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The reaction K*d— K *d has been calculated for incident kaon momenta up to 1.5 GeV/c, using
the relativistic Faddeev equations. The effect of multiple scattering corrections and of higher K*N
partial waves has been evaluated, and the sensitivity of the results to the deuteron wave function
and to variations of the on- and off-shell behavior of the elementary K*N amplitude has been stud-
ied. Some implications of the results in connection with Glauber’s high-energy limit are also dis-

cussed.

I. INTRODUCTION

The strangeness + 1 K*d system is one of the simplest
three-body problems in medium-energy physics. It is
simpler than the 7d system, where one has to always
deal with the pion-absorption channel. It is also simpler
than the strangeness —1 K ~d system, where the conver-
sion channels 7NA and #NZX are also open already at
zero energy. Thus this reaction offers perhaps the best
opportunity to test the relativistic Faddeev method and
maybe even to learn something about the elementary
K*N amplitude. Moreover, with the proposed construc-
tion of kaon factories in the near future,! this reaction
will become one of the first systems to investigate experi-
mentally, since its importance lies in the fact that this is
not only an exactly soluble three-body system, but it is
also the first case of the more general problem of kaon-
nucleus scattering.

Historically, the main motivation for studying K*d
scattering?~!% has been its use as a tool in the process of
extracting the isospin zero K*N amplitude. Since K*p
scattering data provide information only about the iso-
spin one amplitude, then in order to learn about the iso-
spin zero amplitude one has to scatter the K* on a neu-
tron, which, however, is only available as a bound parti-
cle inside the deuteron. Thus the standard procedure has
been to apply the fixed-scatterer impulse approximation'!
to the elastic, breakup, and charge exchange K*d data,
so as to relate these cross sections directly to the elemen-
tary K*N amplitudes. In a few cases, however, some cal-
culations have been performed which go beyond the
fixed-scatterer impulse approximation, like, for example,
those of Hashimoto,'? and of Andrade and Ferreira,'? in
which both the single- and double-scattering terms were
included; in the first case using Glauber theory and in the
second one taking into account the effects of Fermi
motion. The first full three-body calculation of K+d
scattering was performed by Hetherington and Schick,!*
who restricted themselves to low energies (k,,, <230
MeV/c) and in which only S-wave two-body interactions
were included. They found that the multiple scattering
corrections are of the order of 10-25 %. They also found
that using a relativistic phase space could produce
changes in the differential cross section of approximately
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10% at an incident momentum already as low as 230
MeV/c, which indicates that if one likes to go to energies
higher than this, one has to use a formalism that takes
into account relativistic effects. More recently, another
Faddeev calculation of the K*d system has been per-
formed by Safiudo,'*'® who included exactly the NN 3§,
and the K*N S, channels, and treated the other S and
P-wave KN channels by means of perturbation theory.
He used his results to extract a set of values for the iso-
spin zero K+ N scattering lengths and volumes.

The relativistic Faddeev equations have been used so
far mainly to describe the 7d system,!”~!° where one has,
in addition to the elastic and breakup channels, also the
pion-absorption channel. Several prescriptions have been
proposed in the literature’® =23 to incorporate the pion-
absorption channel into the relativistic Faddeev method,
with the result that different formulations lead sometimes
to quite different predictions for the observables of the 7d
system. It has been observed, however, that if the pion-
absorption channel is neglected, all the calculations agree
with each other.?* Thus the relativistic Faddeev method
appears to be particularly well suited to describe the K*d
system, where there is no absorption channel. Of course,
if the energy of the pion is large enough so that the pion-
production channels become important, a three-body
description may no longer be sufficient (we take into ac-
count the production channels only indirectly by using
K*N amplitudes that have inelasticities) and one will
have to go at least to a four-body formulation. Thus the
validity of our model is probably restricted to momenta
of less than 1 GeV/c.

This paper is organized as follows: In Sec. II the
method of the relativistic Faddeev equations is briefly re-
viewed, while in Sec. III the two-body input of the equa-
tions is described. In Sec. IV the results of the calcula-
tions are presented, and finally the conclusions and a gen-
eral discussion of the results are given in Sec. V.

II. THE RELATIVISTIC FADDEEV METHOD

The analog of the nonrelativistic Faddeev equations
can be obtained also in the relativistic case, by summing
all possible Feynmann diagrams of the form where two
particles interact with one another while the third parti-
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cle acts as spectator. This leads to linear integral equa-
tions similar to those of the nonrelativistic three-body
problem, but which depend on four-dimensional vari-
ables.?’ =% Thus in order to eliminate some of these extra
variables without destroying Lorenz invariance and uni-
tarity, two prescriptions have been proposed in the litera-
ture. The first one is to carry out a so-called
Blankenbecler-Sugar reduction,?® in which one puts the
three particles on the mass shell and performs a disper-
sion integral in the total energy squared of the system.
The second prescription consists simply in putting all the
spectator particles on the mass shell and all the ex-
changed particles off the mass shell.?>** We will use for
the present calculation the equations obtained?’ with the
Blankenbecler-Sugar prescription, although these equa-
tions are not completely consistent in the way in which
they handle particles off the mass shell, as pointed out in
Ref. 30, but they should be adequate for the K*NN sys-
tem, where there is no absorption channel. On the other
hand, the spectator-on-mass-shell prescription is to be
preferred in the cases when particles can be created or
absorbed like in the #NN or K NN systems. The
Blankenbecler-Sugar prescription leads to integral equa-
tions which depend only on three-dimensional variables.
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If, in addition, one introduces the separable or isobar ap-
proximation for the two-body amplitudes and performs a
partial-wave decomposition, one ends up finally with in-
tegral equations that depend only on one continuous vari-
able.

In order to perform the partial-wave decomposition of
the three-body equations in the case when the particles
have spin, it is convenient to use basis states that are a
linear combination of the three-body helicity states con-
structed by Wick.>! Thus our basis states are*

| kipisJTsa;) = | kipis T Lisijitimyv; ) (1

where k; is the magnitude of the three momentum of par-
ticle i as measured in the three-body c.m. frame, and p; is
the magnitude of the relative three momentum of parti-
cles j and k as measured in the two-body c.m. frame. J
and T are the total angular momentum and total isospin
of the three-body system, while /,, s;, j;, and ¢; are the or-
bital angular momentum, spin, total angular momentum,
and isospin of the pair jk, and m; and v; the helicities of
the pair jk and of particle i.

Using the basis states (1), the relativistic Faddeev equa-
tions are written as

Bk, k)G (s )T Ok, ke yg) (2)

where w;(k;)=(k}+m})/?, and s; is the invariant mass squared of the pair ki. G; are the propagators of the interact-
ing pair ki which will be defined in the next section, while the driving terms B,; are given by
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where S is the total invariant mass squared of the three-body system, g; and g; are the form factors of the separable

two-body amplitudes, and
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where 7;,7;,7;, and 0;,0;,0 are the isospins and spins
of the three particles, and the arguments of the rotation
matrices X, 6;, 0;, B;, B;, and p, are the angles of the
Wick triangle.3!:32

In the integral equations (2) we still have not taken into

account the fact that in the kaon-deuteron system two of
the particles are identical. Since, as we will see in Sec.
IV, our results differ from those of previous calcula-
tions,'* ¢ it is also important to describe in some detail
our antisymmetrization procedure. Thus if we call the
kaon particle 1 and the two nucleons particles 2 and 3, it
is more convenient to start instead of with the basis states
1), |2), and |3) defined by Eq. (1), with the states
[1), |2'), and |3), where the state | 1) is obtained by
coupling particles 2 and 3 and their resultant to particle
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1, the state | 3) is obtained by coupling particles 1 and 2
and their resultant to particle 3, and the state |2’) is ob-
tained from the state |3) by interchanging particles 2
and 3. Thus the driving terms with these new states are
given in terms of the old ones, as

BIZ'=.—BI3 ) (6)

O1to3—s+T+T—h +l,

By, =B (—) (7)

Equation (6) is a consequence of the fact that state |1)
must be antisymmetric with respect to the exchange of
particles 2 and 3, while the extra phase in Eq. (7) is due to
the different order in which the particles are coupled in
states |2') and |3). Using now Egs. (6) and (7), it is
easy to see that the set of equations (2) which involved
originally three coupled amplitudes T'y;, T,;, and Tj,
reduce to a set with only two coupled amplitudes which
symbolically can be written as

T,,=2B3G3T5 , (8)
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where the driving terms B;; in Egs. (8) and (9) are the
normal ones given by Eq. (3). Finally, as shown in Ref.
32, the set of integral equations (8) and (9) can be decou-
pled into two independent sets which correspond to the
two possibilities of positive and negative parity, by intro-
ducing the linear combination of amplitudes
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where the set of quantum numbers —a; are those in
which the helicities are reversed, that is

{—a;}={lsijiti—m;—v;} . an

III. TWO-BODY INPUT

The input of the integral equations (1), are the kaon-
nucleon and nucleon-nucleon 7T matrices which will be
taken to be of separable form. Thus in the case of the
K *N subsystem, they are given by

(kipisJT;a; | t; | kip3J'T' ;)
1 ", % v,
=8!J'877"8a'.a:. k;S(ki—ki ) (pispi3Si) s

(12)
where
1 (pipiss) =81 (PG (5,08 (P!) » (13)

and the propagators of the interacting pair G; are related
to the phase shifts (we use the K*N phase shifts and
inelasticities of Martin®) as

a. i . 4‘/;,
Gi(s;)=—e" Vsind(s,) ——— (14)
mpiolg; (Pio) 1
5;=S+m2—2VS (m}+k?)'?, (15)
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pi20=[si—'(mj+mk)2][si'—(mj“‘mk)2]/4s,' ) (16)

in the physical region s; > s;0=(m; +m, )2, while for the
unphysical region s; <s;,, we used the extrapolation for-
mula

Gli(5;) =G (5,0) ———— |, (17)
(2 —S; /siO )
where for the exponent n we have used n =2. The form
factors g; were taken as

&"(p,)=p (1)

1
B +pH"
with B=1000 MeV/c. We used for the exponent m
the value m =1 for the S and P waves (Sy;,S;,Pq;,
P,,,Py;,P,;) while for the D and F waves (Dy3,D,3,Ds,
D s,Fys,F,5) we took m =2.

In the case of the nucleon-nucleon subsystem, we con-
structed a separable T matrix for the 3S; —>D, channel,
which is a straightforward generalization of Egs. (12) and
(13) to the case of coupled waves. In this case, however,
instead of using the phase shifts directly as in Eq. (14), we
applied the unitary pole approximation to the Paris po-
tential’® or so-called PEST1 approximation.’* Thus the
form factors g; and the propagator of the interacting pair
G; are constructed directly from the S- and D-wave com-
ponents of the Paris deuteron wave function.’® This
choice, of course, guarantees that the initial and final
state deuteron wave function is the Paris wave function®
which gives a very good description of the deuteron elec-
tromagnetic form factor.’® A similar PEST1 approxima-
tion was used for the nucleon-nucleon interaction in the
1S, channel.** Since these T matrices are solutions of the
nonrelativistic Lippmann-Schwinger equation, one must
then apply the minimal relativity transformation®” in or-
der to make them solutions of the Blankenbecler-Sugar
equation, that is

t2(p;,pss; )=4M(M2+P1’2)1/4(M2+pi'2)]/4tiLS(pi ,Pi;E)
(19)

where the invariant mass squared of the pair s, is related
to the nonrelativistic energy E; as

si=4M(M +E,) . (20)

IV. RESULTS

The integral equations (2) were solved using the
method of the Padé approximants, where a variable
Gauss mesh of 54 points was used to integrate over the
logarithmic singularities and discontinuities of the kernel
(3) below the breakup threshold of the momentum k;,
while in the region above the breakup threshold of k;
where the kernel is nonsingular, the integrations were
performed using a 34-point Gauss mesh. This leads to an
estimated accuracy of the numerical solutions of approxi-
mately 1%. The integral equations were solved taking as
input the six S and P wave kaon-nucleon channels
(S01>S11>Po1»P11, Pz, P13) and the nucleon-nucleon 35, -
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3D, and 'S, channels as described in the previous section.
Since multiple scattering effects are important only for
the low angular momentum partial waves, the full in-
tegral equations were solved for values of the total angu-
lar momentum 0<J <5, while for 6 <J <24 the im-
pulse approximation was used. In addition, the contribu-
tion of the kaon-nucleon D and F waves
(Dg3,D13,Dgs5,D5,Fgs,F5) was added in the impulse ap-
proximation for 0 <J <24.

As a first application of this theory, we show in Fig. 1
the total and integrated elastic cross sections (the total
cross section was obtained via the optical theorem) com-
pared with the full calculation and with the impulse ap-
proximation for laboratory momenta up to 1.5 GeV/c.
As one can see, at low momenta the impulse approxima-
tion leads to gross violations of unitarity, since it predicts
OgL)01or- At momenta larger than ~400 MeV/c, the
cross sections are well described by the impulse approxi-
mation, since here the multiple scattering corrections in-
crease the elastic cross section by about 10-20 %, and
have a much smaller effect in the total cross section. The
result that the multiple scattering corrections decrease
the elastic cross section for p,, $250 MeV/c, is in agree-
ment with the calculations of Hetherington and Schick.'*
This behavior is also expected on quite general grounds.'!
A somewhat puzzling result is seen as the momentum of
the projectile increases, since according to Glauber’s
high-energy limit,*' ~* the total cross section including
single and double scattering terms should be about J mb
smaller® than the impulse approximation [oror(K*d)
=0rorlKtp)+oror{K*n)—Ao, where Ao >0 if the
K™*N amplitudes are purely imaginary], while in Fig. 1
one sees that the result of the full calculation is almost
equal to that of the impulse approximation. In order to
understand the origin of this behavior, we show in Table
I the results for the total cross section at p,, =1210 and
1510 MeV/c, calculated with only the single-scattering
term, with single plus double scattering terms, with single
plus double plus triple scattering terms and with the full
calculation. The double-scattering term is that in which
the kaon scatters first on one nucleon and then on the
other one. The triple-scattering term is that in which
there is first a kaon-nucleon scattering then a nucleon-
nucleon scattering, and finally another kaon-nucleon
scattering. As one sees in Table I, the double scattering
term lowers the cross section by ~0.4-0.5 mb, while the
triple and higher order terms raise it again by ~0.3 mb,
so that the net effect of the multiple scattering correc-
tions in the total cross section is a decrease of only
0.1-0.2 mb. The triple and higher order terms presented
in Table I have been evaluated using a very simple model
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FIG. 1. Energy dependence of the total and integrated elastic
K™*d cross sections. The solid lines are the results of the full
calculation and the dashed lines are the results of the impulse
approximation. The experimental data are from Refs. 7 and
38-40.

for the nucleon-nucleon amplitude and neglecting the
pion-production channels, so that our result should be
taken only as an indication of the importance of these
effects, while a more careful treatment of them must be
done in practical applications. Finally, it seems also that
the triple-scattering correction should not be neglected
when extracting K *n cross sections from the K *d data.
The differential cross section at 342 and 470 MeV/c
have been calculated before by Safiudo, who found that
the multiple scattering corrections decrease the cross sec-
tion at all angles.'>'® Our results exhibit the opposite be-
havior as can be seen in Figs. 2 and 3. We show in Figs.
2-8 the differential cross sections for momenta between
342 and 1510 MeV/c, where the solid lines are the results
of the full calculation and the dashed lines the results of
the impulse approximation, while the dot-dashed lines in
Figs. 3 and 7 show the effect of neglecting the kaon-
nucleon D and F waves in the impulse approximation.
The data at the lower three momenta are those of Glasser
et al.,'° and they cover a considerably large angular re-
gion. The data in the last four figures are a representative

TABLE I. Contributions of different terms to the total cross section (in mb) at pj,, = 1210 and 1510

MeV/c.

DPiab Single Single + double Single + double + Full
(MeV/c) scattering scattering triple scattering calculation
1210 35.55 35.04 35.31 35.36
1510 31.02 30.61 30.88 30.90
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sample of the measurements performed by Giacomelli
et al.” which cover only a very small angular region near
the forward direction. The multiple scattering effects, as
we see, are largest in the backward direction, where they
increase the cross section in some cases by more than a
factor of 2. Thus, for example, at 1510 MeV/c, the mul-
tiple scattering effects are very large in the backward
direction, although in this region the differential cross
section has already fallen down by more than 6 orders of
magnitude. In the forward direction where the
Giacomelli data were taken,’ the results of the full calcu-
lation and of the impulse approximation are essentially
identical, which shows that the procedure which was
used to extract the K*N amplitude from the K*d mea-
surements, as described in the Introduction, is well
justified. The low-momentum data of Glasser et al.'” in
Figs. 2—-4, are more interesting since it covers also the
backward direction. As it can be seen in Figs. 3 and 4,
the experimental cross section seems to show a raise in
the backward direction and this behavior is not followed
entirely by the theory. First of all, the multiple scattering
effects do tend to rise the cross section at large angles, but
not enough as seems to be required, for example, at 342
and 587 MeV/c. Thus it would be very useful if more
data at large angles were available, since perhaps this
could in turn lead to a better understanding of the ele-
mentary K*N amplitude. We show in Figs. 9-12 the
predictions of our model for the polarization observables
iTy, Ty, T,, and T,, at 300 MeV/c (solid lines), 600
MeV/c (dashed lines), and 900 MeV/c (dot-dashed lines).
The most outstanding feature of these quantities is their
strong energy dependence, which would make them quite
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B=1000 MeV/c (solid line), and B=1500 MeV/c (dot-dashed
line). The experimental data are from Ref. 10.
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valuable as a tool to study the energy dependence of the
two-body input. These observables could be very easily
measured nowadays using the newly developed vector
and tensor polarized deuteron targets.*>*

The results that have been presented in Figs. 1-12 are
based on a particular model of the two-body input
representing the K*N and NN vertex functions and
two-body amplitudes. Thus one can study the model
dependence of the results by varying the two-body inputs
within their allowed forms. For example, in Fig. 13, we
have calculated the differential cross section at 587
MeV/c, using for the deuteron wave function the wave
functions of Paris®® (solid line), McGee* (dashed line),
and Moravcsik®® (dot-dashed line). As one can see, the
use of the McGee and Moravcsik wave functions leads to
a raise of the cross section in the backward direction of
about 15%. In Fig. 14 we have investigated the off-shell
dependence of this process, by performing the calculation
using for the off-shell parameter 8 in Eq. (18) the values
B=500 MeV/c (dashed line), B=1000 MeV/c (solid line),
and B=1500 MeV/c (dot-dashed line). As one can see,
the differential cross section increases monotonically with
B, so that for 6 < 100° the curve with B=500 MeV/c is
the one that fits the data better, although for the last
point it is lower by approximately a factor of 3. In Fig.
15 we have studied the sensitivity of the results to the be-
havior of the elementary K *N amplitude in the unphysi-
cal region s5; <(m;+my )2, by performing the extrapola-
tion indicated in Eq. (17) with n =1 (dashed line), n =2
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FIG. 15. Sensitivity of the K*d—K™*d reaction to the be-
havior of the K*N amplitude in the unphysical region
s;<(mj+my )2. The different results correspond to using for
the exponent n in Eq. (17), the values n =1 (dashed line), n =2
(solid line), and n =3 (dot-dashed line). The experimental data
are from Ref. 10.
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FIG. 16. Sensitivity of the K*d—K*d reaction to different
parametrizations of the isospin one K*N amplitude. The solid
line is the result of the amplitudes of Martin (Ref. 9), the dashed
line is the result of model 1 of Ref. 49, and the dot-dashed line is
the result of model 4 of Ref. 49. The experimental data are
from Ref. 10.

(solid line), and n =3 (dot-dashed line). As one can see,
there is essentially no sensitivity to the assumed form of
the K*N amplitude in the unphysical region (at lower
energies, particularly very close to threshold, the results
are more sensitive to the behavior in the unphysical re-
gion). In Fig. 16 we have studied the sensitivity of the re-
sults to different existing parametrizations of the isospin
one KN amplitude, by comparing the results obtained
with the amplitudes of Martin® (solid line), and those ob-
tained using for the isospin one amplitude the models 1
(dashed line) and 4 (dot-dashed line) of Ref. 49. In Fig.
17 we show the corresponding sensitivity to the isospin
zero K*N amplitude, where we compare the results ob-
tained using the amplitudes of Martin® (solid line), with
those obtained using for the isospin zero amplitude the
models A (dashed line) and C (dot-dashed line) of Ref. 8.
As one can see, there are considerable variations in the
theoretical results, particularly in the case of the isospin
zero amplitudes. Thus the taking of new data in this re-
gion could be of great help in order to decide among the
various isospin zero solutions.

V. CONCLUSIONS

We have performed a relativistic Faddeev calculation
of K*d scattering up to 1.5 GeV/c. Our results show

FIG. 17. Sensitivity of the K*d—K*d reaction to different
parametrizations of the isospin zero K*N amplitude. The solid
line is the result of the amplitudes of Martin (Ref. 9), the dashed
line is the result of model A of Ref. 8, and the dot-dashed line is
the result of model D of Ref. 8. The experimental data are from
Ref. 10.

that multiple scattering effects are important mainly in
the backward direction where they increase the cross sec-
tion by about a factor of 2. The main corrections to the
impulse approximation in the high-energy region are the
double and triple-scattering terms where the last one con-
tains an intermediate nucleon-nucleon scattering. The
differential cross sections exhibit great sensitivity to the
use of different existing isospin zero phase shift solutions
of the KN subsystem, which indicates that an accurate
measurement of the K*d differential cross section would
be of great help in deciding among the various solutions.
Our predictions for the polarization observables show
quite a strong energy dependence, which shows that if
measured, these data could contribute greatly towards a
complete understanding of this system.
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