the left
hand side are identical. The coefficient of the a term in
the numerator of the left hand side of Eq. (4}has an addi-
tional factor —,', compared with the coefficient of the a
term in the denominator, arising from the interaction of
the external field with the soft quark fields, and the last
term in the numerator arises from the correlator
q G„,y~. Its value is not very well known, but has been
estimated in Ref. 14. We have defined

&01 q G„,rw lo&=Kz„&olqq 10&

with

K & 0
l qq l

0 & = —
—,
'
gfz 0.2 GeV2 .

According to Ref. 14, (=1.0. The a term is found to be
numerically more important than the last term in the
numerator on the left hand side of Eq. (4}. For the right
hand side we have used the ansatz form given in Refs. 10
and 12. Basically, it is the ratio of the correlator [Eq. (2)]
evaluated this time in terms of physical intermediate
states with and without the external field Z&. The nu-
cleon pole contribution in the presence of Z„ is computed
from

&0
I q I

x&&N lq„'z„le&&x I q I
0& .

The advantage of using the ratio of Eq. (2) with and
without Z„ is that one need not know the value of the
coupling A,„,where &0

l r} l
nucleon & =A,„U(p) is the cou-

pling strength of the current to the one nucleon state.
The term AM arises from the external field induced
transition between the nucleon and excited states. The
last term in the first square bracket on the right hand side
of Eq. (4) is the contribution of the excited states and is
represented by an effective mass 8' taken to be 2.3
GeV . " To determine g„ from Eq. (4), we first note
that if the two sides of the above equation are matched

asymptotically, then one finds g„+y = 1 (coefficient of
the constant term) and 5+ A =0 (coefficient of the M
term). Then we adopt the procedure of Refs. 10 and 12
which is as follows. Fix 5 at an initial value, say 5=0.
Start with an arbitrary value for y. Evaluate (left hand
side of Eq. (4) —y exp[ —( W —m )/M ]) and fit this to
p+oM for M around the nucleon mass. If the output
did not satisfy the condition p+ y = 1 adopt a new value
for y as (y input +1—p)/2 and iterate until p+y= 1.
Then the final value of p gives gz. It has been found that
the iteration converges quickly and the final value for
p(=gz) is independent of the initial choice of y. The
coefficient 0 and, consequently, A is small. Changing the
initial value of 5 produces only small variations in g„(see
Ref. 11). For 8' =2.3 GeV, g= 1, and a=0.45 GeV, it
has been found for a free nucleon gz ——1.38 and for
g= —2.0, the corresponding value is 1.28. These values
are satisfactory in view of the approximations involved in
QCD sum rules.

Consider now a nucleon inside a nuclear medium. As
remarked earlier, we shall account for the change in g„
for bound nucleon by introducing a modified value for
&qq & in a nuclear medium. Using Eq. (1), we can write
apprO"'mate'y & qq &nuclear medium ~ & qq &physical vacuum~

where A, =m'/m, the ratio of the effective mass of the

TABLE I. Axial vector coupling constant g„using QCD sum rules. Nuclear medium renormaliza-
tion efFects are taken into account by using a =A,3a, f =Af, where li, =m /m, f =133 MeV, and
a=0.45 GeV .

1.0
0.9
0.8
0.7
0.6
0.5

a
GeV'

0.450
0.328
0.234
0.154
0.097
0.056

b =0.5
(GeV )

1.38
1.25
1.14
1.08
1.04
1.02

= 1.0
b =0.4
(GeV )

1.39
1.25
1.15
1.08
1.04
1.02

g = —2.0
b=0.5
(GeV')

1.28
1.15
1.06
1.01
0.99
0.98
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nucleon in a nuclear medium to its free space value. As
said above, the renormalization of g„arises both from
the change in the coelcient of the a term in the
numerator of the left hand side of Eq. (4) and from the
nonzero value of the correlator (q G„„y~). However,
the effect of the latter is numerically less significant than
the a term. To consider the nuclear medium effects on

FIG. 1. Variation of g& with A, ( =m*/m) for two values of
the parameter g. The experimental result of Buck and Perez
(Ref. 3) are shown by the shaded region.

(q G„„y„q), we take it to be modified in the same way as
f . Following Rho we have

f'/f =m'/m =A, . (5)

In principle, the gluon condensate ( G„'„G"")will also be
modified.

In Table I we present the results of the numerical cal-
culations using Eq. (4) and with the modified values of the
chiral symmetry breaking parameter a. As in Ref. 12, we
have considered both the values for g as 1.0 and —2.0.

For free nucleon (A, = 1) the value g= —2.0 yields g„
closer to the experiment than with /= 1.0. In either case
it is seen that as A, decreases g„decreases to unity. We
have also varied the gluon condensate b which has negli-
gible effect on our numerical estimates of g„. In nuclear
matter m'-0. 6m (Refs. 7 and 15) and then we find

g~ —1.00.
A few comments are in order. Our results indicate that

the physical reasons for the quenching ofg„are the same
for the effective mass of the nucleon in a nuclear medium
being less than its free space value. For specific nuclei,
once m ' is known our procedure gives the corresponding
quenched values of gz. In Fig. 1 we have shown the vari-
ation of g„with A, for /=1.0 and —2.0 along with the
experimental result of g„by Perez and Buck.

In summary, using the concept that the effective mass
of a nucleon bound in a nucleus is smaller than the free
nucleon mass and by attributing it to an effective reduc-
tion of the chiral symmetry breaking correlator (qq),
our calculations indicate how the quenching of g„ in a
nucleus can arise due to nuclear effects.
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