
PHYSICAL REVIEW C VOLUME 37, NUMBER 5 MAY 1988

Approximations for double-beta-decay formulas
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The estimation of the relativistic Coulomb wave function is a time-consuming procedure, when

the experimental data on the double beta decays are analyzed or the Monte Carlo calculation is per-
formed. In order to avoid this complication, some simple approximated formulas are derived for
three modes: the double beta decay with two neutrino emission, the neutrinoless double beta decay,
and the neutrinoless double beta decay with Majoron emission. The errors of these approximations
are of order of 1% or less in the region where decay events are measured practically.

I. INTRODUCTION

In order to get the information on the neutrino mass
and/or parameters of the right-handed weak interaction,
many extensive experimental investigations have been
performed to measure the neutrinoless mode of the dou-
ble beta decay [the (pp)o„mode]. If it is observed, the
knowledge of the nuclear matrix elements is necessary.
Since the double-beta decay with two neutrino emission
[the (pp)2„mode] is expected to take place within the
standard model as a second-order weak process, its obser-
vation offers the information on the nuclear matrix ele-
ments unambiguously. At present, there are some
discrepancies between preliminary experimental results
and theoretical estimates for the (pp)2„mode; see, for ex-
ample, Sec. VII of our review paper, ' which will be re-
ferred to as I.

Another recently proposed PP decay mode is the decay
into two electrons and a massless neutral pseudoscalar
boson, B, known as the Majoron. It will be referred to
as the (pp)o, ~ mode. If the (pp)0 it mode competes with
the (pp)2„mode, the experimental analysis becomes
cumbersome. The electron energy spectra and the angu-
lar correlation between two emitted electrons in both
modes should be compared in detail.

In addition, as one of the direct measurements, the
time projection chamber (TPC) has been used by the Uni-
versity of California at Irvine (UCI) group for Se and
'~MD. Three other (Milano, Caltech, and Moscow)
groups are using the TPC or multicell proportional
chambers for ' Xe. In these visible detector methods,
the Monte Carlo calculation is helpful. However, the ex-
act calculation of the relativistic Coulomb wave functions
for electrons is complicated and is a time consuming pro-
cedure.

Thus the simpler and reliable approximate expressions
for the observable quantities are required to analyze the
experimental data in some higher energy region above the
background. In this paper we shall try to find such
simpler approximations which reproduce the result ob-
tained from the accurate expression.

In the experiment to observe the (pp)0 mode, two oth-
er (PP)o„tt and (PP)z„modes are measured too. As it is
well known, the sum energy spectrum of two emitted
electrons shows different characteristic features for each
mode; see, for example, Fig. 6.11 of I. To see them easily,
we shall express differential transition rates in compact
forms. For this purpose, we shall briefly summarize the
accurate theoretical expressions of the half-lives for the
0+~0+ transition of each mode in Sec. II. The
differential transition rates as the original formulas are
given and the approximated forms of them are discussed
in Sec. III. In Sec. IV summary is given, and approxima-
tions which have been used to obtain the original formu-
las themselves will be discussed.

In order to find some simpler expressions for the
measurable quantities, it is convenient to reexpress an
electron wave function as a product of several factors.
One of them is the pure Coulomb correction which ap-
pears even for point charge nucleus, and others are relat-
ed to the finite extension of nucleus. In practice, the uni-
form nuclear charge distribution with radius R is as-
sumed, and the screening correction due to the atomic
electrons is not considered. Since the radial part of the
electron Coulomb wave function inside the nucleus (the
inner function) is taken into account to obtain the decay
rate, only the normalization A +k(e) of the inner function
appears for the energy spectrum of the original formula.
In addition, when the angular correlation is considered,
another quantity appears; namely, the overall phase shift
6+k ( 8 ) which is introduced to satisfy the boundary con-
dition of the relativistic Coulomb wave at r = ~. The de-
tailed characters of A+i, (s) and 6+k(s) are discussed in
Appendix A.

Concerning the 0+~2+ transition, the contributions
from the (pp)2„and (pp)o„z modes are negligible. The
former has been discussed in Sec. 3.2.2 of I and the latter
in Ref. 5 recently. Therefore, the observation of the
0+~2+ transition in the pp decay means to measure
only the (pp)o mode, i.e., the contribution from the
right-handed weak interaction, as shown in Table 1.2 of I
and discussed in Sec. 3.3.2 of I. In this transition, one of
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the electrons should be in the P-wave state with the total
angular momentum j= —',, which gives A+2(e). Thus the

Coulomb wave has the more complicated character. The
original formula is reexpressed in a compact form in Ap-
pendix 8, from which the approximated form can be easi-

ly derived similarly to the (0+ ~0+) transition in Sec. III.

II. THE HALF-LIFE FORMULA
FOR THE 0+ —+0+ TRANSITION

The half-life formulas for the 0+~0+ transition will

be summarized for the (pp)z„, (pp)o, and (pp)o s modes
in order. In this 0+~0+ transition, the emitted elec-
trons are in the S-wave state and the P-wave state with

j= —,', so that only the normalization A +](e) of the elec-

tron inner wave function appears.
The half-life of the 0+~0+ transition in the (pp)2,

mode is expressed as

2(]u. )
(2.7a)

and

2(p. )
(2.7b)

a(e],e2)=[A+](E])+A ](e])][A+](E2)+A ](s2)],
(2.6)

where A+, (e) is defined in Eq. (Al) of Appendix A. This
a (s„s2) is obtained from the one defined in Eq. (B.3.6) of
I by using Eq. (B.3.7) of I, and is the origin of the
cumbersome calculation. In other words, the main pur-
pose of this paper is to take out the essential and neces-
sary parts from a(e„ez) for the experimental analysis.
The last (K, ) and (L, ) come from the intermediate en-

ergy denominators due to the second-order perturbation,
and are defined as

[Tg„(0 ~0 )] IMGT

/gaol

GQ'f (2.1)

with the integrated kinematical factor

G = fdQ ~(e„s )[( ]M)(( l,])+(L,))/2]
ln2

(2.2)

The detailed derivation of Eq. (2.1) is given in Eq. (3.2.8)

and Appendix 8 of I.
The first factor

I
M]or]/po

I
in Eq. (2.1) is related to

the reduced nuclear matrix elements of the double
Gamow- Teller (nuclear spin flip} transitions [M]or]
defined in Eq. (3.2.4b) in I] by the following definition:

(2v) (2v)Mm Mma
(2.3)

PO g Pa

where g, means the sum over the intermediate nucleus

at the energy state E, and

]M, m, =E, —(M, +Mf)/2, (2.4)

m„M;, and Mf being masses of electron, parent and

daughter nuclei, respectively. Here the reduced nuclear
matrix elements due to the double Fermi (non-spin-flip)
transitions are omitted, because their small contribution
is known theoretically.

In the factor Gor in Eq. (2.2), a2„ is the known con-
stant defined in Eq. (3.2.2a) of I, and the phase space fac-
tord02 is

d Q2 =m, a1CO1q2~~1~@2&2
—11

X 5(e]+e2+ o]]+o]2+Mf —M~ }

)& dao, dco2d c,d c.2d cosO, (2.5)

where ek(pk) and o]„(q],) are the energies (momenta) of
the kth electron and neutrino, respectively, and 8 is the
opening angle between two emitted electrons. The
Coulomb correction a (c,„e2) is expressed as

where (p, ) is some average of]M, in Eq. (2.4) and

ED =(e]+co] —ez —o]2) /(2m, ), (2.8a)

LD =(e] N] ——E2+C02)/(2m, ) .

The replacement of ]u, by (p, ) means to introduce an

approximation into the exact formula. The reliability of
this approximation will be discussed in Sec. IV. Note
that in this mode, even if a neutrino has a finite mass
(m„&0), its effect is considerably small. In the following
we shall assume m„=0 in the case of the (pp)2„mode.
Also, the contributions from the right-handed weak in-
teraction are negligibly small, even if it exists. The con-
tribution from the P, &2-wave leptons are negligible, too.

Next, let us consider the (pp)o„mode, where the right-
handed weak interaction may lead to the measurable con-
tribution (the V+ A part). Since this V+ A part gives
the complicated expressions due to the P&&2-wave elec-
tron, the full expressions will be given in Appendix A. In
the text we shall show only the part proportional to the
masses of virtual neutrinos (the m„part).

Then the half-life formula in Eq. (3.5.10) of I is

(m. )
I
Mar](1 —&F }

I
'Goi[To„(0+~0+ )]

me

ao
Goi = fdIIoa(e] e2)

(m, R) ln2
(2.10)

where ao„ is the known constant defined in Eq. (3.5.17b)
of I, R is the nuclear radius, and the phase space factor

(2.9)

where MG&' and XF are the double Gamow-Teller and
double Fermi type nuclear matrix elements defined in
Eqs. (3.5.1) and (3.5.2) of I, (m ) is the effective neutrino
mass which is defined as the sum of the virtual neutrino
masses weighted with the electron neutrino mixing ma-
trix elements squared, see Eq. (3.5.11) of I. The integrat-
ed kinematical factor Gp1 1n this case is
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The Coulomb correction a ( c.„ez) is the same as in Eq.
(2.6), because both electrons are in the S-wave state for
the m, , part. Note that bo, ——a++@+ in Eq. (3.5.18) of I
is equal to a ( e&, e2).

Finally, in the (PP)p ~ mode, the transition amplitude
consists of two parts: the main and correction terms
Recently, Doi, Kotani, and Takasugi have examined the
correction term in detail. In this mode it is possible to
have two di6'erent kinds of virtual neutrinos, both of
which interact with the Majoron at one vertex. If masses
of both virtually propagating neutrinos are light, say less
than m„ it is enough to consider only the main term, and
the reduced nuclear matrix elements in the (PP)p„z mode
are the same as in the (PP )p„mode, see Eqs. (3.1 1 ) and

(5.1) of Ref. 5. Then, the half-life formula of the 0+ ~0+
transition in the (PP )p„~ mode is given as

[To a(0+~0+)] =
I (ga) I IMor (I &F) I Gao(I)

(2.12)

for the case where light neutrinos give the dominant con-
tribution. Here (g~ ) represents the effective coupling
constant between neutrinos and Majoron and is defined in
Eq. (5.2.3) of I, and the integrated kinematical factor is

ao
Ggp( 1 )

2 ~ fd&p g&(&] &2),
4m (m, R) ln2

(2.13)

where the constant factor a o„ is the same constant for the
(PP)p„mode in Eq. (2.10} and the phase space factor
d Go~a 1S

Qp„z ——m, kp i ay 2 e25( k +e
&
+s2+ Mf —M; )

Xdk d e &d szd cos8, (2.14)

where k is the momentum of Majoron. The Coulomb
correction factor a (s„ez) is the same as for the (PP)z„
mode in Eq. (2.6), because both electrons are in the S-
wave states, again.

Concerning the angular correlation, the transition for-
mula is obtained by replacing a ( e„e2} with the following
combination:

d Op~ 1s

d Qp& =me p, E +2 E25( E, +Ez+Mf —M, )de, d E2d cos8 .

(2.1 1)

and in Eq. (B.17) of Ref. 5, respectively.
In order to get the simpler expression for measurable

quantities like the electron energy spectra and the angu-
lar correlation, the factors a ( e„e2) and b ( e, , ez) will be
reexpressed by products of the important part and the
nonessential part, separately.

III. ENERGY SPECTRA AND ANGULAR CORRELATION
FOR THE 0+~0+ TRANS ITION

(3.1)

where we have replaced A +, (s } in a (s„s2} and b (e„e2)
in Eqs. (2.6) and (2.16) by Eqs. (A I) and (A2) of Appendix
A. In Eq. (3.1),

~

M0&' /pp
~

is defined in Eq. (2.3) and
the constant term N2 is

N2„( —,', )a2„(C——~ p )

where a2„comes from Eq. (2.2) and CF o is

(3.2}

CF o ——2maZ(2aZm, R )
2(y) —1)

2

r(2y, + 1)
(3.3)

which is the constant part of Fo(Z, e) given in Eq. (A3).
Here y, = [ 1 —(aZ)2]'~2, Z and a are the atomic number
of the daughter nuclei and the fine structure constant, re-
spectively, and I (x) is a gamma function.

The spectrum A z,(0) and angular Bz,{0)parts in Eq.
(3.1) are expressed by

A2„(0)

{0) =(I+T) ) '(1+T2) '(T —T) —T2)
2v

Xh2„dpp
'

1 1

(3.4)

The differential decay rate for the (0+~0+}transition
in the (PP)z„mode is reexpressed in a compact form to
take out the essential parts from a (e„e2) for the energy
spectra and b (e&, sz) for the angular correlation between
two emitted electrons. Both the (PP )p„z and (PP )p
modes will be discussed later.

Let us start to rewrite the decay formula in the follow-
ing form:

d I q„(0+~0+ ) Mor'
N2„[ A z„(0)+B2„(0)cos8],

dTi dT2d cos8 pp

a ( e, , s2) —2b ( e, , e2)cos8, (2.1 5)

where

2b(e„e~)= [2A +, (e, )A, (e, )cos(b +,(e, )—b, , (e, ) )]

X [2A +, (ez) A, (ez)cos(h+, (Ez }—h, (ez) }].
(2.16)

This is valid for the (PP)2„and (PP)p„~ modes and the m „
part of the (PP)p mode For the (PP).z„mode, the deriva-
tion and the definition of b ( „E)ea2re given in Eqs.
(B.3.1), (B.3.11), and (B.3.12) of I. Derivations for the
(PP)p and (PP)p„~ modes are given in Eq. (C.3.14) of I

where T m, =c - —m„ the kinetic energy of the jth elec-
tron, and T stands for the maximum kinetic energy
release,

Tm, =M; —Mf —2m, (3.5)

The factor (1+T, ) '( 1+T2 } ' is obtained from the
phase space factor of electrons in Eq. (2.5) multiplied by
(m, ip )( E /m, } ' in Eq. (A2). The next {T —T, —T2 )

and h z„(T„T2 ) are derived from the combination of the
neutrino phase space parts in Eq. (2.5) and the energy
denominators (K, ) and (L, ) in Eq. (2.7), as it will be-
come clear in Eq. (3.12). The Coulomb factor doo( T&, T2 )
is defined as the product of dp(e ) in Eq. (A4)
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doo( T, , Tz ) =do( T, + 1)do( Tz+ 1) . (3.6)

By substituting the remaining parts of the normalization
A+, (E } in Eq. (Al) into Eqs. (2.6) and (2.16), we define

where &K, & and &L, & are defined in Eq. (2.7) and in the
notation of this section, KD and LD in Eq. (2.8) are ex-
pressed as

Att(T| Tz)=Rt t(Et)R| t(Ez) i

S'&F2
[Dt, i(st)Ct, -i(st}1

EiC2

X [D, , (Ez)C, t (ez)],

(3.7)

(3.8)

KD ——[2Tt —T+2(ro&/m, )]/2,

LD ———[2Tz —T+2(milm, )]/2 .

(3.16a)

(3.16b)

Strictly speaking, the original expressions for Az„(0) and

Bz,(0) are given by using H, +Hz and H, —( —,')Hz in-

stead of Ht in Eq. (3.12), respectively, as seen from Eqs.
(B.3.5) and (B.3.11) of I. Here, Hz is defined as

where

R, , (e) =[(a+m, )D, , (s)+(e—m, )D+, +, (s)]/(2s),

(3.9)

H, =-,'[(&K.&- &L. &)/2]',

and is proportional to

(T, T, )'[—T, +T, —T+2(rollm, )]',

(3.17)

(3.18)

D„z (e)=D„(c,)Dz(s),

C„z(s)=cos[b,„(s)—Az(s)],

(3.10)

(3.11)

D„(s) being defined in Eqs. (A10) and (All} and b,„(E)
being the overall phase shift defined in Eq. (D.30) of I.

The factor It z„(Tt, Tz ) related to the energy denomina-

tor such as &K, & and &L, & in Eq. (2.7) is defined as

hz„(T»Tz)=( —", ) s dcotrot(ro —ro, ) H»

co=(T —T, —Tz)m, . (3.13)

In this definition, the neutrino masses are neglected. The
factor (T —T, —Tz) in Eq. (3.4) comes from the fifth

power of co, in Eq. (3.12). Thus, hz„( T„Tz ) is defined to
be normalized as

lim hz„(T), Tz)=1 .
(p )~oo

(3.14)

The constant factor ( —,'p) in Eq. (3.2) has come from this

normalization. The factor H, in Eq. (3.12) is

H, =[(&K, &+ &L. &)/2]', (3.15)

where co means the energy carried out by two neutrino

part,

so that this contribution is negligibly small and omitted
in Eq. (2.2).

In the notation here, GGT of the total half-life in Eq.
(2.2} is expressed as

GGT= N„f'dT, f dT A (0}. (3.19)
ln2 'o 'o

X No„s [ A o„zt (0)+Bo„zt(0}cos8],

(3.20)

~
&gz) &MoT"'(I —XF)

~

appears in Eq. (2.12), the
total normalization constant No, B is

ao 2
No~a =

z z (CFo}
4tr (m, R)

(3.21)

The new values of G&T are listed in Table I, because some
constants have been changed a little according to the
most recent list edited by the particle data group.

In the case of the (PP)o,zt mode, the differential decay
rate corresponding to Eq. (2.12) is expressed as

I ovB

dT dT d 8= &gB& I'IMGT' 1 XF-
dT)dTzd cos8

TABLE I. The integrated kinematical factors (in units of yr ') of the 0+ ~0+ transition of the (pp)z, mode [Gor in Eq. (3.19)], the

(PP)p s mode [G~p( 1 ) in Eq. (2.13)] (Ref. 6), aud the m, part of the (PP)p, mode [Gp, in Eq. (2.10)]. The normalization constant
(CFp) in Eqs. (3.3) is compared with its nonrelativistic limit (CFp )'=(2maZ)' in Eq. (A7). Those T and (p, ) are defined in Eqs.
(3.5) and (2.7), respectively.

T(m, )

48C

8.358
"Ge
3.991

82Se

5.861

128T

1.700

130T

4.957

136xe

4.851

150Nd

6.589

GGT 4.002)& 10 ' 1.317)& 10 ' 4.393)& 10 ' 9.553 &( 10 ' 8.624)& 10 4.849 Q 10 ' 4.870 & 10 ' 1.200)( 10
Gao(1) 3 971~ 1Q

—5
1 212~ 1Q

— 9 975~ 1p
—16

1 735 X 1Q
—1 9 917)& 1p

—8
1 308)& 1p

—
1 356)(1Q—15

1 032)& 10
G01 6.427 && 10 6.446 &( 10 2.808 & 10 4.625 & 10 1.844)& 10 4.478 )& 10 4.762 )( 10 2.1 16)C 10

(CP 0) 1.498
(CF 0 ) 1.017

(AM, ) 15.10

5.726
2.430

18.42

7.049
2.725

19.73

16.07
4.070

20.0

45.23
6.132

24.53

45.16
6.132

25.98

55.75
6.594

20.0

106.7
8.080

20.0
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Ao'(0)
(0)

' ——(1+T, ) '(1+Tz) '(T —T, —Tz)
OvB

A 11

X dOO —B11
(3.22)

and the other notation is the same as the (PP)z„mode in

Eq. (3.4).
In comparison with the (PP)z mode, there are two

different features; the first power of (T —T, —Tz) and no

hz„(T], Tz) factor. The former is due to the scalar parti-
cle (Majoron) emission instead of two fermions (neutri-
nos), and comes from the Majoron momentum k in Eq.
(2.14). The reason for no hz„ is that the intermediate en-

ergy denominator like (E, ) in Eq. (2.7) are absorbed
into the neutrino exchange potential in the definition of
MPT'(I —XF) through the integration over the virtual
neutrino momentum, see Eqs. (3.5.1) and (3.4. 1) of I. The
factor G~o(1) of the total half-life in Eq. (2.13) is calculat-
ed by using the similar expression to Eq. (3.19). The nu-

merical values of Gzo(1) are given in Table I No. te that
the new Gso(1) is twice larger than the old G~ in Table
3.1 of I.

The last is the (PP)o„mode. The differential decay rate
corresponding to Eq. (2.9) is expressed as

I Ov

dT, dT2d cosL9

&rn„&
MoT" (1 &F)I—

XNO„[Ao (0}+Bo„(0)cos8], (3.23)

where ((m„~™,)
~

MoT"'(I —XF)
~

appears in Eq. (2.9),
the total normalization constant No, is

and

No = z(CFO)
(m, R)

(3.24)

A]]„(0)
2/i 2y')

(())
' ——(1+T]} (1+Tz) 5(T —T] —Tz)

Ov

A 11

X dOo —B11
(3.25)

and the other notation is the same as the (PP)o„' mode in
Eq. (3.22). In comparison with the (PP)o,' mode, the ap-
pearance of 5(T —T, —Tz) is different. This is because
the (PP)o„mode is the three-body decay and the energy of
the second electron is restricted by the energy conserva-
tion. The integrated kinematical factor Go, in Eq. (2.10)
is given in Table I.

Thus the differential decay rates for three modes have
been expressed in similar compact forms. It is found that
there are some common factors like CFo in X, with

j =(2v, Ov, OvB)„d~, A», and B». The factor hz„ in Eq.
(3.4) is the special one for the (PP)z„mode, because it
comes from the two neutrino emission. The characteris-

tic features and energy dependences of them will be dis-
cussed.

First, let us consider the constant factor CF o defined in

Eq. (3.3). As long as only the normalization is concerned,
the use of the nonrelativistic approximation like y, ~1 in

Eq. (3.3) or the plane wave one like uZ~O must not be
used, because of the large corrections due to

—2(1 —yl) .
(2aZm, R) ' in Eq. (3.3) for the large Z. This situa-
tion is shown in the sixth and seventh rows of Table I nu-
merically. This difference is the reason why Haxton-
Stephenson-Strottman and Nishiura pointed out the
necessity to use the relativistic Coulomb wave functions.

Next, let us consider the characters of A» and 8» in
Eqs. (3.7) and (3.8). They include both effects due to the
finite de Broglie wavelength correction at the nuclear sur-
face [(pR)&0] and the finite extension of nucleus
[B+&&I,hf&&0, and hg k&0in Eqs. (A10) and(All)].
Since the estimations of A11 and 8» are the origin of the
time consuming procedure, let us examine their features
in detail. In the limit of the plane wave for electrons
[aZ~O], we have

A], (T],Tz} =1,
az-0 (3.26)

aZ~0 8162
(3.27)

(B]]/A, ])-(p]pz/E]ez), (3.28)

w»ch is the plane wave limit given in Eqs. (3.26) and
(3.27). The error of this approximation is of order of
0.5% at the smaller p region, say p &m„and less than
0.5% for p ~ m, . The reason why 811/A11 becomes zero

Here we have used Eqs. (A14), (A15), (A19), (A26), (A27),
and(A31) or we may say the use of Eqs. (B8) and (Bll) of
Appendix B. This limit corresponds to the one which
Konopinski and Uhrenbeck used to approximate the rela-
tivistic Coulomb wave function in the single-beta decay.

In the normalization A+k of Eq. (Al), D ](e) and
D+](E) appear with [(e+rn, )/2e]]r and [(e m, )/—
2e]', respectively. Therefore, though D+, (e) is propor-
tional to the (1/p) factor as seen from Eq. (A22) and Fig.
2 of Appendix A, this 1/p factor is canceled by the factor(e™,)' . This is the reason why A» takes values
around unity, as shown in Table II. The deviation comes
mainly from terms proportional to aZ, as you see it by
comparing the Se case with ' Nd in the smaller
momentum region. In the higher momentum region, this
contribution becomes smaller, because of the combina-
tion y =aZe/p in Eq. (A17). This character ofy appears
explicitly for D+, (E) in the p~O limit; that is, the lead-
ing term of pD+](e) is proportional to aZ and takes the
finite value at p =0, see Eq. (A22).

The angular correlation factor B»/A» in Eq. (3.4)
which appears as the coeScient of cos8 in Eq. (3.1) can be
approximated as
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TABLE II. The T, dependence of A»(T„T2) in Eq. (3.7) for the Axed Tz.

0.0
Se (T =5.861)
2.0 3.0 4.0

Mo (T =5.937)
0.0 2.0 3.0 4.0

Xe (T =4.851)
0.0 1.5 2.5 3.5

Nd (T =6.589)
0.0 2.5 3.5 4.5

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

1.017
1.015
1.013
1.012
1.010
1.008
1.006
1.004
1.002
1.000
0.9982
0.9962

1.010
1.008
1.007
1.005
1.003
1.001
0.9994
0.9974

1.006
1.005
1.003
1.001
0.9994
0.9975

1.002 1.025 1.015 1.010 1.005
1.001 1.023 1.014 1.008 1.003
0.9991 1.021 1.011 1.006 1.001
0.9973 1.018 1.009 1.004 0.9982

1.015 1.006 1.001
1.013 1.004 0.9984
1.010 1.001
1.007 0.9983
1.005
1.002
0.9994
0.9967

1.036 1.026 1.017 1.009
1.033 1.023 1.014 1.006
1.030 1.019 1.011 1.003
1.026 1.015 1.007
1.022 1.011 1.003
1.017 1.007
1.013 1.003
1.009
1.005
1.001

1.041
1.037
1.032
1.028
1.023
1.018
1.013
1.008
1.003
0.9976
0.9926
0.9876
0.9826
0.9777

1.018
1.014
1.010
1.005
1.000
0.9953
0.9904
0.9855
0.9805

1.008 0.9976
1.004 0.9940
0.9997 0.9897
0.9951 0.9851
0.9903 0.9804
0.9855
0.9806

in the p~0 limit where we have pD+, (s)&0, comes
from the cosine term in Eq. (3.8). For the cosine term in

Eq. (3.11), the following approximation can be used:

b, +,(e)—b, t(e) =7)+t(s) —rl t(e)+n/2, (3.29)

where rl„(s) is defined in Eq. (A29). The error due to this
approximation is less than 0.1% over the practical elec-
tron energy region. The phase difference, g+ &

—g &, be-
comes —m only near the p~0 limit, strictly speaking in
the region y (m, /s) »y t. Because of this cosine charac-
ter, Ct, (e) in Eq. (3.11) has the increasing deviation
from unity in the smaller T& region, say T, & 0.2, though
it is almost unity in the wide region of T, .

In order to get the simpler expression, we assume that
A» ——1 and B» ——(pipe/ets2), as in Eqs. (3.26) and
(3.27}. The case where these assumptions for A» and

B» are adopted, will be called the approximation (1) and
referred to as A2„(1), B2,(1) for Eq. (3.4}, Ao„it(1),
Bo„tt(1) for Eq. (3.22) and Ao, (1), Bo„(1)for Eq. (3.25).
As an example, the case of the (pp)i, mode is shown in

Table III. This approximation (1) is the same as in Eqs.
(3.1.24), (3.2.2C}, (3.5.20), and (3.5.26}of I.

Since we would like to avoid to estimate A» directly,
we shall consider various combinations of the approxi-

mated forms, which compensate the effect of A», as
shown in Table III.

The T, dependences of h2„ for fixed T2 are listed in
Table IV. It shows that the deviation of hz„ from unity is
less than a few percent and becomes a little larger for the
higher unbalanced electron energies, because of the larger
values of ED and LD in (K, ) and (L, ), as seen from Eq.
(3.16). The ()Lt, ) dependence is negligible for the larger
(p,, ) value, say ()tt, ) & 15, as shown in Fig. 3.2 of I. The
first 1+ excited states of intermediate nuclei related to the
pp decay are around )M, —10. Thus we may say that we
can ignore the energy dependence of h2 in the region
where two electrons are observed, say T, &0.5. There-
fore, in order to get the simpler formula, we assume
hz„——constant (=1) for A2„(2), A2, (3), Az (4), and
A2„(5) in Table III, though it is not complicated to in-
clude the effect of h 2„numerically.

Concerning don(T„T2) in Eq. (3.6), it is normalized to
be unity in the limit p —+0, as defined in Eq. (A6). The T,
dependence of doo( T„T2 ) for fixed Tz is shown in Table
V for the cases of Se, ' Mo, ' Xe, and ' Nd [cf. Fig.
1(a) of Appendix A]. For nuclei with smaller Z, the effect
of doo may not be ignored, while for larger Z nuclei, dao
can be treated as unity. The latter approximation will be

TABLE III. Combinations of various approximated factors for A „,(j) and B2,, (j).

Approximations
A2„(0)

A2 (1)
A,.(2)
A2, ,(3)
A2„(4)

A2, , (5)

do(C)
no app.

no app.
no app.

1
—2ny) —I

Spectrum
h~, ,(Tl, Tq) A ll(Tl, T2)

no app. no app.

no app.
1

1

1

71
no app.

no app.
no app.

1

1

Angular corr.
B 1 1 ( Tl, Tq)

no app.

P IP2
ll

&1~2
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TABLE IV. The T, dependence of h&„(T„Tz) in Eq. (3.12) for the fixed Tz and (p, ).

0.0

82Se ()=5.86l
)

2.0 3.0 4.0 0.0

100MO(T = 5.937
)0 (p ) =20.0a

2.0 3.0 4.0 0.0
Xe($„&=2o.o)

1.5 2.5 3.5 0.0

150Nd(t —6. 589
))"a

2.5 3.5 4.5

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

1.006 1.008 1.013 1.022
1.006 1.005 1.009 1.016
1.006 1.003 1.006 1.012
1.006 1.001 1.003 1.008
1.008 1.001 1.001
1.010 1.001 1.000
1.013 1.001
1.017 1.003
1.022
1.027
1.033
1.040

1.006 1.008 1.013 1.021
1.006 1.005 1.009 1.016
1.006 1.003 1.006 1.012
1.006 1.001 1.003 1.008
1.008 1.001 1.001
1.010 1.001 1.000
1.013 1.001
1.017 1.003
1.021
1.026
1.032
1.039

1.004 1.005 1.009 1.016
1.004 1.003 1.006 1.011
1.004 1.001 1.003 1.008
1.005 1.001 1.001
1.007 1.001 1.000
1.009 1.001
1.012 1.003
1.016
1.020
1.026

1.008 1.011 1.017 1.027
1.007 1.007 1.013 1.021
1.007 1.005 1.009 1.016
1.008 1.002 1.005 1.011
1.009 1.001 1.003 1.008
1.011 1.000 1.001
1.014 1.001 1.000
1.017 1.001
1.022 1.003
1.027
1.033
1.039
1.047
1.055

used for Az„(3) in Table III. Though dpp is almost con-
stant in the practical region, as seen from Table V and
Fig. 1 of Appendix A, its absolute value cannot be ig-
nored for the smaller Z nuclei when the half-life is calcu-
lated.

If we assume y& ——1, i.e., the nonrelativistic limit,
dpp(T„Tz ) in Eq. (3.6) becomes

d pp" ( Ti, Tz ) =(1—e '
) '(1 —e ') ', (3.30)

with y =aZe /p for j= 1 or 2, cf. Fig. 1(a) of Appendix
A. This type of approximation will be called Az„(4) in
Table III. In the classic paper by Primakoff and Rosen, '

the energy dependence of dppR in Eq. (3.30) is abandoned
in order to get the simpler analytical expression [the case
of Az (5) in Table III].

Now we have known the energy dependences of vari-
ous factors. We shall summarize the simpler approximat-
ed expressions. Various approximations for energy spec-
tra are named as follows: The approximations in which

dev(j ) = I 1 —[A z„(j)/A z„(0)] J && 100 . (3.31)

N«e that these numerical values for dev(j) are given in

only A„=l is assumed, is referred to as Az„(1),
Ap„s(l), and Ap (1). When hz„——1 is assumed in addi-
tion, we call Az„(2) and there is no Ap„s(2) and Ap„(2),
of course. Concerning dao and y&, we consider three
different combinations, Az„(j), Ap„s(j), and Ap, (j) with

j=3, 4, and 5. As an examPle, only Az (j) are listed in
Table III. Similar classifications are aPPlied to Ap„s(j),
Ap (j), Bz„(j), Bp„s(j ), and Bp, (j). The A z„(5) and

Bz„(5)are the formulae used by Primakoff and Rosen. '

Let us restrict our consideration to the (pp)z„mode.
The single electron kinetic energy spectrum of A z„(0) for

Ge is shown in Figs. 6. 1 and 6.10 of I. The results for
the suin energy spectrum of two electrons are shown in
Table VI. The sum spectrum of Az, (0}for Ge is plot-
ted in Figs. 6.4 (the 0+~0+ transition) and 6.11 of I."
The dev(j} in Tables VI and VII is defined as

TABLE V. The T, dependence of doo( T„T,} in Eq. (3.6) for the fixed T, .

' Se (T=5.861)
0.0 2.0 3.0 4.0

Mo (T =5.937)
0.0 2.0 3.0 4.0 0.0

Xe (T =4.851)
1.5 2.5 3.5 0.0

Nd (T =6.589)
2.5 3.5 4.5

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

1.000 1.147 1.157 1.161
1.078 1.236 1.247 1.252
1.119 1.283 1.294 1.299
1.137 1.304 1.315 1.320
1.147 1.316 1.327
1.153 1.322 1.333
1.157 1.327
1.159 1.330
1.161
1.162
1.163
1.164

1.000 1.065 1.071
1.024 1.090 1.097
1.048 1.115 1.121
1.059 1.127 1.133
1.065 1.133 1.140
1.068 1.137 1.144
1.071 1.140
1.072 1.141
1.073
1.074
1.075
1.075

1.073 1.000
1.099 0.9856
1.124 0.9919
1.136 0.9957

0.9979
0.9992
1.000
1.001
1.001
1.002

0.9957
0.9813
0.9876
0.9913
0.9935
0.9949
0.9958

0.9992 1.001 1.000 0.9801
0.9848 0.9863 0.9767 0.9572
0.9911 0.9926 0.9774 0.9579
0.9949 0.9786 0.9591
0.9971 0.9795 0.9600

0.9801 0.9605
0.9804 0.9609
0.9807 0.9612
0.9809 0.9614
0.9811
0.9812
0.9813
0.9813
0.9814

0.9807
0.9579
0.9586
0.9598
0.9606
0.9612
0.9615

0.9811
0.9582
0.9589
0.9601
0.9610
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TABLE VI. The sum energy spectrum normalized to unity for the (pp)2„mode. The dev(j) and average deviation are defined in

Eqs. (3.31) and {3.32), respectively.

Tf+T2

0.0000
0.2930
0.5861
0.8791
1.172
1.465
1.758
2.051
2.344
2.637
2.930
3.224
3.517
3.810
4.103
4.396
4.689
4.982
5.275
5.568
5.861

Aq (0)

0.0000
0.4133E-01
0.1031
0.1775
0.2538
0.3208
0.3692
0.3928
0.3892
0.3602
0.3111
0.2496
0.1845
0.1239
0.7391E-01
0.3778E-01
0.1556E-01
0.4591E-02
0.7443E-03
0.2838E-04
0.0000

82S

dev(2) (%)

0.0000
0.7611
0.6331
0.5068
0.3841
0.2659
0.1529
0.4526E-01

—0.5672E-01
—0.1530
—0.2433
—0.3277
—0.4061
—0.4783
—0.5445
—0.6044
—0.6581
—0.7054
—0.7461
—0.7808

0.0000

dev(5) (%)

0.0000
—8.357
—4.745
—2.457
—1.033
—0.1461

0.3961
0.7040
0.8488
0.8737
0.8115
0.6848
0.5095
0.2980
0.5931E-01

—0.1994
—0.4726
—0.7557
—1.045
—1.339

0.0000

Tl +T2

0.0000
0.2425
0.4851
0.7276
0.9702
1.213
1.455
1.698
1.940
2.183
2.425
2.668
2.911
3.153
3.396
3.638
3.881
4.123
4.366
4.608
4.851

A2 (0)

0.0000
0.8215E-01
0.1783
0.2764
0.3634
0.4287
0.4652
0.4702
0.4453
0.3958
0.3296
0.2558
0.1834
0.1197
0.6958E-01
0.3472E-01
0.1398E-01
0.4036E-02
0.6413E-03
0.2399E-04
0.0000

136X

dev(3) (%)

0.0000
0.7543
0.1045

—0.3550E-01
—0.4104E-01
—0.1582E-01

0.8029E-02
0.2064E-01
0.1969E-01
0.5715E-02

—0.1965E-01
—0.5543E-01
—0.9988E-01
—0.1516
—0.2101
-0.2726
—0.3391
—0.4085
—0.4801
—0.5532

0.0000

dev(5) (%)

0.0000
15.73
12.21
9.351
6.793
4.414
2.159

—0.5261E-03
—2.081
—4.094
—6.048
—7.949
—9.802

—11.61
—13.38
—15.11
—16.80
—18.46
—20.09
—21.68

0.0000

Average deviation (%) 0.3951 0.6127 Average deviation (%) 0.1488 10.38

percentage. In order to simplify the comparison, the
average deviation is calculated for the cases satisfying the
following two conditions: (a) Since the spectrum is nor-
malized to unity, the counting rate should be greater than
0.02, and (b) the kinetic energy Tk &0.9785 (=0.5 MeV)

for the single electron spectrum or T, + Tz & 2. 153 (= 1.1

MeV) for the sum spectrum. Namely, when there are
n +1 de v(j)'s which satisfy the above requirements, say
m =p, p+1, . . . ,p+n, the average deviation is defined
as

TABLE VII. The sum energy spectrum normalized to unity for (PP)o„s mode.

1+ 2

0.0000
0.2930
0.5861
0.8791
1.172
1.465
1.758
2.051
2.344
2.637
2.930
3.224
3.517
3.810
4.103
4.396
4.689
4.982
5.275
5.568
5.861

Ao q(0)

0.0000
0.1937E-02
0.6004E-02
0.1299E-01
0.2368E-01
0.3876E-01
0.5879E-01
0.8413E-01
0.1148
0.1505
0.1903
0.2326
0.2753
0.3153
0.3483
0.3690
0.3708
0.3455
0.2834
0.1728
0.0000

82Se

dev(1) (%)

0.0000
0.1913E-02
0.5933E-02
0.1285E-01
0.2344E-01
0.3840E-01
0.5832E-01
0.8354E-01
0.1141
0.1497
0.1895
0.2320
0.2749
0.3151
0.3484
0.3695
0.3718
0.3468
0.2848
0.1738
0.0000

dev(5) (%)

0.0000
—8.2296
—4.5713
—2.2484
—0.7981

0.1095
0.6636
0.9764
1 ~ 1190
1.1348
1.0567
0.9072
0.7023
0.4543
0.1721

—0.1370
—0.4679
—0.8158
—1.1776
—1.5503

0.0000

T)+Tp

0.0000
0.2425
0.4851
0.7276
0.9702
1.213
1.455
1.698
1.940
2.183
2.425
2.668
2.911
3.153
3.396
3.638
3.881
4.123
4.366
4.608
4.851

Ao ~(0)

0.0000
0.4784E-02
0.1290E-01
0.2513E-01
0.421 1E-01
0.6432E-01
0.9199E-01
0.1251
0.1631
0.2053
0.2503
0.2961
0.3399
0.3785
0.4073
0.4213
0.4138
0.3775
0.3035
0.1816
0.0000

136Xe

dev(3) (%)

0.0000
0.4736E-02
0.1285E-01
0.2506E-01
0.4199E-01
0.641 1E-01
0.9166E-01
0.1246
0.1625
0.2046
0.2496
0.2953
0.3393
0.3781
0.4073
0.4217
0.4147
0.3788
0.3049
0.1826
0.0000

dev(5) (%)

0.0000
24.5048
21.3803
18.8404
16.5662
14.4471
12.4350
10.5039
8.6385
6.8283
5.0659
3.3456
1.6629
0.0143

—1.6034
—3.1925
—4.7553
—6.2938
—7.8094
—9.3038

0.0000

Average deviation (%) 0.378 0.908 Average deviation (%) 0.300 5.298
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TABLE VIII. Average deviations of A2„(j) from A2„(0) in Eq. (3.32) for the (pp)z„mode.

48Ca 76~e 82Se 130Te 136xe 150Nd

A2 (1)
A „(2)
A „(3)
A2 (4)
A2 (5)

0.204
0.681
3.06
0.997
2.40

Average deviation (%) from A2„(0)
0.259 0.335
0.133 0.217
3.44 2.23
2.90 3.01
1.60 1.06

for the single electron spectrum
0.474 0.596
0.322 0.515
1.18 0.190
4.59 7.09
2.63 5.44

0.673
0.535
0.0239
8.06
6.41

0.966
0.754
0.658
9.11
8.19

A2„(1)
A,„(2)
A,.(3)
A2, (4)
A2, (5)

0.270
0.142
5.31
1.64
4.11

Average
0.371
0.305
6.79
5.51
3.32

deviation (%) from
0.468
0.395
3.96
5.18
0.613

A2 (0) for the sum energy spectrum
0.665 0.904
0.588 0.863
2.03 0.227
7.83 12.64
3.75 9.25

0.955
0.887
0.149

13.56
10.38

1.364
1.269
1.224

15.54
13.62

average deviation (j)=
1/2

g (dev(j))'+ m=p

(3.32)

f dT, f dTzB2„(j )

a2.(j)=
f dT, f dT2Az (j)

(3.33)

Average deviations for various A 2„(j) with j= 1 —5 are
summarized in Table VIII. It is found that the A2„(1)
case where all factors except A» are taken into account
is not the best for all nuclei. It was very fortunate for the
Irvine group that they have used the Primakoff-Rosen
approximation' [our A2 (5) case] for their analysis on

Se. The Se case has the minimum average deviation
among nuclei considered here. For example, this Az„(5)
case is not good for the analysis of the ' Xe data in com-
parison with A2„(3) or Az„(2).

The similar analyses are performed for the (pp)o„s and

(pp)o, modes. The sum energy spectrum and deviations
are listed in Table VII, and average deviations for energy
spectra are summarized in Tables VIII, IX, and X [cf.
Figs. 6.5, 6.10, and 6.11 of I].

Concerning the angular correlation, the approximation
given in Eq. (3.28) is extremely good, as mentioned be-
fore. The error is less than 0.5% for the practical energy
region. The integrated angular correlation coefficient

has a tiny differ=nce for various j. Two extreme cases are
listed in Table XI. In practice, the range of integration
should be limited by the experimental conditions. Other
integrated angular correlation coefficients ao s(j) and

ao (j) defined similarly to Eq. (3.33) are listed in Table
XI for comparison.

IV. DISCUSSION

Concerning the half-lives of the double-beta decays, the
constant normalization factor should include the relativ-
istic Coulomb effect. This conclusion is clearly seen by
comparing (CFo) in Eq. (3.3) with its nonrelativistic
value (CFo ) in Eq. (A7) of Appendix A, as listed in
Table I for various nuclei.

However, as for the energy spectra, very rough and
simple formulas can reproduce the spectra obtained from
the original ones which are A2„(0) in Eq. (3.4), Ao s(0)
in Eq. (3.22), and Ao„(0) in Eq. (3.25). For example, in

the (pp)z„mode, the nonrelativistic approximation

TABLE IX. Average deviations of Ao„a(j) from Ao„a(0) for the (pp)o„a mode.

'Ca 76~ 82Se '00Mo 130Te 136xe 150Nd

A0 ~(l)
A0 ~( 3)
A0 q(4)
A0 ~(5)

0.161
2.608
0.505
2.568

Average deviation (%) from A0 &(0) for the single electron spectrum
0.146 0.221 0.311 0.512
2.271 1.640 1.044 0.610
1.117 1.251 1.883 2.793
1.563 1.442 1.644 2.626

0.427
0.554
3.124
2.883

0.572
0.682
3.981
3.829

A0 ~(1)
A...(3)
A0 q(4)
A0 ~(5)

0.327
3.960
1.803
2.650

Average deviation (%) from
0.206 0.378
2.026 1.478
2.193 3.080
0.555 0.908

A0 g(0) for the
0.527
0.617
4.536
2.915

sum energy spectrum
0.596
0.179
5.938
4.814

0.626
0.300
6.355
5.298

1.202
1.117

10.13
9.269
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TABLE X. Average deviations of Ao (j) from Ao„(0) for the (pp}0,. modes.

48C "Ge 82se '00Mo 130T 136X 150Nd

Ap„(3)
Ap, ,(4)
A.'.(5)

0.012
3.975
0.703
3.421

Average deviation (%) from

0.028 0.036
4.530 3.987
2.200 2.739
3.398 2.314

A0, , (0) for the single electron spectrum
0.049 0.062
1.998 0.578
3.727 4.621
0.573 2.725

0.067
0.458
4.957
3.197

0.077
0.457
6.476
5.227

A2„(5) in Table III may be used for Ge and Se, while
another simple approximation A2 (3) is better for ' Nd,

Xe, ' Te, and ' Mo, as seen from Tables VIII, IX,
and X. A little more complicated one Az, (2) offers the
better approximation for all nuclei considered here in the
(pp)2„mode. ' The quite similar tendencies can be seen
for the (PP)o„s and (PP)o„modes. ' Anyhow, the devia-
tions from the original ones are not serious for various
approximations, except for the large Z nuclei like ' Xe
and ' Nd.

The decomposition of the relativistic Coulomb wave
given in Eqs. (Al) and (A2) is useful to analyze the data
on the single p decay, too.

Concerning the angular correlation, the simplest ap-
proximation (Bt t/3 tt )-(ptp2/etsz) in Eq. (3.28) is

good enough and independent of decay modes. However,
Table XI shows that the integrated angular correlation
coefficients in the (pp)2„and (pp)o, tt modes and in the m„
part of the (pp)o, mode are different, though they are al-

most independent of various approximations.
Next let us consider the approximation related to the

energy denominators K, and L, in Eq. (2.7) for the (PP)2„
mode. Our original expression in Eq. (2.1) or Eq. (3.1)
has been obtained after applying the following approxi-
mation: That is, the second-order perturbation gives, as
shown in Eq. (3.2.1) of I,

H2„(T, , T2)= 30 1
dcotNt(ro —cot }

4 co

X QMor",'(K, +L, )/2 2,

(4.1)

where K, and L, are obtained from Eq. (2.7) by replacing
()tt, ) with p, in Eq. (2.4), cf. the definition of hz„ in Eq.
(3.12). Our original expression A2 (0) is obtained by as-
suming the separation

H2, (T, , T~) QMo{2~) /p, , 2h~, (Tt, T2) . (4.2)
a

This kind of approximation is allowed, if the c. . and co.
dependences of K, and L, can be ignored, i e.,
p,, )) iKD i

and OLD i
in Eq. (2.7). The kinetic energy

spectra of electron or neutrino have peaks at
(el —m, ) —(s2 —m, ) —cot —co2((Tm, )/4, where Tm, is
the maximum kinetic energy release defined in Eq. (3.5).
While the lowest p, for the known nuclei is of order of
10, as shown in Fig. 3.2 of I. Therefore, we expect that
Eq. (4.2) is a good approximation.

Tsuboi, Muto, and Horie have examined this kind of
approximation for the Ca case by performing all in-
tegrations over co, , T&, and T2. ' According to their re-
sult, the approximation seems to be allowed. It is desir-

TABLE XI. Integrated angular correlation coefBcient a2„(j) in Eq. (3.33) and the corresponding
ap g (j) and ap„(j).

48Ca 766e 82Se 130Te 136X 150Nd

(PP)&, mode

a2 (0)
a,.(5)

0.7613
0.7468

0.5308
0.5227

0.6490
0.6437

0.6464
0.6477

0.5838
0.5914

0.5758
0.5846

0.6653
0.6792

{PP)o„s mode

ap g(0)
ap„~(5)

0.8739
0.8668

0.7041
0.6982

0.7989
0.7957

0.7982
0.7986

0.7509
0.7555

0.7446
0.7500

0.8136
0.8213

(PP)O„mode

ap„(0)
a.:(5)

0.9288
0.9254

0.8152
0.8110

0.8821
0.8796

0.8827
0.8816

0.8520
0.8522

0.8479
0.8483

0.8953
0.8966
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able for other nuclei to examine the constancy of the Tk

and ()u, ) dependences of H2„(T), T2) theoretically in or-

der to confirm our original expression in Eq. (2.1) or Eq.
(3.1).

Concerning the (pp)0, and (pp)o„i) modes, the above

electron energy dependence due to the energy denomina-
tor can be neglected, because the average energy of virtu-

al neutrino is about 80m, . But there is another problem.
The original formulas in the text are obtained by assum-

ing the 2n mechanism where the successive p transitions

of two neutrons trigger the PP decay. Fazely and Liu'

pointed out that there is an appreciable contribution to
the 0+~0+ transition in the (pp)0, mode froin the N'
mechanism where the pp decay occurs through the tran-
sition of b, (1232) which interacts with other nucleons.
However, Tornoda' and Watanabe- Toki' concluded
that its contribution is negligible in comparison with the
2n mechanism. There is no definite estimation of the
0+ ~2+ transition in the X* mechanism. Even if the N'
mechanism is taken into account, the transition formulas
need not be changed, except the nuclear matrix elements,
see for example Eq. (4.5) of I for the (0+ ~2+) transition
in the (pp)o„mode.

Note added in proof Recen. tly we received a paper by
T. Tomoda, 0+~2+ ¹utrinoless PP Decay of Ge (Uni-
versity of Tiibingen Report) which discussed the contri-
butions from both two nucleon and N* mechanisms.

APPENDIX A: CHARACTERS OF THE
RELATIVISTIC COULOMB WAVE FUNCTION

We shall discuss the features of the normalization

[A+k(s)] and the phase [5+k(e)] of the electron wave

function inside the nucleus with the uniform charge dis-
tribution. Their original definitions are given in Eqs.
(D.18) and (D.30) of I.

It is convenient to express the normalization A+k(s)
by a product of three factors;

„(e)=[(s+m, )/2e)' '[F„,(Z, e)]'"D k(E) .

Here 3+k and A k correspond to the small and large
components of the radial wave function, respectively.
The first factors on the right-hand side of Eq. (Al) are the
normalization appearing even for the plane wave solution
of the Dirac equation. The second factor Fk, (Z, s) is
the relativistic Coulomb (Fermi) factor introduced by
Konopinski and Uhlenbeck, see Eq. (3.1.25) of I, where
Z is the atomic number of the daughter nucleus. This
Fk, (Z, e) expresses the normalization of the outer regu-
lar solution for the point charge and is evaluated at the
nuclear surface. The final factor D+k(s) is related with
the continuity condition between the inner and outer
solutions at the nuclear surface for the case of the extend-
ed nuclear charge.

First let us examine the characters of Fk )(Z, e) by ex-

pressing it as follows:

Fk, (Z, e)=CF k,dk, (E)(m, lp) " '(Elm, )

(A2)

where yk ——[k —(aZ) ]' . The constant factor CF k

1S
2

2rk —( 2(rk —k) 2k (2k —1 }!!

dk i(s)= y "e
~

I (yk+iy)
~2'

with

(A4)

y =aZ(e/p) .

This dk i(e) is normalized to be

(A5)

lim dk, (c, ) = 1 for Z & 0 . (A6)
p~O

Since there is the factor p "+' in Fk i of Eq. (A2), one
may wonder whether the transition probability has an
infinity at p =0. But it is not so. This is because the
suffix k means the electron (k —1) wave with the total an-
gular momentum j =k —

—,
' so that the electron (k —1)-

wave offers the factor p" ' which results in p
' " for

the differential probability. In addition, we have one
more p from the fermion phase space. Thus totally we
have a finite value at p =0 for the single electron spec-
trum. This is due to the attractive force on electrons by
the nuclear charge. Note that for the positron emission
case (Z &0), we have lim~ odk )(a)=0, which means
the repulsive force due to the nuclear charge.

If we assume yk =k, i.e., aZ 0, do(e) becomes the
nonrelativistic Coulomb Fermi factor which appears in
the solution of the Schrodinger equation, i.e.,

dp (&)=
2

and CF o =2naZ.
27Tp

(A7)

Similarly, for the k =2 case, we have

d, (E)

=do�

"(a)(1+y ) and CF ", =2ir(aZ) . (A8)

Note that Fk, (Z, e) is normalized as

lim Fk, (Z, e)=1 .
aZ~O

(A9)

The momentum (p) dependences of dk, (e} are shown
in Fig. 1 with dk i(e) for the cases of Z =22, 44, and 62,
corresponding to the pp decay of Ca, '~Mo, and '50Nd.
As you see, the approximation do(E)=1 is good for the
higher Z nuclei, but do(E) =do (a } is better for the lower
Z. For d) (E), we should take it into account properly, af,

least by the approximation d, ( E ) —d, R (e ), when we ana-
lyze experimental data.

Next, let us discuss the feature of D+k(E) in Eq. (Al),

D+k(E) [Fk (R}/Fk (R)]B+k +hf k (A10)

D ( k)=s[G "k(R }/G'"k(R)]B k(1+h k ) .

Here Fk"( G "k ) and Fk'( G "k ) are the outer and inner
regular solutions, respectively, and B„and (1+hf(g) „)
defined in Eqs. (D.24) and (D.26) of I come from the nor-

(A 1 1)

(A3)

where R is the nuclear radius, I (x) is a gamma function,
and
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2. 5 malization of the outer (regular and irregular) solutions
and the continuity condition at the nuclear surface, re-
spectively.

The outer regular solution is given as

2. 0

1.5

48CCa
F'+'k(R }=[Rk(1+(k)' +Ik(1 gk—)' ]/&2,

G"k(R)=[R k(1+( I)' +Ik(1 gk)—' ]/&2 .

(A12)

(A13)

1.0

100MMo Note that 6"k is obtained from F'+k by replacing m,
with ( —m, ), that is,

( I+gk )/2
=(k +yk)(ek+m, yk)(a+ m, )/(2N&)+ k

0. 5

d0

NR
d

0

p/m

1SON p 0 1

(1—gl, )/2

(1—g„)/2 (k y), )(skim, yk)(s™,)/(2N )

0 0

where

N =(aZs) +ykp

Rk and Ik are defined as

(A14)

(A15)

(A16)

1(R„+iI„)= —(y„+iy)e'~"F(y„—iy, 2y„+ I; 2ipR), —

10

48 (A17)

where F(a, y;z) is a hypergeometric function. In the
p~0 limit, we have

0
Mo (R„+iI„) = (y„ /k)+ i(y /k),

p~P
(A18)

10

10'
dl

NR
dl

1SO

and G "k(e)-[I—(aZ} l2k ] and F'+I, (s)~aZm, /pk.
It should be noted that 2+1,(s) in Eq. (Al) has a factor
p/[2s(e+m, )]'~, so that pF'+k(s) at p =0 is a finite
value proportional to aZ.

Also it will be useful to notice that in the plane wave
limit (aZ~O), we have (I+gk)/2=(1+/k)/2=1 and
(1—gk )/2=(1 —gk )/2=0 in Eqs. (A14) and (A15), and

(Rk+iIk) = [jk,(pR)+ijl, (pR)](2k —1)!!(pR)'
aZ~O

10 = 1+ipR /(2k + 1 ), (A19)

pm e

FIG. l. The momentum dependences of d„,(e) in Eq. (&4)
and its nonrelativistic approximation dp", (e) in Eqs. (A7) and
(A8).

where jk(x) is a spherical Bessel function. In other
words, in this aZ ~0 limit, we have F'+k =G "k = »f we

ignore the finite de Broglie wavelength correction,
(pR) «1.

Next, the inner wave F+'k (R ) is given by
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F"„(R)=Jake„ 2. 5

(PR )

2(2k +1}
(pR)4+2aZ[2(k +1)E+m, ]R

8(2k + 1)(2k +3)

2. 0

D

100MMo

where

(A20)
1.5 +2

p =E —m, and E=a+(3aZ/2R) . (A21)

The other G "k(R)=g„b „z„ is obtained from F+'k by
replacing m, with ( —m, ). The exact solutions of F'+'z

and G"k are obtained from the recurrence relations for
ak z„and b k z„given in Eq. (D. 1 1) of I.

In the p~0 limit, by neglecting the m, R term, we
have

[F'+I (R}IF"(R}1 - «Zm. /p)[1+ 6t( } + ' ' ' ]
p —+0

(A22)

[F'+'~z(R)/F'+'z(R)]~(aZm, /2p)[1+ —,'(aZ) + ],
(A23)

1.0

0. 5

D

plm

[G"I(R)/G"&(R)]~[1—~~3(aZ) + . ],
[G"~z(R)/G "z(R)]~[1+—,', (aZ)'+ ] .

(A24)

(A25)
FIG. 2. The momentum dependences of D+I, (c, ) defined in

Eqs. (A10) and (A11).

On the other hand, in the aZ —+0 limit, we have again
similarly to Eq. (A19) 8&

—b, c+&(e)—b,c &(e) appears and can be approximated
within 0.1% errors as

F'+'k or G"„:j„,(pR )(2k —1)!!(pR)' . (A26}
aZ~O ei, ri+-k (e) r) —k (E)+n/2. , (A28}

The exact expression of B„[1+hf(g)„]is rather compli-
cated, as seen from Eqs. (D.24) and (D.26) of I, but its nu-

merical value is less than unity. The deviation from unity
is proportional to (aZ) like Eq. (A24}, and less than 2%
even for the ' Nd case, i.e.,

cosr)k = —[(1—gk )/2]' ', cosrl k
= [(1+)k)/2]'

sinr)k ———[(1+(k)/2]', sing k
———[(1—gk }/2]'

(A29)

B+„(1+hf„) or B „(1+hg „)=1—O((aZ) } .

(A27)
As it is easily confirmed from Eqs. (A14) and (A15), we
have

In summary, D+„(e) and D „(e) take the values
around unity within a few percent errors, except the case
of D+k(e) for p &m, . As an example, this situation is
shown in Fig. 2 for the ' Mo case. In the energy region
where electrons are observed experimentally, say

p & 0.5m„ these D+1, (e} may be treated as unity in order
to avoid the complicated calculation.

Finally, let us consider the approximation for the
overall phase shift b,„(E). In practice, this phase shift ap-
pears only in the interference term which gives the angu-
lar correlation between two emitted electrons, that is, a
combination like the cosine (or sine) of the difFerence

&„(e)—& (e).
In the case of the 0+~0+ transition, only the k =1

wave contributes. Therefore, only one combination

Hk = —m. /2,
p~0

(A30)

Ok -0.
aZ —~0

(A31)

These limiting values are exact, independent of the ap-
proximation in (A28). However, as soon as p becomes
nonzero, strictly speaking, in the region y (m, /E) «y„
cos8, tends to become near unity rapidly. In the practi-
cal region, say p &0.5m„ the deviation from cosO, =1 is
less than 1% even for the ' Nd case.

In the case of the 0+~2+ transition in the (PP)0„
mode, all six possible combinations of (b —Az) for A, ,
~=+1 and +2 appear. However, in the practical region
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say p &0.5m„we may assume the following limiting
values:

lim b„(e)=2m .
aZ~O

(A32)

APPENDIX B: THE (pp)O„MODE

The differential decay rates in the (PP}o, mode are
given for the 0+~0+ and 0+~2+ transitions.

In the case of the 0+ ~0+ transition, by using the no-

tation T2 ——T —T&, we have the following full expression
corresponding to Eq. (3.23):

d'r, „(0+ o+)
=

~

M]or'
~

No, [AO (0)+Bo,(0)cos]9],
dT, d cos0

(81)

where the constant factor No„ is defined in Eq. (3.24) and,

o.(o g (Ov)&

(0)
'=(1+T] ) (1+T2) doo

'

Ov 0
(82)

w"'=c' (m )
0 1

me

(m„)
+C2(k, &

me

(m„)
cos1(]+C3(rj) cosg2+C4 (A, ) +C5 (rj) + C6 (A, )(2) )cos(p] —$2),

me

B (Ov)&
0

p]p2 (m„&
C)

me

(m„&
+C2 '(&) "

cos1(]
me

(83)

(m„)
+C3 '(rj) coslt2+C4 '(A, ) +C' '(rj) +C' '(g)(rj)cos(g] l(2)

me
(84)

Here A, and g are the parameters due to the right-handed
weak interaction defined in Eq. (3.1.3) of I and Ao (0)
and Bo,(0) are obtained from Eqs. (3.5.10) and (C.3.14) of
I, respectively.

Six coefficients C'. in the spectrum part A 0 ', are

jk( l~e)e2D —j, —k(e] }D j k(&2)

Njk (e],e2) =D+j +k (e] )D+j + k (e2),

+j, +k (el }D—j, —k(e2)

Qjk(e], &2)=D j k(e])D+ +k(e2) .

(86b)

C', =(1 XF) A„, —

C2 ——2(1 —XF }(E +P„X3 +E+ Q]]X3+),

C3 ———2(1 XF)[E +P„X—4 +E+ Q„X4+

E++M„Xp„—+E N„XpR+],
(85)

C4 E+P, ] X3 +E+ Q—]]X3+,

C3=E +P]]X4 +E+ Q]]X4++E++MIIXFR

+E N]i'm~+

C6= 2(E +P»X3 X4—+E+ Q]]X3+X4+),

The combination of nuclear parameters are defined as

9+~++ +2 — ~

me

6) —E2
X4+ X] + X2+

XpR+ ——
R

[X„' ,'(/+2m, R—)X—'p],
m, R

(=3aZ+(T+2) Rm,

(87)

where A ]] is defined in Eq. (3.7),

E++ ——(c]+m, )(e2+m, )/(4e]E2},

E +=(c]—m, )(e2+m, )/(4E, E2),

and, by using D„& in Eq. (3.10), we define

(86a)
A]] —M k Njk Pjk ——Qjk ——1 —. ——

Similarly CJ"' in the angular part Bo"are

(88)

where the nuclear parameters Xz, X&+, X2+ +p
are defined in Eqs. (3.5.2)—(3.5.9) of I and assumed to be
real. The approximated form A o

"'(j) for j )0 means to
assume that
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C, = —(1 X—F) 8„,
Cz ' = —(1—XF )( —',X]+)Do„(Cp„+So„},

C3 ' ——(1—XF)[—', X, (Cp„+Sp„)——', X~(CO„—Sll )]Dp
'2 (89)

C() =—'
4 2

6) —E,2
X2-

me

2

—( —,'X, + )' Dp„( Cp +So ),

C(&)&
5 2 Xz+ —( —,'X] )' Dll (C]1„+S]1,)+ 2 (6(XF —X]] )' —9XF' Dp (Cp Sp ),

E, )
—Kp

X2-
m~

&&
—&z

X,+ —(-', X]+)(-',X, ) Do„(CO„+Sp,),
me

where 8]]——(e]ez/p]pz)8]] with Bl] in Eq. (3.8) and, by
using D„]„(s)and C„],(e) in Eqs. (3.10) and (3.11), we
define

fact that one electron is in the S-wave state (k =1) and
the other in the P-wave (j =—,

' }state (k =2).
The differential decay rate in this case is

Do ——D+] ](e])D+],(sz),

Cov +1 —1(el)C+],—1 ez)

Ov +1 —1 el) +1 —1(ez) &

S„z(s)=sin[A, „(e)—b,z(e)] .

(810)

d I'p„(0+ 2+)
=No„z[ Ap„z(0)+Bp„z(0}cos8

dT, d cos8

+Co„z(0)(cos 8——,
' )], (812)

The approximated form Bp„(j) for j & 0 means to assume

8&& =Do =Co =1 and So =0 (811)
The spectrum and angular correlation are shown in Figs.
6.6-6.9 of I and Ref. 16.

In the PPO,(0+~2+) mode, there are two nuclear ma-
trix elements

I Zzz I
and

I Zz, I
defined in Eq. (3.5.23) of

I. The main origin of the complication comes from the
I

where the constant factor is

ao
Npv2 2 Cp oCp ]

3(rn, R)
(813)

Here ao„ is the constant factor appearing in the
ppo„(0+ ~0+) mode [Eq. (3.5.17) of I] and CF k is defined
in Eq. (A3).

The spectrum part Ao,z(0) is

Ap„z(0)=(1+T] ) (1+Tz ) 'd]11[(E++Mz]+E Nz] )
I z» I'+(E +Pz] +E+—~2] }

I Z22 I
']

+(1+T]) '(1+Tz) 'do][(E++M]2+E——Nlz) I Zz] I
'+(E +P]2+E~ g]2) I Zzz I ] (814)

where, by using dk ](s) defined in Eq. (A4), we define

djk
——d, (e] )dk(sz), (815)

and E++, Mjk, etc. , are defined in Eq. (86). The approximated form Ap„z(j) for j & 0 is obtained by assuming Eq. (88).
The first angular part Bp„z(0}is

Bo 2(0)= [(I+T )'](1+.Tz) 'd, o[ I Zz, I a]](—2, 2; —1, 1)+
I
Zzz I a]](—2, 2;1,—1)]

10 c&c2

+(1+T]) '(1+Tz} 'do][
I Zz]

I
a„(—1, 1;—2, 2)+

I Zzz I a]t( —1, 1;2, —2)]I

—2[(1+T, )(1+Tz)] ' '(dp]d, p)' I [E++a„(—2, —1;—1, —2)+E a]](2,1;1,2)]
I Zz, I

[E+ a]](—2, —1;—1,2)+E +a]](2,1; —1, —2)]
I Zzz I

2I,
(816)

where, by using D„] in Eq. (3.10},we define
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a„(a., A, ; tr, t) ) =D„x(s,)D „(e~)C(tr, A, ;tr, ri),
C(tt ~ tr g) cos[~ (s ) ~x(~ )+~ (E2)—~„(&z)l

The second angular part Cp p(0} ts

(B17)

0 C)Fp

XI ~ Zz&
~

[az( —2, +1;—1, +2)+as(+2, —1;+1,—2)]

—
~ Zzz

~ [an't( —2, +1;+1,—2)+att(+2, —1;—1, +2)]] . (B18)

The approximated forms Bo„z(1) and Co„z(1) are ob-
tained by assuming

For Co,z(0), the momentum p is eaten by
pD k(e)~aZm, again and the p ~0 limits of the phase
differences are

as ( tt, A, ; o, ri ) = 1 . (B19)

The approximations Ap p(l) Bp p(1), and Co„z(1) in this
paper are the same as in Eq. (C.4.15) of I. Note that in
the p ~0 limit, Ao„z(0) and Bp g(0} al'e finite atld Cp p(0)
is proportional to (aZ) [cf. Figs. 6.8 and 6.9 of I]. The
reason for A o„z(0) is clear from the leading terms such as
Dt, (s)~1 and pD k(e)~aZm, in Eqs. (A22) —(A27). In
the case of Bo„z(0},the first term in Eq. (B16) becomes
negligible in the p ~0 limit because of the small pD „(e)
and Eq. (A30), but the second term is finite, because the
limiting values are

[b, ~(s) —b, ,(s)]~(y, —y~+ —,')m,
(B20)

[& p(&) —&)(s)]~(y,—y, +1)tr,
[&g(&)—& )(s)]~(y,—y, )n .

(B21)

No„, f dT, f dT, 5(T T, T, )— —
n2 "

0
1

0

Note that in this notation, the total half-life is ex-
pressed by

[To„(0+~2+)]

[h~(s) —6, (s)] (y, —y~+ —,')n . X Ap p(0) . (B22)
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