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Proton-nucleus quasielastic scattering cross sections and spin observables are calculated in a rela-
tivistic plane-wave impulse approximation for nuclei from "C to ' Pb at energies of 300 to 800
MeV. Relativistic effects are incorporated by using Dirac spinors with enhanced lower components
characterized by an effective mass from 0.8 to 0.9M. The analyzing power is found to decrease
significantly from free NN values when relativistic spinors are used. This reduction is in good
agreement with data. Little change in polarization transfer coefficients D;, is found at 500 MeV.
However, predictions of enhanced D, , and DI I are made at lower energies. Calculations are also
presented for (p,n) quasifree charge exchange reactions. Here the analyzing power is almost un-

changed but large changes in cross section and polarization transfer coefficients are possible. These
changes depend on how pion contributions to the NN amplitudes are treated. Suggestions for fu-

ture theoretical and experimental work are made.

I. INTRODUCTION

Most relativistic approaches to nuclear physics suggest
the optical potential or self-energy for a nucleon in the
nucleus involves large attractive Lorentz scalar and
repulsive vector terms. ' For example, relativistic im-
pulse approximation (RIA) calculations ' find strong po-
tentials coming from large scalar and vector pieces of a
Lorentz-invariant representation of the NN amplitudes.
RIA calculations provide an excellent description of elas-
tic proton scattering. Here, relativity is important be-
cause the individual scalar and vector potentials are com-
parable to the nucleon mass.

However, most of these scattering calculations involve
relativistic effects on the projectile in elastic scattering.
There are many reasons one would like to also examine
relativistic effects in inelastic reactions. (a) The reaction
content of the RIA is quasifree knockout. Thus, a good
description of quasielastic scattering is fundamental to
the success of the RIA. (b) Elastic scattering is sensitive
to only the scalar and vector pieces of the (isoscalar) NN
amplitudes, while inelastic reactions are sensitive to all
terms. (c) One would like to examine relativistic effects
on nuclear structure as seen through inelastic transitions.
(d) Finally, the (p,n) charge-exchange reaction allows one
to study relativity in the isovector NN interaction. Rela-
tivity may have quite different effects in the isovector
channel since here the scalar and vector terms are small
while the pseudoscalar invariant (which comes mostly
from the pion) is very large.

Elastic scattering from spin-zero targets is sensitive to
only the baryon and scalar densities. There have been
some relativistic calculations on elastic scattering from
polarized nonzero-spin targets. ' This work also at-
tempts to look at other NN amplitudes and further de-

tails of nuclear structure. However, recent DWIA calcu-
lations show little sensitivity to these ingredients.

In addition, the Colorado group has performed relativ-
istic DWIA calculations to discrete final states. These
have been done both with and without an explicit treat-
ment of nucleon exchange, see also Ref. 9. However,
transitions to discrete states require relativistic wave
functions for the final excited nucleus. Ambiguities in
the current very crude wave functions can complicate the
interpretation of results.

Here we focus on quasielastic scattering to the continu-
um with momentum transfer q related to the energy
transfer co=q /2M. At this high an excitation energy, a
simple statistical or Fermi gas model of the target should
provide a good first orientation. Indeed, Fermi gas mod-
els work well for the gross features of inclusive quasielas-
tic electron scattering. ' In addition, relativistic calcula-
tions have been done for electron scattering. " However,
there appear to be no spin observables in the quasifree
electron reaction with clear relativistic signatures.

Spin observables in proton scattering may provide
uniquely clean data. First, a clear quasifree peak is seen
(see Ref. 12, for example) with an excitation energy very
close to that for free NN scattering. In addition, the
width of the peak agrees well with Fermi motion
broadening (except at very large angles). Thus the reac-
tion mechanism is dominated by quasifree scattering.
Second, the primary role of distortions on the incoming
and outgoing hadron wave functions is to reduce the
cross section. Distortions largely cancel in calculating
spin observables. ' Thus spin observables should be in-
sensitive to distortion uncertainties.

Furthermore, all nonrelativistic calculations to date,
for example Ref. 14, give essentially the free NN spin ob-
servables at the center of the quasielastic peak. The free
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NN spin observables thus provide a clear benchmark for
comparing relativistic calculations and experimental
data. Any deviations from the free NN observables are
likely to stem from either a change in the collective
response of the target (from pionic enhancements, for ex-
ample) or from a change in the NN interaction in the
medium (possibly from relativistic effects). In this work,
we show how the strong scalar potential of nuclear field
theories influences the NN interaction to give a signature
in the quasielastic spin observables.

Relativistic effects are present for the NN interaction
in the medium because strong optical potentials enhance
the lower components of the Dirac nucleon wave func-
tions. The NN interaction then depends on these wave
functions. For example, in relativistic mean field and
Brueckner calculations' ' the scalar attraction is re-
duced with respect to the vector repulsion as the wave
functions change. Thus, relativistic calculations saturate
nuclear matter at a lower density and binding energy
than equivalent nonrelativistic calculations (with un-

changed four-component spinors}. It would be very use-
ful to have experimental information on this important
theoretical change in the NN interaction.

Relativistic impulse approximation calculations for
elastic scattering ' often use the standard form for the
NN amplitudes shown in Table I. This form makes par-
ticular predictions for how the NN spin observables de-
pend on the four-component spinors. The five Dirac
operators in Table I are used to extrapolate on-shell NN
data to an interaction with different wave functions.
Clearly this extrapolation must be model dependent. For
example, this form implicitly uses a y5 form for the pseu-
doscalar invariant, while at low energy it is important to
use a pseudovector form. ' ' It may be possible to use
the spin observables in quasielastic scattering to test the
form of the relativistic interaction.

In a previous work, ' results were presented for
scattering from a nucleon at rest. Here we perform a full
relativistic plane-wave impulse approximation (RPWIA)
calculation and integrate over the Fermi motion of the
target nucleons. This allows us to calculate the energy-
transfer dependence of quasifree scattering (due to simple
kinematics). In Ref. 13, results were only presented for
spin observables at the top of the quasielastic peak.

Furthermore, we consider the (p,n) charge-exchange
reaction. This depends on relativistic effects in the iso-
vector NN amplitudes. These may be quite different
from relativistic effects in the isoscalar interaction which
is (primarily) probed in elastic scattering. The isoscalar

TABLE I. Form of the relativistic NN amplitude used in the
text.

7=g,.F'{q, E}A,I „){,Iz,

NN amplitude has strong scalar and vector components
(Table I). In contrast, the pseudoscalar invariant (arising
primarily from m exchange} dominates the isovector am-
plitudes. Thus (p,n} scattering is sensitive to the pseudo-
scalar invariant and the way in which the pion is treated.

Finally, in this paper we use different Dirac spinors for
the projectile and target. This allows us to examine sepa-
rately relativistic effects on the projectile and the nuclear
structure of the target. It has been claimed that elastic
scattering is primarily sensitive to relativistic effects on
the projectile rather than the target.

In Sec. II the RPWIA formalism is developed to calcu-
late cross sections and spin observables assuming a Fermi
gas for the target; a number of the approximations which
we use are then discussed. Section III presents results for
cross sections and spin observables from a variety of tar-
gets (' C to Pb) at laboratory kinetic energies T{»
from 200 to 800 MeV. Here special attention is paid to
the 500 MeV LAMPF experiment. ' Finally, Sec. IV
presents conclusions and discusses further experimental
and theoretical work.

II. RELATIVISTIC PWIA

A. Formalism

U(r, E)=S(r,E)+yoV(r, E) . (2.1)

Here yo is a Dirac matrix (our conventions are those of
Ref. 22) and S is the scalar and V the vector potentials.
We assume S and V are approximately proportional to
the baryon density:

In this section we calculate spin observables in a rela-
tivistic plane-wave impulse approximation (RPWIA) as-
suming a Fermi gas model for the target. First, we dis-
cuss projectile and target wave functions at an appropri-
ate average density. Then the square of the scattering
matrix element is written with spin projection operators.
Next, traces are taken to calculate cross sections and spin
observables. Finally, a numerical integration is per-
formed over the Fermi motion of the target nucleons.
This involves interpolating the experimental NN ampli-
tudes over a range of effective energies. We close this
section by considering the (p,n) reaction.

We begin by considering uniform nuclear matter with
appropriate four-component spinors for the projectile
and target nucleons. The use of a local density approxi-
mation for finite nuclei will be discussed later. The spi-
nors are solutions to a Dirac equation in an optical poten-
tial U(r, E) which in general depends on both position
and energy:

S(r,E)=SO(E)p (r)
Po

(2.2)

S (scalar)
V (vector)

P (pseudoscalar)
A (axial vector)

T (tensor)

Yu

Vs

S~u
CTuv

Here So(E) is the strength at the origin where the density
is po.

As a first cut we simply evaluate Eq. (2.2) at an average
density (p) appropriate for the surface-peaked reaction:
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f b db T(b)f dz p(b, z)'
(p) =

f b db T(b)f dz p(b, z)
(2.3}

E) +M)
2M' CT P)

E& +M

(2.7)

Here 7, is a Pauli spinor of projection s„

T(b, E)=exp f dz Im V, (b, z)
4M

0
(2.4)

where V, is the Schrodinger-equivalent central potential

V, =S+ V+ (S'—V') . (2.5)

In Eq. (2.3), an eikonal approximation is assumed;
T(b, E) is the transmission probability for going through
the nucleus at impact parameter b with energy E, and z is
the coordinate along the incident beam. %e will drop
spin-orbit and Darwin terms when evaluating T and
hence in the calculation of the spin observables; later, in
Sec. III we estimate the effect of the L 8 term. Thus, we
use

g» ( 2+M2 )I/2 (2.8)

and the effective mass M& for the projectile is

Mi ——M+S(E) . (2.9)

The spinor in Eq. (2.7) is parametrized by the mass Mi.
That is, M& determines the ratio of lower components to
upper for a given p, . As M& decreases, the lower com-
ponents are significantly enhanced. Note, Eq. (2.7) is in-
dependent of V(r, E).

The definition of effective mass in Eq. (2.9} is different
from the traditional nonrelativistic definition based on
the derivative of a spectrum with respect to momentum.
Typical values of M& are 0.8-0.9M; see Table II.

For the target nucleon of momentum p2 we use a
different effective mass M2.

[Note, Eq. (2.3) gives results similar to the slightly
different definition used in Ref. 13.] Using Eq. (2.3) we
define an average scalar field S(E):

Mz ——M +S~q, (E),

Illa (E) =S ft
(p)
Po

(2.10)

(2.11)

S(E)=So(E)
Po

(2.6)

SIIIft Oe 44M r (2.12)

The four-component spinor for the projectile of
momentum p, in these potentials is The scalar potential S « is taken from Walecka's mean

TABLE II. Average masses, Fermi momenta, and nucleon numbers. The "(e,e')" entries are de-
scribed in the text.

Target

12C

12C

12C

12C

12C

Ca
Ca

40C

Ca
Ca

208pb

208pb

208pb

208pb

208pb

T„, (MeV)

200
400
500
800

(e,e')
200
400
500
800

(e,e')
200
400
500
800

(e,e')

M1/M

0.85
0.86
0.91
0.92

0.82
0.83
0.90
0.91

0.82
0.86
0.88
0.82

M2/M

0.84
0.84
0.87
0.90
0.79
0.81
0.80
0.85
0.89
0.73
0.82
0.83
0.85
0.82
0.66

kF (fm ')

0.97
0.98
0.91
0.83
1.06
1.04
1.05
0.94
0.85
1.16
1.02
0.98
0.95
1.02
1.25

4.33
4.63
2.86
1.97

12
8.53
9.70
6.01
4.25

40
12.44
12.81
11.86
12.44

208
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p, , s

S (r, E) we note that M, is slightly larger than M2.
Consider the scattering of a projectile by a target nu-

cleon as shown in Fig. 1(a). The invariant matrix element
for this process is given by

T
Jg= g U, (k„sI)A,'U, (p, ,s;)t;(q, T,ff)

i=S

X U2(k2, s')A, 'U2(p2, s), (2.13)

(b)

where we use the conventions of Bjorken and Drell.
Here the t, (q, T,ff) are simply related by kinematic factors
to the NN amplitudes F; and Dirac operators A,

' of Ref. 3
and given in Table I:

8n.k,ffE,~
t;(q, T, )= F, (q, T, ) .

M
(2.14)

FIG. 1. (a) Schematic diagram of the impulse approximation
for quasielastic proton scattering. The index i is summed over
the five invariant amplitudes in Table I. (b) Definition of the
spin polarization directions 8, s, I, s', and I', see Eq. (2.30a).

field theory ' which has M*=0.56M at po. Below, we
will use the different M„M2 to examine separately rela-
tivistic effects on the projectile and the nuclear structure
of the target. Due to the small energy dependence of

We note that t, (q, T,ff) involves the full antisymmetrized
NN amplitude; no attempt has been made to separate it
into direct and exchange pieces (see Ref. 24, for example).
This approximation should be good at high energy

T„b)500 MeV, but at lower energies T„b=200 MeV a
better treatment of exchange may be needed. The
effective laboratory kinetic energy T,z at which the NN
amplitudes will be evaluated is discussed below (along
with the factors k, ff and E,ff ).

Squaring Jkt and summing over the unobserved spin of
the target nucleon, one has

r
$2~$2

Here we used

ij =S
g JK'JM = g Tr,

k, +M, I+@pe Pi+Mi 1+yy(,
2M) 2 ~ 2M) 2

~2™2 l2™2
2M ~ 2M2 2

(2.15)

k2+M2
g U2(k2, s) U2(k2, s) =

2M2
(2.16)

and

k'+M, 1+yP
U, (k, s)U, (k,s}=

2M) 2
(2.17)

where the spin four-vector s satisfies s = —1 and

sj k) =s; p) =0 . (2.18}

The cross section per target nucleon is calculated from Eq. (2.15) and the appropriate kinematic factors. The cross
section is simply averaged over a Fermi gas momentum distribution for p2 up to kF. As in Ref. 22 we have

1 M d p2 M d k&

E,*E,*' &z-"r 3~kF' E2E,*' (2~)'
t' f' 2' 2

(2.19}
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Here the target recoil momentum is

k2 ——p, +p2 —ki (2.20)

3

dQ', dE',
$2,$ 2,$,Sf

,'—JR*Jkt, (2.24a)

with k, the final momentum of the projectile. Also,

E e
( 2+M2 )1/2 Ee' (k2+M2 )1/2

E2 ——(p, +M2)', E2 =(k2+M2)'
(2.21}

where

E',
1 M', $(E', +E;

Mi
E] —m'kF E2E2 (2' )3

Next, the double differential cross section is calculated
starting from

(2.24b)

The total scattering from Z,z protons and X,z neu-
trons is assumed to be

13k1 k1E—', dE'1d Q', ,

where the experimentally detected final energy

(2.22)
d cr

Z d o(pp) N
d o(pn)

d&}dE ) d&idE } dIdE
&

(2.25)

E' (k2+M 2) 1/2

V1 —V21 =

This gives

E*
i

(2.23)

is related to the final momentum k, . The incident flux is
evaluated approximately in nuclear matter:

Here d o(pp)/d Q', dE', is obtained from Eq. (2.24) eval-
uated using the proton-proton amplitudes while
do (pn)/d Q', dE', uses the proton-neutron amplitudes. We
discuss the calculation of the effective number of nu-
cleons N, » and Z,» below. (We assume the same kp for
both neutrons and protons. )

The traces in Eq. (2.15) has been evaluated with a com-
puter algebra program. The spin-independent cross sec-
tion comes from

I
$2,$2,S.,Sf

~'~=tsts(1+K1.P1)(1+K2 P2)+tptp(1 —K1 P1)(1 K2 P2)—

+2tVtV K1 Pl K2 P2+K1 K2 I P2+K1 P2K2 P1}

+2t„t„(2+K1P1+K2 P +2K, .K P2P12+K1 P2K2 P, )

+8tr'tT(3 K1.P1K2.—P2+2K1 K2P, P2+2K, P2K2 P1)

+2Re(tVts —6tr't„)(K, K2+K, P2+K2 P, +P, P2)

2 Re(tg tp 6tTtV )(K2'P1 +K1 'P2 —K1 'K2 —P1 'P2 )

+4Re(t„'tV tz'ts —tT'tp)(K—1.K2P, P2 K2 P1K1.P2—), (2.26)

where K, =k;/M, and P, =p, /M, .
The polarization (which is equal to the analyzing power in this approximation to quasifree scattering} is calculated by

summing over the initia1 spin of the projectile but not its fina1 spin:

At'At=1m tstv+2tTt„— (t„'tv+2tT'ts)
I M2S,S2,$p

S-,Sp, $2
(2.28)A, (pp) =P(pp) =

(d o /dQ', dE', )(pp)

with a similar expression for A (pn) for scattering from target neutrons, which involves JR JR(pn). Here, 8' is the nor-
mal to the reaction plane; see Eq. (2.30b). The total analyzing power is then

d CT

d 0',dE',
A Z d (pp}A( )+N d (p")A(n)

d 0,'dE' d 0'dE'
1 1 1 1

(2.29)

SfX[(E2+E2')p, Xk, +E1k1X(p2+k2) —E1'p1X(p2+k2)] 2
(2.27)

MiM2
This is dominated by the interference of the vector and scalar amplitudes. Thus the analyzing power is relatively sim-

ple when the NN amplitudes are written in terms of the Lorentz invariants of Table I. Furthermore, there are no sensi-
tive cancellations between different NN amplitudes.

The analyzing power per target proton A (pp) equals the polarization P, which is given by

d p28 —,
' g [JR*At(sf tt,, pp) Jk——f*JN(sf——, h, p, p )]-—

p2 (kF
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The polarization transfer observables D; ~
are obtained from the full trace in Eq. (2.15), which is given in the Appen-

~ ~

dix. The D; . describe the scattering of a proton with spin in the j direction (j =one of &, 1, or s ) to spin in the i direc-
tion (i'=6', 1, or s'). The D (per proton) are given by

M; =—, g [At'JkH s; =j,sI i——') —A*I,K(s; =j,s&
—— i ') ——At'A, (s; = j,—s& i——')+JR*JR(s; = j,—sI ———i')],

I
$~~$~

(2.30a)

D' ( )= d OM'. ( )&'PP =
k P2 &'J. PP

&2~ F
1 1

where the coordinate system is

P1 1 A A A AXk 1=p„s=8')&p„1'=k, , s'=8')& k1 .
I p, xk,

I

' (2.30b)

(2.31)

The integral over d p2 is evaluated as follows:

A ~

Here p, is the initial and ki is the final projectile laboratory momentum; see Fig. 1(b). Thus I is the initial longitudi-
nal" and s the "sideways" direction. (Because of parity and time reversal invariance, there are only five nonzero D;.1:
Di, &, D, .„D„„,D, .&, and Di, ) We then form an appropriate isospin sum like Eq. (2.29).

D Z d o'(pp)D
( ) X d cr(pn) D( )

d o

L

kF 2E2'fd'P2fi«i+E2 —Ef' —Ei')= f dp2 f db
I r=r,

&min

(2.32)

Here the angle X between p2 and q is fixed by the energy-
conserving 5 function:

q„+2coEz
cos+ =cos+o =

2529

where the four-momentum transfer is

(2.33)

q=k, -p, =p, -k, ,

co=E2' —E2 ——E1 —E1' .

The minimum momentum of the target nucleon is

4M

2 2

(2.34)

(2.35)

If P;„~kz, the cross section is zero. The integrals
over p2 and P (the azimuthal angle of p2 with respect to
q) in Eqs. (2.28) —(2.30) are evaluated numerically. Typi-
cally, ten Gaussian points in each integral gave better
than 1% accuracy for the spin observables. (In practice,
p2 was generated in a frame with q along the z axis and
then rotated into a frame with p, along the z axis. )

For each pz and P, the NN amplitudes are evaluated at
an effective laboratory kinetic energy T,ff ..

E1E2 P1 P2 ™
eff M

(2.36)

This equation is the equivalent laboratory energy of a
projectile scattering on a nucleon at rest for two free nu-
cleons of momenta p, and p2. Note that although we

change the four-component spinors (which are
parametrized by an M') we assume the momenta of the
initial and final projectile are equal to their free values.
Any change in momenta would be governed by the real

This just assures that the four momentum transfer is q.
Similarly, k,s and E,z in Eq. (2.14) are the moinentum
and energy in the effective lab frame:

E,s T,q+M =(k,s—+M )'

In practice, a large table of relativistic invariant ampli-

tudes calculated from the SM86 Amdt phase shifts
(with the Coulomb interaction removed) is interpolated
on both T,ff and 8;ff . Here some care is needed because
of the sensitive cancellations between different Lorentz
invariant amplitudes. The calculations in Sec. III use

quadratic interpolation every 25 MeV on T,ff and linear

interpolation every 5 degrees on 0,
For (p,n) charge-exchange reactions we set Zdr ——0 and

replace F „with the isovector (charge-exchange) ampli-

tudes Fch-e

Fc}~x =Fpp Fpa (2.38)

The Lorentz character of the isovector amplitudes is
radical1y different from the isoscalar amplitudes F,„,

part of V, in Eq. (2.5). For Ti,b around 400 MeV, V, is

going through zero and is only slightly repulsive in the
interior. Furthermore, V, has a wine-bottle-bottom
shape [from the quadratic terms in Eq. (2.5)] with a small
pocket of attraction in the surface and a radial node.
Thus we expect V, to have only a small average effect on
the surface-peaked reaction (see also Ref. 13). The NN
amplitudes are also evaluated at an effective center of
mass scattering angle 8',s given by

' 1/2

8',ff
——2 arcsin (2.37)
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av pp + pn (2.39) III. RESULTS

as discussed in Sec. III.
The cross section depends on the effective number of

protons Z, ff and neutrons N, ff, these are calculated from
a simple eikonal estimate of the effective number of nu-
cleons A,ff.

.

f b db T(b)f dz p(b, z)
A, ff

—— A,f b db f dz p(b, z)

and we assume

Z N
Zeff — Aeffy Neff Aeff e

(2.40)

(2.41}

Values for A,ff are collected in Table II. We note they
are greatly reduced from A and depend on energy, being
over twice as big at T~,b

——400 as at 800 MeV. [We
neglect the small spin-orbit and Darwin parts of V,
when calculating A, ff,

' see Eqs. (2.4) and (2.5).]
To summarize, the calculations are based on a Fermi

gas of density (p), Eq. (2.3), with projectile and target
wave functions characterized by M, , Eq. (2.9), and Mz,
Eq. (2.11}.The cross section is calculated from a numeri-
cal integration over p2 in Eqs. (2.24) and (2.32) using
Amdt NN amplitudes at effective energies given by Eq.
(2.36). Finally, the analyzing power is calculated from
Eqs. (2.27) —(2.29) and the polarization-transfer co-
efftcients D from Eqs. (2.30) and (2.31).

8. Discussion of approximations

In this section we discuss a number of our approxima-
tions. First, the effects of spin-orbit distortions are con-
sidered. Next, we consider background from multiple
scattering.

The dominant effect of our optical distortions is to
reduce the cross section [which we include through A ff,
Eq. (2.40)] without changing spin observables. However,
any spin dependence of the distortions will affect the spin
observables. In an eikonal approximation the L-S optical
potential can rotate the spin of the projectile and mix the
different D . This effect has been estimated in Ref. 13 to
be small, typically 10% or less (see Fig. 5).

However, the L S estimates of Ref. 13 may only be val-
id near the center of the quasielastic peak. Off the quasi-
elastic peak, it may be favorable to transfer some energy
into the distortions and have a hard scattering closer to
the center of the peak. This may lead to larger distortion
effects on the spin observables; see also Ref. 14. Thus,
while distortion may not change observables at the peak,
they may change the slope of a spin observable with
respect to the excitation energy. Full relativistic DWIA
calculations would be very useful to investigate this.

Background from multiple scattering (where two or
more hard collisions take place) has been examined by
Smith and Wallace. ' They find that at the quasielastic
peak, contributions from two hard scatterings are less
than 10%%u~ in the cross section and even less in the spin
observables. However, far out on the high-energy-loss
side of the peak, multiple scattering can be important and
substantially reduce spin observables.

co=(q +Mz)' —M2 . (3.1)

This assumes the vector potential is independent of
energy —so that it cancels in (3.1)—and that M2 is also
energy independent. This should be a good approxima-
tion up to co=200 MeV. Beyond this energy, the optical
potential V, in Eq. (2.5) with constant S and V is too
repulsive. Therefore, optical fits to elastic data above
Tt,b ——200 MeV have S and V both decreasing with ener-
gy. This decreases the large co predicted by Eq. (3.1) at
very large q.

Compared to free NN kinematics, Eq. (3.1) implies a
"binding energy shift" of the peak:

hE =(q +M2)' —(q +M )' —Mq+M . (3.2)

Thus the dotted curves (with relativistic effects) are shift-

In this section we present results for cross sections and
spin observables using the RPWIA formalism of Sec. II.
All calculations use the effective masses and Fermi mo-
menta in Table II. First, cross sections at T&,b ——800 MeV
are compared to the extensive LAMPF (Ref. 12) data.
Next, spin observables at T~,b ——500 MeV are compared
to the recent experiments ' on Pb and Ca. Predictions
are then made for spin observables at other energies and
angles. Finally, calculations are presented for the (p,n)
charge-exchange reaction, and we close by examining the
local density approximation.

A. 800 MeV (p,y'}

The cross sections for T~,b ——800 MeV scattering from
' C, ~Ca, and 2osPb are shown in Figs. 2 —4. The abso-
lute normalization of the cross section is based on the

ff values in Table II [Eq. (2.40)] and has not been ad-
justed. [Note, the normalization of the data from Ref. 12
has been questioned by up to 25%. ] First, the magni-
tude of the cross sections agrees with the simple A,ff to
typically 20 —40%, except at very large or small angles.
Second, the data clearly show a parabolic quasielastic
peak whose position and width agree reasonably well
with the calculations (especially for the lighter nuclei and
moderate scattering angles). Finally, the cross section
data shows a small amount of strength at both higher and
lower excitation energies that is not reproduced by the
theory. This may be due to nuclear structure effects and
multiple scattering.

Calculations are shown in Figs. 2 —4 both with free
wave functions, using M, =M2 ——M (solid lines) and with
wave functions characterized by the M*'s of Table II
which include relativistic effects (dashed curves). The
magnitude of the cross section is very similar in each
case. As M, and M2 decrease, the square of the invariant
matrix element A'At increases but the kinematic factors
in front in Eq. (2.19) decrease, leaving the cross section
almost unchanged. Note, the discussion of "cross sec-
tions" in Ref. 13 ignored the kinematic factors and thus
is somewhat misleading. [Although correct as written,
Eq. (21) of Ref. 13 is not an observable in the medium. ]

The position of the quasielastic peak is essentially
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M& ——M2 ——M. The dashed curves use effective relativistic masses for M& and M2. Data are from Chrien et al. , Ref. 12.

ed to slightly higher co than the free solid curves in Figs.
2-4. Typically, this shift is 10 MeV or less. The small
energy shift often leads to slightly better agreement with
data for the M2&M calculation. However, the difference
is so slight that the data is consistent with (or without)
the shift. We conclude that there are no clear relativistic
signatures in the cross section.

The binding energy shift is much smaller than that ob-
served in electron scattering. For electron scattering we
set T(b) equal to unity in Eq. (2.3) to calculate an ap-
propriate M2. These values (Table II) are significantly
smaller than for the surface-peaked proton reaction.
Rosenfelder' found a relativistic Fermi gas with
(M') =0.71M provided a good description of 500 MeV
electron scattering from Ca. This value is in good
agreement with our M2 ——0.73M from Table II. Thus,
our very simple model can describe both the small (or
zero) binding shift in proton scattering and the much
larger shift in electron scattering.

On the other hand, many nonrelativistic models attri-
bute the observed binding shift in electron scattering to
an average shell-model binding energy. They then pre-
dict the same binding energy shift for proton scattering.

This substantially overestimates the very small observed
proton shift.

B. 300—500 MeV (p,p')

We now turn to the spin observables measured in the
500 MeV Los Alamos experiment. ' This was done at a
laboratory scattering angle of 18.5' (q=300 MeV/c).
The cross section, shown in Fig. 5, peaks at about co=66
MeV. First, the polarization was found experimentally to
be equal to the analyzing power (within errors). Al-
though not required for the inelastic reaction, this agrees
with our model.

However, the analyzing power at the quasielastic peak
is 40%%uo below the free NN value both for Pb, Fig. 5,
and Ca, Fig. 6. This reduction in A is reproduced by
our model and may be a clear relativistic signature. To
our knowledge, no nonrelativistic calculation has ex-
plained this low value for A . The arrows in Fig. 5 are
the estimates of L.S distortion e8'ects from Ref. 13. Al-
though these do reduce A, the L S estimates alone are
much smaller than the reduction seen in the data.

It is important to emphasize that all nonrelativistic cal-
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FIG. 3. Same as Fig. 2, but for (p,p') scattering on Ca. Data are from Ref. 12.

culations to date predict the analyzing power to be very
close to the free value (within 10%%uo} at the center of the
quasielastic peak. Given the high excitation energy
co=70 MeV, nuclear structure correlations are small.
Thus the reduction in A at the peak is very hard to ex-
plain in nonrelativistic models (without changing the in-
teraction}.

For Pb, the slope of A„with co is not reproduced by
the calculation. The rise in A~ at very small co is likely
due to nuclear structure effects. Nonrelativistic calcula-
tions based on the RPA surface response of Bertsch
et al. reproduce the rise in A with decreasing co.

However, the RPA corrections alone are much too small
at ~=66 MeV to explain the large reduction at the quasi-
free peak. Furthermore, the slope in A~ may have con-
tributions from multiple scattering or distortion effects.
These should be bigger in Pb than in Ca. Indeed, A

does not have as steep a slope for Ca as it does for Pb
(though the low ra data is missing). Furthermore, some
indication of these effects in Pb is suggested by the much
broader 800 MeV cross section for Pb compared to Ca or
our calculation.

The other polarization transfer coefficients D are

shown in Fig. 5 for Pb and Fig. 6 for Ca. For Pb, D„„ is
reduced somewhat from the free value, in agreetnent with
our M' predictions. On the other hand, both Dl &

and

D... are close to the free values. This disagrees with our
M* calculations which predict an enhancement. Howev-
er, this increase may be canceled by the L S distortions.
These were estimated in Ref. 13 to reduce both DI.I and

Dss
Alternatively, our simple mass M' Fermi gas may be

in error. Self-consistency corrections (which we ignore)
have been shown to remove the naive M* enhancements
in convection currents and magnetic moments. ' This
may be an important point and needs further study. Such
self-consistency corrections can be incorporated with rel-
ativistic RPA calculations of the target response where
one includes positive and negative-energy mixing.

For D, I we find only small M' effects. This disagrees
somewhat with Ref. 13 where we found a larger M*
change. This appears to be washed out when we now in-
clude the Fermi-motion averaging. The data is also close
to the free value.

It is interesting to investigate if relativistic effects are
coming from the projectile or target wave function. For
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elastic scattering it has been claimed that most of the
change is from the projectile. In Figs. 5 and 6 we also
show calculations including only projectile relativity,
Mz ——M&M&, and only target relativity, M&

——M&M2.
The bulk of the reduction in A is seen to come from the
projectile wave function. However, for D, I the two
effects are comparable in magnitude and tend to cancel.
Thus there are spin observables which may be sensitive to
the relativistic nature of the target.

Next, predictions are made at lower energies 300 MeV
and 400 MeV in Figs. 7—11. At 400 MeV there are large
changes in D, , and D, .I at O~,b

——10'. Likewise there are
big changes in D, , and D,.&

at 300 MeV and forward an-

gles. Note, at lower energies one should consider ex-
change and other corrections to the simple impulse ap-
proximation. ' '

C. 500—800 MeV {p,n)

Calculations for quasielastic (p,n) charge-exchange re-
actions are presented in Fig. 12 for T&,b

——795 MeV and
Fig. 13 for 500 MeV. These depend on the isovector NN
amplitudes, Eq. (2.38), which are very different from the
isoscalar Lorentz invariants, Eq. (2.39). This is illustrat-

4l's
2M

(3.3)

where q is the four momentum transfer of Eq. (2.34). For
free spinors of mass M, Eq. (3.3) gives the same matrix

ed in Table III where the isovector amplitudes no longer
have very large scalar and vector parts. Instead they are
dominated by the pseudoscalar invariant.

Thus a proper treatment of pion exchange, which gives
the pseudoscalar invariant, is crucial for the (p, n) reac-
tion. This is beyond the scope of the present work. In-
stead we illustrate results for two very simple models.

The first, which we call "pseudoscalar, " simply uses
the five amplitudes in Table I unmodified. This form is
successful for high-energy elastic scattering. However,
we emphasize that Table I is not unique. Furthermore,
elastic scattering does not test the pseudoscalar invariant
directly (since its contribution vanishes by parity). Worse
than that, the exchange contribution of the pion to elastic
scattering gives problems in this pseudoscalar model at
low energies. '

Alternatively, for a pseudovector model we replace the

y5 invariant of Table I with
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elements as the original choice

—f5 ~ (3.4)

Thus the fit to the NN data is unchanged. However, in
the medium,

M)
U&(kI)A~„U, (p&)= U, (kI)A~U, (p, ), (3.5)

which differs by a factor of M& /M. In the limit M& 0,
gives a very large contribution and k „gives zero. For

the pseudovector model we simply multiply F~ by

(M, M2)
P" 2M

(3.6)

to get a "pseudovector" amplitude I' „.
Figure 12 shows that the (p,n) cross section is larger for

pseudoscalar than pseudovector calculations. [Note, we
have simply added the charge-exchange Q value (=18.1
MeV) to the energy loss co in Figs. 12 and 13.] One can
take the ratio of the maximum in the (p, n) cross section
to that of (p,p') in order to cancel the (common?) distor-

tion effects. This ratio is 0.15 (M, =M& ——M), 0.16 (pseu-
doscalar), and 0.11 (pseudovector) for scattering from ' C
at T] b

=800 MeV and O~,b
——15'. It would be useful to

have absolute, or ratio to (p,p'), quasifree cross sections
measured accurately. The preliminary Los Alamos
' C(p, n) cross sections would suggest pseudoscalar cou-
pling, but they are at a rather small angle (9') and there
may be uncertainties in A, ff.

The spin observables in Figs. 12 and 13 are also sensi-
tive to the form of the pion coupling. Although A and
D, I do not change much, D„„and D, , are dramatically
different. For (p,p') scattering (not shown) there is much
less sensitivity to the form of the pseudoscalar invariant.

D. Test of Fermi gas model

All of our calculations have been based on a local Fer
mi gas approximation. To test this we make a different
local density approximation. In the calculation of Sec. II,
efFective parameters are obtained by averaging over local
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values in the nucleus erst. Another approach to the cal-
culation would be to perform this averaging afterward,
that is, calculating the scattering observables for the local
Fermi gas parameters and then averaging these over the
nuclear volume. This calculation proceeds as follows.

Define local values of kF, M&, and M2 by

kF(r) =[-',~'p, (r)]'", (3.7a)

M&(r) =M S(r), —M2(r) =M —0.44 . (3.7b)
p(r)

Po

We use these values in Eqs. (2.24) and (2.26) to get local
cross sections and then average the result:

d o' n=f b db f dz T(b) p (r), , (M, (r},M2(r), kF(r}}+p„(r), , (M, (r), M2(r), kF(r))
dO)dE)

(3.8)

The spin observables are calculated in a similar fashion.
Calculations using both averaging schemes are com-

pared in Fig. 14 for 800 MeV proton scattering on Ca at
8&,b

——20'. The dashed curves are calculated using Eqs.
(3.7) and (3.8). The solid curves are the corresponding
nonrelativistic calculation, using M, =M2 ——M in place of
(3.7b).

Comparing these results to the data and the calculation
of Sec. II (the dashed-dotted and dotted curves in Fig.

14), the cross section is too sharply peaked, and there is a
change in the shapes of the spin observables. The averag-
ing scheme of Eq. (3.8) gives a contribution from the nu-
clear surface where the local kF is low. For very low kz,
a Fermi gas may be a bad approximation to the nuclear
surface, especially when the local Fermi wavelength is
much larger than the surface thickness. Therefore the
spike at the center of the quasielastic peak, which comes
from these low-momentum contributions, may be spuri-
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FIG. 11. Same as Fig. 9, but for scattering at O~,b ——30'.

ous. However, even with these changes to the cross sec-
tion, the spin observables for the peak are similar. There-
fore, qualitative features such as the relativistic decrease
in A are probably not sensitive to the averaging pro-
cedure employed.

IV. SUMMARY

In this paper a relativistic plane-wave impulse approxi-
mation (RPWIA} was developed for quasielastic proton-
nucleus scattering. Quasielastic scattering is fundamental
since the reactive content of impulse approximations used
for elastic scattering is quasifree single-nucleon knockout.
Furthermore, the spin observables in proton scattering
are as basic information about the nuclear medium as are
the longitudinal and transverse responses of quasielastic
electron scattering.

We have assumed a relativistic Fermi gas model for the
target in a local density approximation, either at one
average density or integrated over the local density at
each point in the nucleus. This should be an adequate
representation of the nuclear structure except at very low
excitation energy (say, & 30 MeV).

We have focused on a change in the NN interaction in
the medium coming from modified nucleon Dirac spi-

nors. These spinors have enhanced lower components
from the strong scalar optical potential and can be
characterized by the value of M'. For the somewhat sur-
face peaked quasielastic reaction we have used an average
value of M'/M of 0.8-0.9.

The spinors are used to take matrix elements of the rel-
ativistic NN t matrix, 7, which is assumed to be a Dirac
operator in the spinor space of the two nucleons. Any
model for v makes definite predictions of how NN spin
obseruables in quasielastic scattering will change as M*
decreases. Here we have used the simple five term
S, V, T,P, A amplitudes of Table I which have been suc-
cessfully employed in elastic scattering.

As M* decreases there are only small changes in the
cross section. Furthermore, these small changes may be
masked by uncertainties in distortions. Therefore we find
no clear relatiuistic signatures in the unpolarized (p,p }
quasi free cross section

In contrast, the analyzing power A is found to de-
crease substantially. Basically, the spin-orbit interaction
(which involves a coherent sum of S and V) is approxi-
mately unchanged with M' while the central interaction
(which involves sensitive cancellations between S and V)
increases greatly and "dilutes" A .
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TABLE III. Absolute value of isoscalar {top) and isovector NN amplitudes for T&,b
——500 MeU and

0&,b
——18.5'. The S, V, T, P, and A amplitudes are of the form given in Table I.

p

I
F~ +F, "I .(GeV )

I

F~~—F~"
I

(GeV ')
33.4
3.24

23.1

2.04
0.99
0.945

78.5
477.3

2.20
0.144

This decrease in Ay may be the clearest relativistic sig-
nature found to date. This is because (a} the background
is small and controllable, (b) there is a relatively simple
link between relativistic effects on the spinors and
changes in A, and (c) nonrelativistic calculations all pre-
dict essentially the free value of A„, which provides a
clear benchmark for comparison. Furthermore, (to our
knowledge} there have been no alternative explanations
for this decrease in A~.

The background at the quasielastic peak is estimated to
be less than 10%. The effect of spin-orbit distortions on

Ay have been found in Ref. 1 3 and elsewhere to be smal l

for a heavy nucleus ( Pb) and negligible for ' C. Multi-
ple scattering contributions (with two or more hard col-
lisions) are smaller by an order of magnitude in Ref. 14.
This work also finds nuclear structure corrections to a
Fermi gas are very small at the high excitation energies
(~60 MeV) of the Los Alamos experiment. Further-
more, there are other spin observables (with small relativ-

p flm[t, 'tv jsin8„b

I M&ts+&i tv
(4.1)

showing that the decrease in Ay with decreasing M*
arises from a very sensitive cancellation between the sca-
lar and vector amplitudes. (The origin of the M' effect
for the other spin observables is less direct; for example,
the large differences in D„„ in Fig. 13 come from the
pseudoscalar amplitude which gives no contribution in
this small-angle approximation. ) In contrast, the relativ-
istic effects found in elastic scattering involve a complex

istic corrections) which are measured to be close to their
free values. This severely constrains possible sources of
background.

In our calculations, the link between changes in the
spinors and changes in A is relatively direct. A is dom-
inated by the tz and tv amplitudes; at very small "ngles
A can be approximated by

Ca 795 MeV 8„b=20'
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interplay of several effects. There is no simple relation-
ship between the spin observables A and Q in forward
angle diffraction minima and parts of the NN t matrix or
relativistic wave functions.

The experimental situation for A at the top of the
quasielastic peak is clear. A or P is found to be below
the free value for a variety of nuclei and energies.
Perhaps the largest reduction, of approximately 40%,
was found for Ca and Pb in the 500 MeV Los Alamos
experiment. '

Relativistic effects for the polarization-transfer
coefficients D at 500 MeV are predicted to be small.
First, the off-diagonal observables DI., and D, I are pre-
dicted to be virtually unchanged with M*. Experimental-
ly

' these are close to their free values in Ca and Pb
at 500 MeV.

Second, DI.I and D... rise somewhat with decreasing
M'. However, L S distortion in heavy nucleus may can-
cel much of the increase. This could explain why the
measurements in Ref. 21 are close to the free values of
DI.I and D, , Thus at 500 Me V there are no
polarization-transfer observables with clear relativistic
changes. However, the "null" results of Ref. 21 could
still be consistent with our model if there is some cancel-
lation between relativistic and L S effects.

As the energy decreases to 300 or 400 MeV, relativistic
effects on D;, are found to be larger. Furthermore, the
cancelling background from the L S potential is much
smaller in a light nucleus such as ' C or ' O. Therefore,
the D; 's should be measured for energies below 500
MeV in a nucleus lighter than Ca.

The charge exchange (p,n) reaction presents a com-
pletely different picture. Here one looks at relativistic
effects in the isovector NN amplitudes. Because these do
not involve sensitive cancellations between ts and tv the
analyzing power A changes only slightly with M'. In-
stead the pseudoscalar invariant from pion exchange
dominates. The cross section, D„„, D, „and DI I all

change greatly with M* and depend on how one treats
the pion.

Therefore, the ratio of (p,n) to (p,p') cross sections
should be measured along with any experimentally acces-
sible D; ~. However, we emphasize that our calculations
are based on extremely crude pseudovector and pseudo-
scalar treatments of the pion. More sophisticated
theoretical calculations are clearly needed, and these
might not show such large relativistic effects.

Much remains to be done both theoretically and exper-
imentally. Full relativistic DWIA calculations should be
done to confirm our local density approximation and look
at L S effects. Also, relativistic RPA calculations of the
nuclear response are needed to examine both particle-
hole corrections to the nuclear structure (at low energies)
and positive- and negative-energy mixing. These mixing
or "backflow" corrections are known to be important in
relativistic calculations of convection currents.

In addition, calculations for more sophisticated models
of Pbeyond our simple five term representation would be
useful. Furthermore, at low energies one needs to consid-
er corrections to our RPWIA from Pauli blocking and

explicit treatments of nucleon exchange.
More experimental data is needed for a range of ener-

gies, targets and scattering angles. Any individual polar-
ization transfer coefticient is interesting even if it is not

possible to measure a complete set. However, because
one is interested in (perhaps) small changes from free
values it would be useful to have as accurate a measure-

ment as possible. Finally, the ratio of (p,p') to (p,n) cross
sections should be measured.
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APPENDIX: EXPRESSIONS FOR SPIN OBSERVABLES

The terms in g, At'Afwhich are pr.oportional to s;.sf are listed first. Define
$2, $2

eV:— s&'sf[tsts(1+Ki'Pi}(1+Kg'P2) tptp(1 Ki Pi)(1 Kp''P2)

+2(tvtv —t~tq)(1+Ki K2Pi P2 —Ki PiK2 P~+Ki P2K2 P, }—8tz*tr(K, P~+K2.P~)

+2Re(tvts+2tz't„)(K, .K2+K, P2+K2 P, +P, P2).
+4Re(tztp tz. ts)(K. , K2P, .P2 K, .P—2K2.P, )—
+2Re(t„*tp+2trtv)(K, P2+K2 P, —K, K2 P, P2)]. — (Al)

Then the squared amplitude summed over the initial and final spins of the struck nucleon is given by
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4 g JR*JR=(f+ ts ts( 1 +Kz'Pz )s 'K ]sf 'P] + tp tp( 1 Kz'Pz )s 'K]sf P]
I

S2,$2

+2t],t],[s, K, sf KzP, .Pz+sf P]s(.KzK].Pz —sf.P]s;.

+(1—K, .P, )(sf Kzs; Pz+s, Kzsf.Pz)+sf.Pzs;.K,Kz.P, +s;.Pzsf P, K, Kz]

+2t~t„[s, K, s.f P, Kz.Pz —s, K,sf.KzP] Pz s; K—]sf PzKz P,

+(1+K, P, )(s; Kzsf Pz+s& Kzs, Pz) sf P—, s; PzK, Kz —s, .Kzsf P, K, Pzl

8—tTtz[s; K, sf. P, +2(s;.Kzsf Pz+s, Pzsf . Kz)]

+2Re(tvts+2tT't„)(s, K,sf Kz+sf P]sj Kz+sf Pzsj K]+s] Pzsf P])

+2Re(t„tp+2tT'tv)(s, K,sf.Pz+sf P, s, Kz sf Kz—s; K] s; Pzsf—P])

+4Re(t„'t] )(s, Pzsf Kz s, .Kzsf—Pz)

+4Re(tTts)[(1+K].P])(sf Kzs; Pz —s, .Kzsf.Pz) —K, Kzsf P ]s Pz''
+K, Pzs, Kzsf P, +Kz P, s; K, sf Pz P, Pzs—, K,sf Kz]

+4Re(tztp)[(1 —K] P])(sf Kzs; Pz sf Pz—s; Kz)+K. , Kzsf P, s; Pz

—K] Pzs, Kzsf P] . Kz P]s; K—]sf Pz+P] Pzs; K]sf Kz] .

Because s; and sf appear together in every term, the four terms in the definition of M, Eq. (2.30a), are all equal.
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