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The interacting boson-fermion model is used to analyze beta decay. The beta transition operator
in the boson-fermion space is constructed with the parameters obtained from microscopic con-
siderations. The ft values are calculated for the first nonunique forbidden transitions between states
based on natural parity orbitals in the decays of ' 'Ir~' 'Pt, ' 'Au~' 'Pt, ' 'Hg~' 'Au,
' 'Pt~' Au, and ' Hg~' 'Au. The structure of the odd-neutron nuclei is described in the
U(6)(3) U(12) boson-fermion symmetry limit. For the odd-proton nuclei, three different approaches,
in particular the U(6)(3U(4) symmetry, the U(6)U(20) symmetry, and the perturbed U(6)(3)U(4)
scheme, are compared. The calculated ft values are very sensitive to details of nuclear wave func-
tions, the best results being obtained with the perturbed U(6)U(4) scheme. Phase ambiguities in
nuclear wave functions can be disentangled from beta decay analysis. The exchange terms in the
boson-fermion transition operator, which take into account the Pauli principle between the odd-
nucleon and nucleons forming the even-even collective core, proved to be quite important.

I. INTRODUCTION

Remarkable success has been achieved in the descrip-
tion of collective nuclear states in medium and heavy
mass nuclei within the interacting boson model' (IBM)
and the interacting boson-fermion model (IBFM). The
IBM and IBFM have been confronted with experiment
by comparing energy levels, electromagnetic properties,
and one- and two-nucleon transfer spectroscopic
strengths. Double beta decay with the IBM wave func-
tions was also studied. No IBM and/or IBFM investiga-
tion has till now been made for single beta decay observ-
ables. From these especially, the ft value, depending on
the absolute magnitudes of form factors, is very sensitive
to details of nuclear structure calculations.

This particular situation in the IBM/IBFM reflects the
situation in collective nuclear models generally. Beta de-
cay is not often analyzed in these models, presumably for
two reasons. (i) The beta decay study in even systems
needs a knowledge of the structure of odd-odd nuclei,
which are seldom investigated in collective models and
the understanding of which is not too satisfactory. As
concerning odd systems, pairs of proton-neutron odd-
even and even-odd nuclei have not been frequently con-
sidered together in one study. Particularly, in the IBFM
only a few such pairs have been investigated at all.

(ii) The agreement between theory and experiment is
usually worse for nuclear beta decay observables than for
other nuclear characteristics. The ft value often depends
on an interplay of several matrix elements. Relatively
small variations in the matrix elements can change the re-
sulting ft value considerably.

We refer to the book by Behrens and Buhring for dis-
cussion of and references to beta decay studies in collec-
tive nuclei. The agreement between theoretical and ex-
perimental ft values is not very good in these regions.
Differences between calculated and measured logft
values of about 1 are sometimes considered even as satis-

factory. Here, we mention the work of Bogdan and colla-
borators on some transitional odd mass nuclei (including
the A =195 system, which we also investigate in the fol-
lowing). In Ref. 5, the differences between theory, using
the nonaxial rotor model combined with the decoupling
model, and experiment lay in the limits

—l.32 & logf t,„v, logf t,h„,—& 2.5 .

On the other hand, for nuclei where shell model calcu-
lations are available, quite a good qualitative accounting
of observed ft values is obtained. Not only allowed tran-
sitions in light nuclei, but also forbidden transitions in
the lead region have been dealt with reasonably well. It
is, therefore, appealing and interesting to prospect beta
decay in collective nuclei more intensively.

In the present paper we calculate the ft values for the
A = 195 and A = 197 systems. The decays of

Ir~' Pt, ' Au~' Pt, ' Hg~' Au, ' Pt~' Au,
and ' Hg~' Au are studied. Only the first nonunique
forbidden transitions between states based on natural par-
ity orbitals are considered (contrary to Ref. 5 where the

Ir~' Pt decay between intruder orbitals was investi-
gated).

The nuclear structure in the mass region studied is
rather complicated and numerous degrees of freedom
have been invoked to understand it. In terms of the IBM,
this region is a good example of realization of the O(6)
boson symmetry. The boson symmetry concept has been
extended to odd nuclei, by recognizing boson-fermion
(BF) dynamical symmetries in the IBFM. The BF sym-
metry based on the group U (6)U (4) has been suggest-
ed for the odd-proton nuclei with A =195 and 197,
whereas the U (6)U (12) symmetry has been found to
be relevant for odd-neutron nuclei. We start our calcu-
lations of beta decay with these BF symmetry limit
descriptions of nuclear states. Then, we try to refine
upon results by using either the extended U (6)U (20)
symmetry or the perturbed U (6)U (4) scheme. '
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II. BETA DECAY FORMALISM

At present, a rather reliable formalism for treating nu-
clear beta decay exists. It is based on the so-called ele-
mentary particle treatment formulated in terms of form
factors. SuSciently precise methods have also been
developed for handling the Coulomb interaction. The
formalism is explained and discussed extensively in the
book by Behrens and Buhring which we rely on and the
notation of which is closely followed further.

We study the first nonunique forbidden beta transitions
with the spin selection rule

EJ=0, 1

and the parity selection rule

For them we have (the natural units fi=c =m, =1 are
used throughout the present section)

one-body operator

~KL —& ' X (JIII
' "Oar..Iil; &

x(JI)()((cj c, )' 'iiJ; ) .

Here, k=&2K+1, J;(JJ ) denote the initial (final) nu-
clear state, c is the shell model single-particle creation
operator, cj~ ——( —)1 cj, the angular momentum
coupling is denoted by ( )' ', and the sum runs over the
initial neutron (proton) single-particle states j; and the
final proton (neutron) single-particle states j& in the case
of P (P+ and electron capture) decay. The single-
particle reduced matrix elements ( ~~O)rL, ~~

) are tabulated
in Ref. 4 and depend on a geometrical factor and the ra-
dial integrals Q&, Q2, and Q3, given in the nonrelativistic
limit as

Q) gf E' Ef V' + Vf rg,.r r
2m. ln2

6t) ( A () +Co )

oo P'

Q2= g/ gr dr
o R

(5b)

The beta decay coupling constant is denoted as 6&. The
quantities Ao and Co are related to the total angular
momentum transfer 0 and 1 and we redenote them in the
following as Mo and M, , respectively. They can be ex-
pressed through the form factors I' with the dominant
terms only included as

03—— gI I(1,1, 1—, 1;r)g;r dr .
o R

(Sc)

Here g is the solution of the Schrodinger single-particle
radial equation, E and V are the energy and potential re-
lated to the single-particle state. For the function I in the
model of a uniform charge distribution we have

Mp= FI)pp+ &aZ Fpi)(1 1 1 1)—
&

WpR Fp)i

M) ———F)()') + —,'aZ&1/3 F)tI)(1, 1, 1, 1)

(2a)
3 p'

10 R
if 0&r &R

——,
' W()R&1/3 FI)p

+ —,'aZV2/3 "F'i('i (1, 1, 1, 1)+—,
' W()R V2/3 "Fipi') .

I(1,1, 1, 1;r)=
3 R 3
2r 10

3
R ifR&r.

(2b)

VF(P) ( )K LV~(P)—
KLs KLs

"F~~=+( —)

(3a)

(3b)

where k is the negative ratio of the axial vector to vector
coupling constants. The nuclear matrix elements are ex-
pressed in terms of the reduced matrix elements of the

Here and in Eqs. (3) below, the upper (lower) sign applies
to P (P+ and electron capture) decay, Wp is the max-
imum energy of the beta particles (in the case of electron
capture, the rnaxirnum total positron decay energy plus
the electron mass minus the binding energy of the bound
electron in the parent atom), Z is the atomic number of
the daughter nucleus (in the case of electron capture of
the parent nucleus), R is the nuclear charge radius, and a
denotes the fine structure constant. In the form factor
notation "' FKNI'„A or V relate to the axial or vector
character, K, L, and s are the transferred total angular
momentum, angular momentum, and spin, respectively.

Neglecting the induced terms and using the impulse
approximation which is a usual and justified procedure
for the considered transitions, we write the form factors
in terms of nuclear matrix elements as

Summarizing the above equations we see that the quanti-
ties Mo and M& may be expressed as the reduced matrix
elements

M = (JI ii
T(")[iJ; )

of the beta transition operator

T(K) y g()r) (ct ~ )(K)
cj& J.

J) J;

The quantities g are given as combinations of the reduced
matrix elements ( ((OxL, ~( ) with coefficients determined
by Eqs. (2)—(4).

A question arises about the renorrnalization of weak
form factors in finite nuclei. Two rnechanisrns are impor-
tant in that context: the meson exchange effects and the
core polarization effects. The former rnechanisrn was
shown to increase the axial-charge form factor "F. "
This implies in some cases, and especially for the 0+~~0
transitions, a large decrease of the resulting ft value. The
inclusion of the core polarization effects rises usually the
calculated ft values. '

On the other hand, the ft values for the beta transi-
tions in systems close to the magic Pb nucleus can be
explained satisfactorily using the free-nucleon coupling
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constants. This does not mean that the exchange and

core polarization effects are small but perhaps this indi-

cates certain cancellation of both effects. In this respect,
the free-nucleon coupling constants might be considered
as close to the effective ones. In the present study, we fol-
low Ref. 4 adopting the procedure with the free-nucleon
values

cj =ujaj +v . —s if~+ g u p~ J~10/j (d a')' '

'&N

—g v 1/&N13'1&10/js (daj')'~' . (9)

will make use of the pseudoparticle creation operator c.
as was introduced in Refs. 17 and 18:

and

Gp ——2.996X 10

A, =1.25 .

It should be kept in mind, however, that in more de-
tailed studies, and for a perfect explanation of experimen-
tal data, both the exchange and core polarization effects
should be taken into account explicitly.

The radial integrals (5) are calculated with the single-
particle wave functions obtained from the Woods-Saxon
potential. The global parameters of Bear and Hodgson'
giving a good overall fit to the centroid binding energies
of many single-particle states in nuclei from Ca to Pb
are used. The integrals are shown in Table I. We have
found that for the transitions considered they are less
sensitive to different single-particle potentials than the in-
tegrals for the 2g»2~1h9/2 transition discussed in Ref.
4

III. BETA TRANSITION OPERATOR
IN BOSON-FERMION SPACE

In the IBFM one treats odd-A nuclei by coupling
single-quasiparticle degrees of freedom to a system of s
and d bosons describing the even-even core. An image of
the beta transition operator (8) in the boson-fermion (BF)
space has to be constructed in order to calculate beta
transition matrix elements in the IBFM. To do that we

Equation (9) represents the lowest order terms of the im-

age of the shell model single-particle creation operator c&

in the BF space. The single-quasiparticle creation opera-
tor is denoted as at, s and d are the s and-d-boson
creation operators, and X is the number of bosons con-
sidered in the even-even core. The coefficients uj, uj, and

P,', are parameters in a pure phenomenological ap-
proach. They can be, however, specified by using a mi-
croscopic interpretation of the IBM in which the s and d
bosons are images of the collective fermion S and D pairs.
The coefficients uj, vj, and PJ'J are then related to the
internal structure of the S and D pairs. More specifically,
the coefficients u, and v, =(1—u )'~ are usually taken as
the occupation amplitudes of spherical shell model orbits
and play the same role as the corresponding quantities in
the Bardeen-Cooper-Schrieffer (BCS) theory. '

Since neutron and proton operators commute, the im-

age of the beta transition operator in the BF space is sim-

ply constructed by replacing the shell model operators c.
Jf

and cj in Eq. (8) by the pseudoparticle operators (9).
l

Only the terms that are up to the first order in the d-
boson operators are retained in Eqs. (10) and (11) below.
To treat consistently terms with two d-boson operators,
one should take into account also terms that are quadra-
tic in the d bosons in the BF image of the single-particle
operator. At present, no evaluation of the these higher
order terms exists. Moreover, it is plausible to assume
that the influence of terms in the BF transition operator

TABLE I. Radial integrals Q„Q2, and 03 [Eq. (5)] for beta decay single-particle matrix elements.
The upper (lower) sign applies to P (P+) decay. The natural units A'= c =m, = 1 are used.

3P i/2

313/2

5/2

7/2

1h 9/2

3$ &/2

+0.173
+0.178

+0.146
+0.152
+0.194

2d 5/2

+0.144
+0.186
+0.197

1g7/2

W 0.113
W 0.128
+0.214

&P l /2

313/2
2 5/2

2f7n
1h9/2

0.590
0.579

—0.397
—0.379

0.693
—0.399

0.701
0.684

—0.253
—0.193

0.783

3P &/2

3P3/2
2fsx2

7/2

1h 9/2

0.730
0.716

—0.461
—0.438

0.879
—0.467

0.891
0.872

—0.278
—0.200

1.010
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diminishes with the increasing number of the d-boson
operators included. ' '

We specify the transition operator for p decay, i.e.,
indices i —=v and f=m relate to neutron and proton
operators, respectively. Keeping only the terms which

are relevant to beta decay in odd-mass nuclei and con-
necting the corresponding quasiparticle spaces, we obtain
two kinds of the beta transition operators in the BF
space. The first kind conserves the numbers of the pro-
ton and neutron bosons separately,

~ ~ I
J~~v Jv V

—gvj uj P, +10/N st[(Z a. , ) dj ]'
7r

(10)

and describes beta transitions between nuclei with the same even-even core

n„(n„}being the single-particle number. The second kind changes one neutron boson into one proton boson together
with the conversion of the odd fermion,

TI, '= g g ' v vj Ql/N„N„sg„(a a )' '+ g u v~ p, +10/N„s„[(d+., ) a ]'
~~jv

+ g v, u, p, +10/N „s [ZJ (Z„at, )
" ]'»'

Jv V

and is relevant to processes in which parent and daughter
nuclei have the diferent even-even cores

N —1,N„,n =1~N,N„—1,n„=1 .

Other kinds of the beta transition operator containing
combinations a~„or 8 8'„describe beta decay in even
mass systems which are not studied here.

Individual terms in the transition operators (10) and
(11)are graphically represented in Figs. 1 and 2. The first
direct term of Eq. (10) is the usual quasiparticle beta tran-
sition operator with the pairing suppression factor

u u, . ' The other terms in Eq. (10) are the exchange
terms which take into account the Pauli principle be-
tween the odd nucleon and nucleons constituting the
even-even collective core. The state of the even-even core
is changed by the action of these terms. The microscopic
interpretation of the IBM enables us to evaluate the ex-
change terms explicitly.

In the second kind of the transition operator (11), an
action on the collective even-even core is introduced in
all three terms shown in Fig. 2. When we pass from the
particle-like description to the hole-like description of
valence nucleons, the second kind (11) transfers into the

dy

ly
I

jy

Ju

Sy

~ I
Jy Jy Jy

Sy

v Jy

'y
'y'

dy

+a. a.
Jg Jy saba. (4&aj~ }+ y ()J/) + (4,+ )(jn)-,

Jg ly +
flV j jft V JA jV sn j(4v jvi) v+ (j)

FIG. 1. Diagrams for the first-type IBFM beta transition
operator [Eq. (10)]. The elementary beta process is marked by a
circle.

FIG. 2. The same as Fig. 1, but for the second-type IBFM
beta transition operator [Eq. (11)].
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(12b)

and in Eq. (11)

sg ~QN N, /(N —1)s s=+N„N„,
s,d ~"v/N„N, /(N —1)sd

st+„~+N„N„/(N —1)s d,

(12c)

(12d)

(12e)

with N=N +N„. The operator s s in Eq. (12c) is re-
placed by the expression (N —1 —dt d), in which we
neglect the term containing two d-boson operators for the
reasons discussed above. We get then completely sym-
metric forms of the first and second kinds of the transi-
tion operators with respect to the particlelike and hole-
like descriptions.

In the nuclei with A =195 and 197 both protons and
neutrons have holelike character. The occupation ampli-
tudes u and u. used in the transition operators (10) and
(11) are calculated from the BCS theory with the gap
b =135/A. The single-particle energies for neutrons are

first kind (10), and vice versa. The direct term has then
the pairing suppression factor v U„. '

In connection with the particlelike and holelike
descriptions of valence nucleons, we should mention one
point which seems to be sometimes missed. When we use
the holelike picture, the occupancies uj and vj in Eq. (9)
relate to holes, i.e., u- =1 in the case of no hole or
equivalently of a valence shell filled with particles. In cal-
culations of the occupancies from the BCS theory we
have either to use the number of the holes or to inter-
change u. and u. after calculating with the true particle
number.

The operators (10) and (11) are written in the IBFM-2
formalism with the proton and neutron bosons dis-
tinguished. In calculations, however, we shall use the
IBFM-1 version with one kind of boson. We have, there-
fore, to project Eqs. (10) and (11)onto the IBFM-1 space.
Applying the usual projection method, ' in which matrix
elements between corresponding IBFM-2 and IBFM-1
states are equated, we get the IBFM-1 form of the transi-
tion operators by replacing in Eq. (10)

s„df„~(N„/N )sd (12a)

sg„~(N„/N)s Z,

taken from Ref. 20 and for protons they are obtained
from the global single-nucleon potential. ' The occupa-
tion probabilities v (for holes) are given in Tables II and
III.

The coefficients p. ', related to the structure of the D
collective pair, are obtained under the assumption that
the D state exhausts the full valence E2 strength with the
e8ect of nondegeneracy of single-nucleon orbits taken
into account

p,,'=Ã (u, u,'+v, u,')(jiiI'2'iij')
E.J +6) —ED

(13)

with the normalization

g (Pi, )'=1

IV. NUCLEAR STATES

A. Qdd-neutron nuclei —U(6)@U(12) symmetry

Low-lying negative parity states in the odd-neutron Pt
and Hg isotopes can be described by coupling a neutron
hole in the pi/2 p3/2 and fs/2 orbits to an even-even
core. This suggests the use of the BF symmetries based
on the group U (6)U (12). Since the even-even Pt core
is a good example of the O(6) boson symmetry, the sym-
metry limit

The quasiparticle energies c. from the BCS calculations
are given in Tables II and III. The energies ED of the D
states relative to the S states are estimated from the 2+
state energies of the double-magic plus two hole nuclei

Pb and Hg to be ED ——0.80 MeV and ED=1.07
MeV for neutron and proton pairs, respectively.

All valence shells for protons (Z =50—82) and neu-
trons (N =82—126) are considered in the calculation of
the normalization of the coefficients p ' and in the transi-
tion operators (10) and (11).

TABLE II. Single-particle energies EJ, quasiparticle energies cj, and occupation probabilities u, for
neutron holes.

E, (MeV)

371/2

0.00

2fs/2

0.59

3P3/2

0.94

2f7/2

2.44

1h 9/2

3.51

1l 13/2

1.54

195H c.,- (MeV)
U2

1.09
0.89

0.74

0.67

0.70

0.43

1.75

0.04

2.76

0.02

0.99
0.14

195pt

197H
c, (MeV)

2
J

0.95

0.84

0.69

0.54

0.73

0.33

1.88

0.04

2.93
0.01

1.10

0.11

197pt cj (MeV)
2

0.81

0.76

0.70

0.38

0.86

0.20

2.13

0.03
3.16

0.01

1.31

0.07
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TABLE III. Single-particle energies E, , quasiparticle energies c, , and occupation probabilities v, for

proton holes.

E~ (MeV)

»1/2

0.00

2d 3/2

0.70

2d 5/2

2.50

187/2

4.11

1h»/2

2.11

195Ir ~, (MeV)
v2

1

0.89

0.81

0.71

0.40

2.06
0.03

3.62

0.01

1.70

0.04

195,197Au ~, (MeV)
v2

I

0.69

0.49

0.99
0.14

2.61

0.02

4.18

0.01

2.24

0.02

U (6)I8IU (12)aU (6)I8IU (6)eSU (2)aU "(6}j8SU (2)

DSO "(6)SU (2)DSO "(5)SUF(2)&SO "(3)SU (2)Dspin(3) (14)

has been discussed ' and found actually to reproduce the structure of the ' ' Pt isotopes very well.
For the even-even Hg isotopes both the O(6) limit and the U(5) limit have been discussed. In addition to the limit

(14), also the BF symmetries with the U(5} subgroup

U (6)U (12)DU (6)SU (6)SU (2)D w UB"(6)I8I SUF(2)
&U'"(5)s SUF(2)~ U (5)U (5)I8ISU (2) ~

DSO "(5)SU (2)DSO "(3)SU (2) Dspin(3) (15)

has been applied to ' ' Hg. ' The analysis of single-
nucleon-transfer strengths prefers the U(5) limit (15)
slightly.

The wave functions of the O(6) limit (14) are tabulated
in Ref. 23 in which the pairing operator in the form
P =s s +d d is used. Throughout the present paper
we use the more usual choice ' P =s s dd, which-
is also more natural from the viewpoint of the microscop-
ically suggested proton-neutron IBM-2 version. The
signs of some components of wave functions in Table XV
of Ref. 23 are modified accordingly.

The wave functions of the U(5) limit (15) are also given
in Ref. 23. For the Hg ground states, only which we need
in beta decay calculations, there is no difference between
two alternative chains shown in Eq. (15}.

The phase ambiguity in the O(6) BF symmetry limit
(14) was noticed in Ref. 20. It concerns the relative sign
P=kl with which the bosonic and fermionic terms are
added to obtain the quadrupole generators. In the wave
functions, this phase transformation means a change of
the relative signs between components with even and odd
numbers of the d bosons. Energy levels are invariant and
electromagnetic transition probabilities do not change
much under the phase P. The proper sign could be deter-
mined from the sign of quadrupole moments, which are,
however, unknown experimentally in the odd Pt and Hg
isotopes.

On the other hand, we can estimate the phase P from

the microscopic approach to the IBFM Hamiltonian with

the BF symmetry (14). It was shown that in addition to
the usual boson-fermion interaction derived from the
quadrupole-quadrupole proton-neutron interaction, also

the boson-fermion image of the quadrupole pairing in-

teraction between like nucleons has to be taken into ac-
count. The coefficient rI of the SO " (6) quadratic
Casimir operator, appearing in the BF symmetry Hamil-

tonian, is related to the strengths of the quadrupole-

quadrupole force I 0 and the quadrupole pairing force Vz

by (the notation of Ref. 20 is followed}

rI = —P,'&5/rr[I v(u our —vovr )+Ao vous +Aouovr ]

(16)

Here, the quantities Ao and Ao are proportional to the
strength Vz and are of opposite signs, UO=U, /z and
v p p ( v 3/p + v 5/r ). It follows from the analysis of Ref.
20 that in order for the BF symmetry to be realized, the
relation Ao= —Ao =—,

' I 0 has to hold approximately. The
parameter g is negative from the BF symmetry analysis
of nuclear spectra. ' Taking in Eq. (16) the positive
strength I o (Ref. 20} and the occupation probabilities
from Table II, we find immediately that P= —1 is sug-
gested from the microscopic approach. We use this
phase in the calculations of Sec. V, unless stated other-
wise.
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B. Odd-proton nuclei —U(6) U(4) symmetry

For the description of positive parity states in the Ir
and Au isotopes, the dynamical BF symmetry based on

the U (6)sU (4) group has been suggested. This sym-
metry arises when a d3/2 proton hole is coupled to a bo-
son core which has the O(6) symmetry. The correspond-
ing group decomposition is

U (6)@U (4)&SO (6)SU (4)Dspin(6)&spin(5)Dspin(3) . (17)

The Hamiltonian of the symmetry limit (17) is written in
terms of the quadratic Casimir operators of groups
spin(6), spin (5), and spin (3) as '

H = —AC6+BC5+CC3 . (18)

The wave functions for the U(6)U(4) limit have been
obtained from isoscalar factors of Ref. 7.

An experimental evidence for the BF symmetry (17}
has been discussed for ' Ir, ' ' ' Au, ' and ' Au.
The symmetry limit can explain well a large part of ex-
perimental data. The concept of the single d3/p shell ap-
pears, however, to be of limited applicability, especially
when single-particle transfer strengths are con-
sidered. ' ' An influence of other valence shells, and
particularly of the s, /2 level, is expected to be important.

Similarly, to the U(6)U(12} case, a phase ambiguity
in the symmetry limit (17}occurs. It is again connected
with the relative sign 4f'= +1 of the bosonic and fermion-
ic terms in the quadrupole generator and cannot be disen-
tangled from energy levels and electromagnetic transition
probabilities.

probab&litotes.
In the microscopic approach of Ref. 29, the coefficient

A in the Hamiltonian (18) is related to the quadrupole-
quadrupole strength I 0 by

(19)

It follows from analysis of energy levels that A is posi-
tive. Using then the occupation probabilities from Table
III we obtain the microscopic estimate for the phase
4=+1. We use this phase in calculations of Sec. V, un-
less stated otherwise.

C. Odd-proton nuclei —U(6)e U(20) symmetry

The BF symmetry scheme based on the group
U (6)U (20) has been suggested and applied to the Au
isotopes in order to include valence shells other than only
the d3/2 level. ' In this approach, all positive parity lev-
els in the Z =SO-82 shell, i.e., s, /2 d3/p d5/2 and g7/2,
are coupled to the O(6) boson core. The group chain con-
sidered is

U (6)U (20)DSO (6)SU (4)Dspin(6)Dspin(5)Dspin(3), (20)

where the twenty-dimensional representation of the
SU (4) group is chosen. Since the group chain (20) is
very similar to the U(6)sU(4) group chain (17), one has
the same form of the Hamiltonian as in Eq. (18) (of
course, with difFerent Casimir operators) and gets the
identical formulas for energy levels both in the
U(6) XU(4) and U(6)sU(20) schemes. The structures of
the latter is, however, more rich with more states in the
low-energy region. In addition, predictions for the
single-particle transfer strength differ in two symmetry
limits, the U(6)U(20) scheme being more successful in
the Au isotopes.

The wave functions for the U(6)U(20) limit have
been obtained by a direct diag onalization of the
U(6)U(20) Hamiltonian (18) in the IBFM code QDDA.
In the U(6)SU(20} limit, we have an ambiguity in four
phases %„%z,%3, and %4 (for the definition see the Ap-
pendix). We have tried to determine the proper phases
from microscopic relations. The coefficients I . , whichJ&J2'

appear in the explicitly rewritten Hamiltonian with the
terms

I' . (stZ+dts)' ' ~ (aty )~ ~

J)J2 Jl JP

are expressed in the microscopic approach as' '
(21)

(22)

We cannot, however, fulfill the relations (22) with the Au
occupancies from Table III completely for any combina-
tion of phases +,, %2, 43, and 4'4. In the case

P3 %4 (+ 1, —1, + 1, + 1 ) the signs of the
coefficients I 5/25/2 and I 5/27/2 — I 7/25/2 are opposite
to what is suggested from Eq. (22). In the case

3 %4 (+ 1, + 1,—1, —1) the signs of I 5/z5/z
and I 3/p7/p —I 7/p3/2 disagree with (22). For the other
combinations, the situation is even worse and the micro-
scopic relations are not fulfilled for more I"s. This fact,
together with those required in the U(6)SU(20) limit and
not obtained from the BCS calculations close values of
quasiparticle energies, suggests that to microscopically
justify the U(6)U(20) symmetry in the Au region is not
an easy task.
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D. Odd-proton nuclei —perturbed U(6)U(4) symmetry

The s»2 level, which is not considered in the
U(6)U(4} symmetry limit, is certainly important in the
low part of spectra of the odd Ir and Au isotopes. The
U(6)U(20) symmetry includes the s, /z level, but it
overestimates the contribution of the d 5&2 and g7/2 levels.

An intermediate approach is, therefore, suggested in
which the 13/z and st/z levels are considered. Cizewski
et al. ' ' proposed a method in which the starting point
is still the U(6)U(4) Hamiltonian (18) to which a per-
turbation H& including the s, &2 level is added. The form
of the Hc is

Hc=a, /zn, /z
2' —5C(d d } .(a, /zd', /z) +I,/z3/z(s d+d s) (a, /za3/z —a3/za, /z)

(1). t (1) (2}. 4 — f — (2)

+(l 3/23/2+ 3 /2)(s d +d s )' ' ~ (a 3/ztf3/2 } (23)

l95p
3+

5~~
2

2

('z)—:

(gg)
51

7+
2

(/1) 7

($p)~:

(kg) ——:, g+

110- (~~
a bc2

Z a b c a b a b c a b c b c

11
22g+

(gT)-

y+

($1 ) 7+

T:.
y+

$+
2

(2P)—31

0- (--)———11
22a b c2 a b c a b c a b c a b c b c

FIG. 3. Energy levels for ' Au and ' Au as predicted by (a) the U(6)(3}U(4) symmetry limit, (b) the perturbed U(6)(3}U(4) scheme,
and (c) experimentally observed. Spin is given on the right of level groups, whereas on the left the spin(5) quantum numbers (~&,~2)
are shown. The levels displayed have the spin(6) quantum numbers (a„oz,o3) =(13/2, 1/2, 1/2) and (11/2, 1/2, 1/2) for ' 'Au
and ' Au, respectively, with the exception of the J (~&,~2) =3/2+(1/2, 1/2) level at E„=1 MeV which has
( (T ] 0 p 0 3 ) = ( 1 1 /2, 1 /2, —1 /2 ) and (9/2, 1 /2, —1 /2 ) for ' Au and ' Au, respectively. The levels marked by s, /2 are based main-
ly on the s

& zz level in the perturbed U(6)(3) U(4) scheme and are not present in the U(6)(3)U(4) limit.
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TABLE IV. Parameters (in MeV) of calculations in the perturbed U(6)(3}U(4) scheme.

195Ir

Au
'"Au

0.184
0.329
0.329

0.258
0.244
0.269

0.019
0.019
0.020

~1/2 ~3/2

0.70
0.50
0.50

~3/2 3/2

—0.040
—0.112
—0.112

~1/2 3/2

—0.035
0.058
0.058

The factor 3 /2 in Eq. (23) subtracts the corresponding
part from the U(6}jg U(4) Hamiltonian (18) so that the
notation in Eq. (23) is in agreement with Eq. (21). (The
phase convention 4=+1 discussed in Sec. IV B is adopt-
ed. }

Calculations in the perturbed U(6)U(4) scheme for
the Ir isotopes were performed in Ref. 10, from where we
take the parameters for ' Ir. Similar calculations for the
Au isotopes have been, however, less successful. We
have, therefore, found new sets of parameters for ' Au
and ' Au. The parameters of the calculations in the per-
turbed U(6)ja U(4) scheme are shown in Table IV.

Experimental spectra of ' Au and ' Au are compared
with the calculations in the U(6}sU(4) limit and in the
perturbed U(6)U(4) method in Fig. 3. New levels,
based mainly on the s&/2 state, appear in the perturbed
scheme. Otherwise, the level structure in the perturbed
method is not changed very much from that of the
U(6) U(4) limit. We keep the labeling by the
U(6}U(4) quantum numbers also for the levels with a
prevailing d3/2 component in the perturbed calculations.

Energy levels in the perturbed scheme are invariant un-
der the phases of the parameters I 3/23/7 and I &/p3/2 In
Table IV, the parameter I 3/23/2 is negative in agreement
with the discussion in Sec. IV B. According to the micro-
scopic relation (22), the parameter I,/23/2 changes the
sign when going from the Ir to Au nuclei, being positive
for the latter. The ratio of I, /23/2 (Ir)/I &/23/2(Au) de-
duced from Eq. (22} (keeping the same I o) is —0.59
which has to be compared with the value —0.60 from
Table IV. The relative values of the parameters I 3/23/2
and I &/23/2 agree also with the microscopic estimate
reasonably.

V. RESULTS AND DISCUSSION

We have calculated the ft values for beta decay in the
A =195 and 197 systems. The decays of ' Ir~' Pt,

Hg~' Au, and ' Hg~' ~Au are of the first kind
with the same even-even core in parent and daughter nu-
clei [the transition operator (10)]. The decays of

Au~' Pt and ' Pt~' Au are of the second kind
with the change of the proton and neutron boson num-
bers of the even-even core [the transition operator (11)].
The results are shown and compared with experimental
data in Tables V —IX.

The calculations using the perturbed U(6)jeU(4) ap-
proach are the most successful in reproducing experimen-
tal results. There are some discrepancies but most of the
transitions are explained well in these calculations. With
the exception of the transitions from the Hg nuclei to the
lowest states in the Au nuclei, the U(6)SU(20) results
should be preferred in comparison with the U(6)U(4)
ones.

The transitions to the 3/22+ states of odd-proton Au
nuclei (Tables VII —IX) are strongly suppressed within
the single j-shell U(6)U(4) limit. The transitions to the
1/22+, 3/23+, and 3/24+ states in the ' Hg~' Au decay
(Table VII) cannot be explained in this limit at all. The
situation is improved considerably when additional shells
are included, both in the U(6}U(20) limit and in the
perturbed U(6)U(4) scheme. The admixture of the s, /2
level in the 3/22+ state decreases the calculated ft value
and brings it to a fair agreement with experiment in the

Hg~' Au decay. For the transitions to the
Au(3/22+) state, the calculated ft values are, however,

still greater than the experimental ones. The squared

TABLE V. Experimental and calculated logft values for the '9'Ir ~'9'Pt decay. Results using the
U(6)(3)U(4) symmetry limit and the perturbed U(6)(8}U(4) scheme for the ' Ir 3/2+ ground state with
the U(6)U(4) quantum numbers (oi,oz, tt3)(1 i 7g) = (13/2, 1/2, 1/2, )(I/2, 1/2) are compared. The
U(6)ce U(12) quantum numbers (o „tr2)(r„r2)—L for states in ' 'Pt are also shown. E„ is the experi-
mental excitation energy.

1/2

3/21

5/2I

3/22

3/23

1/22

5/22

E
(keV)

0
99

130

199

211
222

239

&o,o, )(r,r, ) —L

(70) (00)—0
(61}(10)—2

(61}(10)—2

(61) (11)—1

(70) (10)—2

(61}(11)—1

(70) (10)—2

expt.

7.0
6.6
6.2

7.2

U(6)eU(4)

7.54

7.02

7.35

7.26

7.18

9.89

lo
U(6)(3)U(4)

7.38

6.74

6.89

7.56

6.77
8.00
6.31
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TABLE VI. Experimental and calculated lagft values for the ' 'Au~' 'Pt decay. Results using the U(6)SU(4) symmetry limit,

the U(6)U(20) symmetry limit, and the perturbed U(6)(8) U(4) scheme for the ' Au 3/2+ ground state are compared. For the ' Au

ground state, the spin{5) quantum numbers are (~&,~2) = (1/2, 1/2), and the spin(6) quantum numbers are
(cr„oz,cr3) =(13/2, 1/2, 1/2) and (15/2, 1/2, 1/2) in the U(6)SU(4) and the U(6)SU(20) limits, respectively. The U(6)SU(12)
quantum numbers ( o &, o 2) (r„rz)—L for the states in ' 'Pt are also shown. E„ is experimental excitation energy.

lo

1/2)

3/2)

5/2)

3/22

3/2g

E„(keV)

0
99

130

199

211

(o,~, )(r,r, ) —I.

&70& (00)—0
(61) (10)—2

(61) (10)—2

(61) (11}—1

(70) (10)—2

expt.

8.1

6.54

6.36

8.32

7.46

U(6)(8)U(4)

8.30

6.56

6.06
7.18

7.37

U(6) U(20)

8.30

6.54

6.06
7.49

7.39

Perturbed
U{6)(8}U(4)

8.22

6.45

6.00

7.31

7.16

TABLE VII. Experimental and calculated logft values for the '9'Hg~' 'Au decay. Results using the U(6)U(4) symmetry limit,
the U(6)U(20) symmetry limit, and the perturbed U(6)(8}U(4) scheme for states in ' 'Au, and the U(6)(8}U(12) symmetry with the
SO(6) subgroup and the U(5) subgroup for the ' 'Hg 1/2 ground state are compared. The ' 'Hg ground state belongs to the

I n, n, j = [00) irrep of the Us"(5) subgroup or to the (o,cr, ) = (70) irrep of the SOs"(6) subgroup, the SO "(5) and SOs"(3) numbers

being (r&v2) —L =(00)—0 in both limits. The states 1/22+ and 3/24+ of ' 'Au are based mainly on the s&z& level; in the U(6)(8)U(20)
limit, they have the spin(6) numbers ( cr „sr3, n3 ) = ( 13/2, 3/2, 1/2 ). The other '9'Au states have the spin(6) numbers
(13/2, 1/2, 1/2) and (15/2, 1/2, 1/2) for the U(6)sU(4) and U(6)sU(20) limits, respectively. The spin(5) numbers (r„rz) are also
shown. E„ is the experimental excitation energy.

lo

Jf E„(keV) (7 )'Pg) expt.

Hg SQ (6)
Perturbed

U(6) U(4) U(6)(8) U(20) U(6) U(4)

Hg-U "(5)
Perturbed

U(6) U(4) U(6) U(20) U(6) U(4)

3/2+
1/2)+
3/2+
1/2p+

3/2+
3/24+

0
62

242
841

1083
1172

(1/2 1/2) 7.3
(3/2 1/2) 6.4
(5/2 1/2) 7.9
(3/2 1/2) 6.6
(7/2 1/2) 7.2
(3/2 3/2) 6.4

7.22
6.06

10.41

8.48
6.52
7.91
7.12
7.48
7.30

7.41
6.42
7.82
6.49

12.27
6.80

8.24
6.62

8.60
6.74
8.29
7.71

7.63

8.61
6.84
8.68
7.19

11.22
7.71

TABLE VIII. Experimental and calculated logft values for the '93Pt~'97Au decay. Results using
the U(6)(8)U(4) symmetry limit, the U(6)U(20) symmetry limit, and the perturbed U(6)U(4) scheme
for states in ' Au are compared. The U(6)U(12) quantum numbers for the ' Pt 1/2 ground state
are (o,o 2 )(r,rz) —L = ( 60)(00)—0. The spin(6) numbers for the ' Au states are
( 0 /(TpcT3 ) —( 1 I /2, 1 /2, 1 /2 ) and ( 13/2, I /2, 1 /2 ) for the U(6}sU(4) and U(6)sU(20) limits, respec-
tively. The spin(5) numbers (~&v.2) are also shown. E„ is the experimental excitation energy.

E„(keV) expt.

lo

U(6)(8) U(4) U(6) U(20)
Perturbed
U(6)(8}U(4)

3/2(+
1/2+
3/2+

0
77

269

(1/2 1/2)
(3/2 1/2)
{5/2 1/2)

7.3
6.3
6.8

8.20
6.69

11.93

7.91
6.47
8.33

7.94
6.37
8.38
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TABLE IX. Experimental and calculated logft values for ' Hg~' 'Au decay. Results using the U(6)SU(4) symmetry limit, the

U(6)U(20) symmetry limit, and the perturbed U(6)U(4) scheme for states in ' Au, and the U(6)U(12) symmetry with the SO(6)

subgroup and the U(5) subgroup for the ' 'Hg 1/2 ground state are compared. The ' 'Hg ground state belongs to the (n, nz) = [00j
irrep of the U "(5) subgroup or to the (cr,oz) =(60) irrep of the SOs"(6) subgroup, the SOa"(5) and SOs"(3) numbers being

(r, rz) —L =(00)—0 in both limits. The spin(6) numbers for the ' 'Au states are (o&ozo3) =( ll/2, 1/2, 1/2) and (13/2, 1/2, 1/2)
for the U(6)U(4) and U(6)U(20) limits, respectively. The spin(5) numbers (r1~2) are also shown. E„ is the experimental excitation

energy.

lo

Jf E„(keV) (~1~,) expt.

Hg SO (6)
Perturbed

U(6)8 U(4) U(6)8U(20) U(6) U(4)

Hg-U "(5)
Perturbed

U(6)8U(4) U(6) U(20) U(6)8U(4)

3/2+
1/2+
3/2+

0
77

269

(1/2 1/2) 7.2
(3/2 1/2) 5.71
(5/2 1/2) 6.60

7.03
5.94
9.05

8.75
6.36
7.68

7.19
6.28
7.60

7.78
6.46

8.78
6.63
7.83

7.99
6.72
8.51

overlap of the ' Au( 3/22+ ) wave functions in the
U(6)U(4) limit and in the perturbed U(6)U(4)
method is 0.89 which shows that the admixture of the
s&&z orbit is not large in the perturbed approach. Never-
theless, even this admixture causes an increase in the beta
decay transition rate by a factor of about 20.

A huge discrepancy occurs for the transition
Hg~' Au(3/23+) (Table VII) in the perturbed

U(6)cgtU(4) scheme. On the other hand, satisfactory re-
sults for this transition are obtained with the
U(6)cgIU(20) limit. This suggests that for the 3/23+ level,

the inclusion of further single-particle levels, and particu-
larly of the d5&2 level, might be important.

A strong beta transition to the 3/2&+ level at E = 1.172
MeV is observed in the ' Hg~' sAu decay with the ex-
perimental logft =6.4. In Ref. 33 this level has been re-
lated to the

(o t, o 2, o 3)(r), r2) = ( 13/2, 1/2, —I/2)(1/2, 1/2)

level of the U(6)U(20) limit, (o &, oz, o3) and (r&, r2) be-
ing the spin (6) and spin (5) quantum numbers, respective-
ly. The calculated logft value is then 9.17. A small ft
value in this energy region is obtained only for the state

in the U(6)SU(20) limit with a large s, /2 component or
for a state in the perturbed U(6)U(4) scheme based
mainly on the s, &2 level. We identify, therefore, these
states with the experimental 1.172 level.

The results with two different descriptions of the Hg
ground state, based on the group chains with either the
SO(6) [Eq. (14)] or the U(5) [Eq. (15)] subgroups, are com-
pared in Tables VII and IX. The SO(6) limit is apparent-
ly preferable to the U(5) limit. For the latter, the result-
ing ft values are too large. This is understandable as in
the description of odd-proton Au nuclei the SO(6) sym-
metry of the even-even core is assumed which implies
small overlaps between the Au and the Hg [U(5)] wave
functions. We note that from the IBFM point of view the
wave functions of the even-even core should be the same
in odd-proton and odd-neutron nuclei. The U(5) limit for
the Hg nuclei might give more satisfactory results for
beta decay rates in combination with the Au wave func-
tions based also on the U(5) limit. Then however, the
results for the Pt~Au transitions would deteriorate.

The ft values for the transitions in the 's Au~'9sPt
decay (Table VI) are well reproduced with the exception
of the transition to the 3/2z state. The transitions with

the experimentally known ft value in the ' Ir~' Pt de-

cay (Table V) are calculated also satisfactorily.
Difficulties seem to appear in the ' Ir~' Pt decay for

TABLE X. Experimental and calculated logft values for transitions to two lowest states. The
U(6)U(4) symmetry limit is used for odd-proton nuclei. Results for different combinations of the
U(6)8 U(12) phase P and the U(6)s U(4) phase 4 are compared.

lo

195Ir 195Pt

195A 195Pt

Hg ' 'Au

197Pt 197A

'97Hg~'"Au

1/2
3/21
1/21
3/21
3/2+
1/21+

3/21+
1/2+
3/2+
1/2+

expt.

7.0
6.6
8.1

6.54
7.3
6.4
7.3
6.3
7.2
5.71

P= —1

9=+1
7.54
7.02
8.30
6.56
7.22
6.06
8.20
6.69
7.03
5.94

/=+1
9=+1

9.06
6.79
7.52
7.15
9.91
6.59
7.34
5.94
8.86
6.74

P= —1

4= —1

7.34
6.16
9.34
7.40
7.00
5.55

10.74
6.29
7.00
5.57

/=+1
0= —1

8.35
6.02
7.80
9.36
8.09
7.18
7.49
6.19
8.16
7.45
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the transitions to the 3/22, 1/2z, and 5/22 states which
are not experimentally observed and for which the ft
values are presumably large. Theory predicts that these
transitions, and especially the transition to the 5/22 final

state, are rather strong. A large sensitivity to details of
nuclear wave functions can be again traced in calcula-
tions of beta decay rates. For example, the squared over-
lap of the ' Ir (g.s.) wave functions in the U(6)SU(4)
symmetry and the perturbed U(6)SU(4) scheme is 0.96.
The calculated ft values in two approaches differ for the
transitions to the ' Pt(5/2, ) and ' Pt(1/22 ) states by
factors of 2.9 and 78, respectively.

The ft values for the transitions to two lowest states
calculated with the U(6)SU(4) wave functions are col-
lected in Table X. The results for various combinations
of the U(6)U(12) phase P and the U(6)U(4) phase 4
are compared. We remind that energy levels are invari-
ant and electromagnetic transition probabilities do not
change much under these phases. The microscopically
suggested combination (P, 4)= ( —1, + 1 ) is preferred
from comparison with experiment.

In the case of the U(6)SU(20) wave functions, two mi-
croscopically most favorable combinations of phases
(%&,%2,%3,%4)=(+1,—1, +1,+1) and (+1,+1,—1,
—1) give close results, the former combination being
used in Tables VI —IX. The calculated ft values for the
other combination of phases are less successful in repro-
ducing experiment than those shown in the tables.

The ft values for the transitions to two lowest states
calculated with the perturbed U(6)SU(4) method are
displayed in Table XI. The values in column A of Table
XI repeat only those of Tables V-IX. They are obtained
with the parameters of the perturbed method as given by
microscopic considerations and shown in Table IV. The
results in column B are from the calculations in which
the sign of the parameter I, /23/2 is taken opposite to that
of Table IV. Such a sign change implies a change of the
relative sign of the s &/z and d3/2 components in the wave
functions. This leaves the calculated energies invariant.
The calculated ft values in columns A and B of Table IV
differ with a preference for the microscopically indicated
parameters.

In column C of Table XI, the ft values are shown as
obtained when only the direct term (-attt) is considered
in the IBFM beta transition operators (10) and (11) [the
nuclear wave functions are the same as in column A].
The differences between columns A and C are consider-
able in most cases. The results in column A reproduce
experimental data undoubtedly better than those in
column C. Exchange terms in the transition operators
are therefore quite important for beta decay calculations.
Inclusion of them brings the calculated ft values to a
better agreement with experiment.

VI. CONCLUSIONS

The ft values have been calculated for a relatively
large sample of 24 first nonunique forbidden transitions
in the A =19S and 197 nuclei within the framework of
the IBFM. Experimental data for most transitions have
been reproduced rather well. Nevertheless, discrepancies
remain for some transitions. On the whole, however, the
agreement between theory and experiment in the present
study seems to be better than that obtained usually in
previous beta decay studies in regions of collective nuclei.

The calculated beta decay rates are very sensitive to
details of nuclear wave functions. Even small admixtures
in the wave functions can change the resulting ft values
considerably. This makes beta decay a powerful tool for
testing nuclear structure. In the present study, the best
results have been obtained when the perturbed
U(6)SU(4) scheme has been applied to odd-proton nu-
clei pointing out the importance of the proton s, /z shell
in the region studied. We have also been able to discrim-
inate between different phases of nuclear wave functions
under which energy levels are invariant and which cannot
be easily disentangled from electromagnetic transition
probabilities. It is pleasing that the microscopically de-
duced phases provide the best explanation of experiment.

It is likely that our knowledge of nuclear states is still
incomplete for the transitions which have not been repro-
duced well. Especially, the inhuence of the proton d5/2
shell might be important. In any case, dependence of cal-
culated beta decay rates on nuclear wave functions

TABLE XI. Experimental and calculated logft values for transitions to two lowest states. The per-
turbed U(6)(3) U(4) scheme is used for odd-proton nuclei. The results in column A are with parameters
as given in Table IV. The results in column 8 are with the sign of the parameter I &/23/2 opposite to
that of Table IV. The results in column C are obtained with the same wave functions as in column A
when only the direct term is considered in the IBFM beta transition operator.

195Ir 195Pt

195Au 195Pt

»5A„

'"Pt~'"Au

97Hg~ ~97Au

1/2)
3/2
1/2
3/2
3/2+
1/2+
3/2+
1/2&+

3/2+
1/2+

expt.

7.0
6.6
8.1

6.54
7.3
6.4
7.3
6.3
7.2
5.71

7.38
6.74
8.22
6.45
7.41
6.42
7.94
6.37
7.19
6.28

lo
B

7.51
6.82
8.57
6.73
7.00
5.68
8.70
6.97
6.86
5.60

8.30
6.32
8.21
7.09
8.70
6.80
7.90
7.14
8.19
6.78
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should be carefully investigated before the higher order
effects in beta decay theory are called for an explanation
of some transitions.

The exchange terms in the IBFM beta transition opera-
tors proved to be quite important. They take into ac-
count the Pauli principle between the odd nucleon and
nucleons which form the even-even collective core. The
state of the core is changed by the action of the exchange
terms. Such terms have not been usually considered in
other collective model approaches. The microscopic in-
terpretation of the IBFM enables us to evaluate the ex-
change terms explicitly so that we have no free parameter
in the IBFM transition operator. The calculated ft
values reproduce experiment satisfactorily only when the
contribution of the exchange terms is included. This fact
strengthens the usefulness of beta decay in testing nuclear
structure as both single-particle and collective degrees of
freedom are involved in beta decay processes.

The role of the exchange terms in beta decay suggests
that such terms might be important also in single-nucleon

transfer. Analyses of single-nucleon structure in which
only the direct terms of the transition operator (9) are
taken into account should be, therefore, regarded with
caution.

On the other hand, importance of the exchange terms
leaves an unanswered question about an effect of higher
order terms neglected in the single-nucleon transfer and
beta transition operators (9)—(11). A full and consistent
evaluation of these effects represents a rather difficult
problem and has not been done till now.
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APPENDIX

The Casimir operators in Eq. (18) are written in terms
of the group generators G"', 6' ', and G' ' as

C =10G"'G'"

~)( g (1).g (1)+g(3).g (3)
)

)
(

1 g(2).g(2)+g(l).g(1)+g(3).g(3))T 2

For the U(6) U(20) limit, the generators are given as

G" '= (d Z )"' —&1/20(a t/25, /2
)") —&1/2(a 3/zit 3/2 )") —&7/2(a st/255/2 )") —v'21/5(a t7/zd7/2 )(",

G' '=(d s+s Z)' '+3/6/7%')(a7/2+7/2) i3 3/7'pl(a5/2+5/2) + s'pl( 3/2 3/2)

——,'&21/2% 10'3% 4(a l/205/2+a 5/2a 1/2) '+(12/5V'7)%')0 4(as/z&7/2 7/2~5/2)

+ ( " / )+2+3( 1/2 3/2 3/2~1/2 ) +T+2+4(a 3/2~5/2 5/2 3/2 )
(2) t

+ ( / )+2( 3/2~7/2 +a 7/2 3/2

=(d ~) + ~ ( 3/2~3/2) (3/7&2)(as/2&s/2) 73/33/5(a7/2~7/2)

+ 2 1 / +3+4 ) /2~5/2+ a 5/2~1/2 ) + / +4 5/2~7/2 7/2~5/2 )
1 (3) (3)

—(6/&70)%'3( 1/2 7/2
—

7/2 I/2
t

with the phases 4&, %2, 43, and 'P4 equal to +1.
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