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Two-parameter liquid drop describing symmetric fission
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A two-parameter liquid drop model has been proposed to describe the symmetric fission process
by using generalized Cassinian ovals as the function family of nuclear surface shapes. The saddle-

point shapes and other properties have been calculated over a wide range of the fissility parameter x
and compared with those using other methods. The agreement is surprisingly good. With the aid of
an adiabatic approximation, the scission-point configurations for 0.3 &x &0.67 have been deter-
mined, and the mutual potential energies at the scission point were calculated and are consistent
with the experimental data for the most probable value of the total fission-fragment kinetic energy.
The simple model has been extended to asymmetric systems, and, therefore, can be used in dynami-
cal calculations for nuclear systems with large deformation.

INTRODUCTION

Some interesting subjects associated with fission pro-
cesses are the predictions of saddle-point and scission-
point configurations as well as the calculations of fission
barrier and the total kinetic energy of fission-fragments in
a framework of a liquid drop model. The prediction of
the equilibrium configuration at the saddle point is prob-
ably the most important among them. A very well

known result for symmetric fission was obtained by
Cohen and Swiatecki' and Strutinsky et al. indepen-
dently in 1963. The mathematical methods used by the
two groups are somewhat different, but in general the re-
sults are in good agreement. Since then the results of
Ref. 1 have been quoted by others extensively, in which
the variation of the radial variable of nuclear surface
from the radius of undistorted sphere was expressed in
terms of a spherical harmonic expansion with nine lowest
even order terms. Nine parameters, of course, are too
much for dynamical calculations. A nuclear surface fam-

ily with three symmetric degrees of freedom was tested
by Nix and Swiatecki in 1965, which was specified in
terms of two spheroids connected by a smoothly joined
quadratic surface of revolution. They found that all the
saddle-point properties were reproduced with amazing
accuracy. For example, over the entire range of fissility

x, the calculated fission barriers are accurate to within
one-half an MeV. In addition, Lawrence calculated the
equilibrium configuration in terms of two free parameters
without explicit physical meaning. It, however, works
only for the region of x &0.7. In 1968, Stavinsky et al.
described the nuclear shapes by using Cassinian ovals
which reproduced the saddle-point shape and fission bar-
rier well for x values between 0.5 and 1.0. Based on the
single parameter model, as x decreases the equilibrium
shape will be elongated monotonously. The behavior is
different from Cohen and Swiatecki's prediction that the
elongation of the equilibrium shape increases firstly and
then decreases. In 1980 Trentalange et al. presented a
truncated Legendre polynomial in cylindrical coordinates

for defining axially symmetric shapes, which is particu-
larly appropriate for describing elongated and rnultineck
configurations. The shape parametrization introduced by
Trentalange et al. with eight symmetric degrees of free-
dom is substantially more accurate than that of Cohen
and Swiatecki for values of x below 0.7. In comparison
with the earlier calculations, the Legendre-polynomial
version with eight parameters gives the best results of
symmetric fission barrier for x in the range from 0.15 to
1.00. Recently extensive investigations of heavy ion in-
duced reactions, quantitative description of fusion fission,
quasifission, and fast fission processes all require a simple
way to describe the nuclear shapes in the dynamical pro-
cess for large deformed nuclei quantitatively. A couple of
simple approaches have been tested so far; however, they
are not very satisfactory. ' In this paper a two-
parameter model has been found to be accurate enough
to describe the nuclear shapes in fission process. It may
be used as a basis for dynamical calculations of the nu-
clear system with a large deformation.

STATIC POTENTIAL SURFACE CALCULATION

We consider the family of nuclear surfaces described in
the cylindrical coordinates (p, z, y) by

k2 2 ( 4+4 2k2 2)1/2 ( 2+k2 2)

where k, k, are called radial and axial press coefficient,
respectively. The requirement of constant volume is uti-
lized to eliminate the constant a and to keep k k, =1, so
that Eq. (1) describes a two-parameter function fami1y of
the possible shapes of a liquid drop. The distance be-
tween the centers of mass of two fragments can be analyt-
ically written as

a a
4k, R,

where Ro is the radius of undistorted spherical nucleus,
and c=c/a. The quantities R &2, k, were selected as free
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parameters because of their explicit physical meaning.
The potential surfaces for different x values were calcu-
lated in the two-dimensional space (R,z, k, ). It should be
noted that the family described by Eq. (1) is a generalized
Cassinian oval. The family becomes Cassinian ovals
when k =k, =1. Actually, k and k, are nothing but a
set of linear transformation coeScients of coordinates p
and z.

Stavinsky's method was modified and used to calcu-

3 z+ z] dP]8 =
4~a '" dz i 2 dz)

P1 Q(P1,z, ) (3)

and $(p, ,z, ) is given by

late the Coulomb energy and the surface energy of a uni-
formly charged liquid drop. The integral representation
of the Coulomb energy relative to that of an undistorted
sphere is

2 2'+ 1 2 g )2 1 ap2 2 2 22 p2+ (k12 —2)+(z1 —z2)— K(k1z )+—,'g12E(k12 ) dz2,
4 2 azz

where

(4)

g 12
——(P 1 +P2 ) + (Z 1

—Z2 )

12 P 1P2 ~g 12
2

z y(u2+c2yk )1/2

A is the mass number of the nucleus and K(k, z ), E(k12 ) are the complete elliptic integrals of the first and second
kinds, respectively, and are evaluated by using the polynomial approximation of Ref. 9. The integral representation of
the surface energy relative to that of the sphere is

a= ' -"
(1 k3) 2+k3 "+4"'a k z max

2 2 1/2 2

s g2/3 0
z P + z 1+4~2Z2

dz

where z,„=(1+a )'
Equations (3) and (4) are evaluated on the VAX-11/780

computer by Legendre-Gauss quadrature. The interval
of each onefold integral was divided into 16 subintervals.
The integral in each subinterval was evaluated using
fourth order Legendre-Gauss quadrature. Each twofold
integration of Coulomb energy required 10 sec of com-
puter time. The calculated results of Coulomb energy

and surface energy for a sphere and two spheroids com-
pared with those of Cohen and Swiatecki's and
Lawrence's are shown in Table I. It can be seen that the
accuracy of the Coulomb and surface energy evaluation is
better than one part of 10 and one part in 10, respec-
tively. Some of Coulomb energy integrals with respect to
the nuclear shapes close to scission point were also tested
by using both Legendre-Gauss quadrature and Simpson's

TABLE I. Calculated values of relative Coulomb and surface energies with comparable figures for
other authors.

Author

Gauss order
or number of

grid points Sphere

Spheroid
major axis
minor axis

1

0.7

Spheroid
major axis
minor axis

1

0.5

Relative Coulomb energy B,.

Lawrence

Cohen and Swaitecki

This paper

Exact
16
96

41
61

16X4

1.000 000 000
0.999 999 707
0.999 999 998

0.999 998 2
0.999 999 3

0.999 999 8

0.988 678 870
0.988 678 577
0.988 678 869

0.988 676 6
0.988 678 4

0.988 678 3

0.957 975 925
0.957 975 557
0.957 975 925

0.957 975 3

Relative surface energy B,

Lawrence
This paper

Exact
16

1.000 000 000
1.000 000 000
1.000 000 0

1.021 383 583
1.021 383 583
1.021 383 5

1.076 728 262
1.076 728 262
1.076 728 2
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rule in which the tolerance was set to 2)&10 . The re-
sults by both ways are within the relative error 2)&10
In short, the evaluation of Coulomb energy is accurate
enough to determine saddle-point and scission-point
properties very well. The typical calculated contour
maps of the potential surface in the region of the saddle
point are shown in Fig. 1. The shape evolution from the
spherical nucleus to the scission-point configuration near
the fission potential valley is shown in Fig. 2.

There is an explicit analytical relation between the axi-
al press coefficient k, and the radius of the neck joining
one fragment to another b

b =a(1—e)k, .
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Because the conservation of volume, the volume of the
liquid drop can be written as

1.06

1.04

0—'n.R 0
——V= ma3 3 (1+a ) 2

3
(1—2e )

1.02

1.00

+ arsh2e(1+e )'1
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Therefore, the radius of neck can be easily used as a free

parameter instead of k„and the above calculated results

can be displayed in the two-dimensional space (R,z, b ).
FIG. 1. Contour maps of potential energy near the saddle

point for the nuclei with x =0.4, 0.6, and 0.8.
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FIG. 2. Evolution of the shapes of nuclear surface near the fission potential valley on a k, —R, ~ map. The figures are rotational

symmetry about horizontal axis.
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SADDLE-POINT DETERMINATION AND
SADDLE-POINT PROPERTIES CALCULATIONS

The exact position of saddle point was determined in
the following way. First, we determined the maximum
value in the potential energy surface of the two-
dimensional space (R,2, k, ) by means of the method of
parabolas as the k, was fixed. Different maximum values
were obtained for different values of k, . Secondly, the
minimum value among the above maximum points was
determined by the method of parabolas also. The energy

difference between the determined minimum value and
the potential energy of the undistorted spherical nucleus
is then the classical fission threshold or fission barrier. In
the meantime the shape parameters, the relative Coulomb
energy, and the relative surface energy of the saddle point
are obtained. For each saddle point the following quanti-
ties were evaluated by using the shape parameters: the
parallel moment of interia JII, the perpendicular moment
of interia Jj, the inverse of the effective moment of in-
teria J,s, and the quadrupole moment Q. The J~~ is com-
puted by the expression

15 a
8

5

mBx 3 fllBx 1——1n(2Ez,„+sq ) — S +
2 S~+ ln(2ez, „+S~)

8c 16@. 32'.
(8)

where Sq =(4c, z,„+1)' . The Jj is given by

15 a
2 8 Ro

5
1 max 3 max 1

2 2 Sq —
2 Sv 3 ln(2Ezmax+Sq ) —

&
e zmax szmax

k, 8c. 16@. 32@.
(9)

The J,s and Q are evaluated with the expressions

1 1
cff

II

(10)

1.2
0.3-

0.4-

I I I

X =pa3

Q= ,",n(J~ —
J—~~) .

Cohen and Swiatecki s definition of the saddle-point
properties in Eqs. (8)—(11)were adopted to facilitate com-
parison with their work.

CALCULATED RESULTS ABOUT SADDLE-POINT
CONFIGURATION AND DISCUSSION

0.8-

0.4-

0.8-

0.4-

X=p.4

X =p.5

X=0.6
Typical saddle-point shapes are shown in Fig. 3 and

compared with those of Ref. 1. Generally speaking, both
of them are in very good agreement. Looking closely, we
found that the neck of the predicted saddle-point shape is
a little bit smaller than that of Ref. 1 for x =0.7, and the
predicted necks of the saddle-point shapes are slightly
larger and smoother than those of Cohen and Swiatecki's
for x =0.3 and 0.4. The calculated saddle-point proper-
ties in our two-dimensional space and the percent
difference between the calculated properties and those
properties calculated by Cohen and Swiatecki are listed
in Table II. The percent differences of the relative
Coulomb energy and surface energy are less than 1%a
The percent differences of the quadrupole are less than
6.4%. The percent differences of the parallel moment of
interia, the perpendicular moment of interia, and the in-
verse of the effective moment of interia are less than
1.5%, 5.0%, and 2.5%, respectively. So far as the fission
barrier is concerned, earlier results' ' and the results
calculated using our generalized Cassinian ovals are com-
pared and listed in Table III. In the range of x)0.3,

0.8-

0.4

0.8-
X=p.7

0.4

0.8-
X =pa8

0.4

0.8-

I I

X=0m

0.4
0—2.4 —1.6 —0.8 0.0

z(Ro)

0.8 1.6 2.4

FIG. 3. Comparison of saddle-point shapes calculated in the
two dimensional space (solid line) with those of Ref. 1 (point).
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TABLE II. Determined saddle-point shape parameters and calculated saddle-point properties, as well as percent difference
[5K—:(K —K )/K ] between this paper and Cohen and Swiatecki's. The superscript CS refers to Cohen and Swiatecki's paper
(Ref. 1).

X
B,

(5B, )

B,
(5B, ) (5Jg)

Jg
(5J&)

J,N

(5,g) k, R (2, (R() )

0.9 1.02008
(+0.01%)

0.989 24
( —0.01%)

0.7941
{—0.09%%uo)

1.1907
(+0.09%)

0.4195
(+0.45%)

1.3290
(+0.45%)

0.97671 0.948 59 0.541 59

0.8 1.081 03
( +0.0'9%)

0.953 07
( —0.06%)

0.6222
( —0.29%)

1.6258
(+0.46%)

0.9922
(+0.77%)

3.3631
(+0.94%)

0.95071 1.23821 0.74760

0.7 1.217 39
{+0.98%)

0.861 15
( —0.92%)

0.4760
( —1.24%)

2.9948
(+5.11%)

1.7669
(+2.49%)

8.4404
(+0.40%)

0.92309 1.87284 0.92047

0.6 1.281 78
( —0.45%)

0.813 39
(+0.48%%uo)

0.4902
( —0.14%)

4.0563
( —2.81%)

1.7934
( —0.24%)

11.9502
( —3.17%)

0.955 67 2.288 32 0.980 92

0.5 1.281 39
( —0.40%)

0.813 92
(+0.63%)

0.5210
( —0.19%)

4.0038
( —3.82%)

1.6697
( —0.35%)

11.6710
( —4.35%)

1.00000 2.28649 0.99004

0.4 1.278 40
( —0.14%)

0.817 36
(+0.20%)

0.5484
( —0,76%)

3.8606
( —1.24%%uo)

1.5644
(0.11%%uo)

11.0990
( —1.44%)

1.041 58 2.248 10 0.994 67

0.3 1.276 12
( —0.08%)

0.82048
(+0.03%)

0.5706
(+0.87%%ui )

3.7318
( —0.39%)

1.4846
( —1.09%)

10.5933
( —0.61%)

1.075 57 2.21022 0.997 53

Trentalange's results are better than ours, but the max-
imum difference between them is less than 0.6 MeV. In
comparison with Nix's results, our parametrization
works worse for x &0.7 but better for x &0.7. The
fission barriers given by our parametrization are higher
for 0.55 & x & 0.8, but lower for 0.3 &x & 0.55 than those
given by Cohen and Swiatecki. Therefore, our predicted
saddle-point shapes for x =0.3 and 0.4 are more realistic
than Cohen and Swiatecki's. It should be pointed out
that the generalized Cassinian ovals cannot describe the
configuration of two touching spheres, and that conse-
quently the calculated saddle-point energies will be too
high for x &0.2.

DETERMINATION OF SCISSION-POINT AND
MUTUAL POTENTIAL AT SCISSION

The scission point in the static potential surface was
determined by means of the adiabatic approximation.

The system starts to climb along the fission potential val-
ley, over its saddle point, goes further, and reaches a cer-
tain distance between the centers of mass R,2, where the
minimum of potential energy of the system in the direc-
tion of coefficient k, disappears. At that distance, the po-
tential energy of the system slides down monotonously as
the k, increases, and the system descends to scission.
The determined scission-point shapes for x & 0.3 are
nearly indistinguishable with respect to different fissili-
ties, if the radius of the undistorted spherical nucleus is
used as the unit of length. The parameters of scission-
point shapes k, for different nucleus are close to 1.05. A
typical scission-point shape is shown in Fig. 4. In princi-
ple, scission points cannot be determined from static
potential-energy surface alone, but instead require a con-
sideration of nuclear dynamics. For x values less than
0.67, however, the neck is well developed at the saddle
point and the scission configuration is fairly close to the
saddle configuration. The inAuence of the dynamical pro-

TABLE III. Fission barriers calculated using four different parametrizations.

Nix and Swiatecki
Cohen and Swiatecki three quadratic

spherical harmonic surfaces
(nine parameters) (three parameters)

Trentalange et al. Present work
Legendre polynomial generalized Cassinian ovals

(eight parameters) (two parameters)

0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.16924
0.132 84
0.095 35
0.056 95
0.022 36
0.005 91
0.000 71

0.233 63
0.202 17
0.168 14
0.132 36
0.095 27
0.057 47
0.022 93
0.00605
0.000 73

0.233 71
0.202 14
0.16791
0.13190
0.094 64
0.056 74
0.022 37
0.005 91
0.000 71

0.168 41
0.132 29
0.095 30
0.057 85
0.023 00
0.005 94
0.000 71
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FIG. 4. Shape of the scission-point configurations deter-
mined with the aid of adiabatic approximation for x )0.3.

cess from saddle point to scission point on the nuclear
scission can be ignored. The adiabatic approximation is
acceptable to determine the scission-point shapes for the
nuclei with x &0.67. The fact that for those x values al-
most all of the kinetic energy of the fragments is acquired
by post-scission acceleration of the fragments in mutual
interaction fields has been verified by Nix s dynamical cal-
culation. ' On the other hand, the insensitivity of the ki-
netic energy release in the fission process to excitation en-

ergy of the compound nucleus was observed very early.
A number of experimental data"' show that the average
total kinetic energy of the fragments from fusion-fission
process almost keeps a constant within the experimental
error as the incident energy is changed a lot. This means
that the combination of the various factors of the com-
pound nucleus, such as temperature, rotation, and so on,
has very little effect on the collective motion in the fission
degree of freedom. For x & 0.67, the static mutual poten-
tial at the scission point can be, therefore, used for es-
tirnating the total kinetic energy of the fragments.

The dominant part of the mutual potential is Coulomb
potential (Ec), which is calculated easily according to the
determined geometrical shape at the scission point in Fig.
4. It turns out that Ec=0.186Ec' ', where Ec' ' is the
Coulomb energy of the undistorted sphere. Finally,
Ec=0.131Z /A' when we use the radius parameter
value 1.2249 fm. Z, A are the charge number and mass
number of compound nucleus, respectively. The mutual
nuclear potential at the scission point is relatively small,
but rather diScult to estimate because of the shapes of
the fragments. A semiempirical approach has been pro-
posed, which was tested for the nuclear interaction be-
tween two spherical nuclei and then extended to the case
between two nuclei with any geometrical shape (see Ap-
pendix). The estitnated values of the mutual nuclear po-
tential are somewhere between —3 and —4 MeV. The
comparison of calculated mutual potential energy, in-

cluding Coulomb and nuclear potential, with experimen-
tal data of the most probable value of the fission-
fragments kinetic energy for 0.33 &x &0.67 is shown in
Fig. 5, from which a good agreement can be seen.
Presumably, the shape parametrization is reasonable near
the scission-point region.

EXTENDING TO ASYMMETRIC SYSTEM

Cassinian ovals has been extended to describe asym-
metric liquid drop in 1971 by Pashkevish' and Adeev
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Q
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Q
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R. Vandenbosch BrJ. R. . Huizenga [11]

J.Bisplinghoff [12]

A verage val ue of [ 10)Q [ ] [ ]

H. C. Britt [13]

B.Borderie [14]

N. Namboodiri [15]

C. Cabot [16]

T.sik

I I I I
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I
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I I I I I

800 1000 1200

Coufpmb Energy Parameter Z'/A' "
FIG. 5. Comparison of calculated mutual potential energies,

including Coulomb and nuclear potentia1, with experimental
data (Refs. 11-17) of the most probable value of the total
fission-fragment kinetic energies of the fission fragments for
0.33 &x &0.67.

k p=(g+4ckz+ckkz) —(c+kz)P z (12)

which can be used to describe the shapes of asymmetric

system. The constant k, is restricted by the asymmetry
of the system, so that Eq. (12) is also a two-parameter
function family of the possible shapes of a liquid drop. In

et al. ,
' respectively. In Pashkevish's paper the new

coordinates (R,x) have been introduced such that the
coordinate line R =const is a Cassinian oval. In order to
describe asymmetric shapes R was simply replaced with

Ra[1+apt(x)], where pt(x) is the first order Legendre
polynomial. The extention in Adeev's paper was more
complicated, but gave more general results. The fission
barriers of liquid drop for some heavy nuclei have been
calculated in both papers. Their results show that the
calculated fission barriers of liquid drop from asymmetric
process are higher than those for corresponding sym-
metric process. The difference of the calculated fission
barriers between asymmetric and symmetric process
varies in the range from 1.0 to 2.0 MeV, and depends on
the system and its asymmetry. However, the asyrnrnetric
process became energetically favorable when the shell
correction was taken into account by means of the Stru-
tinsky method.

We add a cubic expression of z into the first term of the
right side of Eq. (1), ' namely



1974 XU SHUWEI AND WANG ZHENGDA 37

V
8-

C4

Q

a5

4C
Q
O
L

2-
~ ~
c5.

oC 0
1.0 1.4 1.8

236U

+ 96A2

i

2.2 2.4

this case, Eq. (6) is still satisfied. The radius of the neck b

which plays a very important role in describing heavy ion
induced reaction is still able to be used as a free parame-
ter naturally in the asymmetric process. Taking U as
an example and using a method similar to the mentioned
above Eqs. (1)—(6), we evaluated the static potential-
energy surfaces for both symmetric and asymmetric pro-
cesses, and then the variation of relative potential energy
of the system along the fission potential valley via both
symmetric and asymmetric paths. The results are shown
in Fig. 6. It can be seen that the fission barrier of the
asymmetric process is a little wider and about 1 MeV
higher than that of symmetric process. The asymmetric
process will be also energetically preferable, if the shell
effect is taken into account. In addition, using adiabatic
approximation and assuming uniform charge distribution
of the fission fragments, we determined the scission-point
shapes as a function of the mass of the fragments and
hence the mutual potential energy at the scission point.
The results compared with the experimental data of mean
fragment total kinetic energy are shown in Fig. 7, from

150

140

Distance between Centers of Mass of Fission-Fragments

R12( fm)

FIG. 6. Relative potential energy for the nucleus "U as a
function of distance between the centers of mass of fission frag-

ments via symmetric path {solid line) and asymmetric path
(dashed line).

which good agreement can be seen. 'Tl produced with
the reaction He+' Ag was taken as the compound nu-
cleus because its x &0.67, its temperature is low and an-
gular momentum is rather small. We should be cautious,
however, and not read too much into this agreement. In
fact, the experimental distribution of mean fragment total
kinetic energy is sensitive to the temperature of the com-
pound nuclei, but the effect of the temperature of the
compound nuclei was not taken into account at all in the
adiabatic approximation. The agreement only gave a
hint that the shape parametrization given by Eq. (12) will
be probably used for further studying the distribution of
mean fragment total kinetic energy.

SUMMARY

The proposed two-parameter model not only makes the
evaluation simple, but also has a clear physical picture.
One of the free parameters describing the shape of liquid
drop is the distance between the centers of mass of the
fission fragments. Another is the axial press coefficient,
which expresses the deviation of nuclear shape from the
Cassinian ovals after a linear coordinate transformation
and can be easily replaced by the radius of neck. Over a
wide range of x the shapes and the properties of saddle
point predicted by the two parameter model are surpris-
ingly consistent with those determined by using nine pa-
rameters in Cohen and Swiatecki's paper, and the
difference between the fission barriers calculated in
Trentalange's paper and in ours are less than 0.6 MeV.
The predicted scission-point configurations for the nuclei
of 0.3 &x &0.67 with the aid of adiabatic approximation
are also reasonable. Furthermore, the simple model can
be generalized to describe asymmetric fission process
easily, and, therefore, will be helpful for the dynamical
calculations of heavy ion induced fusion fission,
quasifission, and fast fission processes.
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FIG. 7. Mean fission-fragment total kinetic energy as a func-

tion of fragment mass for the fission of '"'Tl. Solid circles are
the experimental data [from Nix and Swiatecki (Ref. 3)]. Solid
line is the calculated mutual potential energies at the scission

point.

In order to illustrate the essence of the approach, we
begin with deriving the expression of the nuclear poten-
tial between a pair of spherical nuclei. A spherical nu-
cleus is assumed to be equivalent to a set of overlapping
spheres with different densities and different radii r (see
Fig. 8). All component spheres possess the same center
of mass as original nucleus. The density of each com-
ponent is uniform and expressed by
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FIG. 9. Estimated nuclear potential (dashed lines) between
Ar and ' 'Sb as well as Kr and Bi as a function of separa-

tion distance D =R &2
—ro —ro compared with the results cal-

culated using the proximity theorem (dots) and energy-density
formalism (solid lines).

po exp[( r —ro ) /a )dr
bp(r)=

a{1+exp[(r —ro)/a]!
(A 1)

r)r2
S=4m.d

r) +r2

The sum of all the component densities is just equal to
the Fermi density distribution of original nucleus, namely

po

exp�[�(

r ro ) /a —]dr
r a!1+ exp[(r —ro)/a]!

po

1+ exp[(r ro)/a ]—
(A2)

where a, ro, and po are the diffuseness, half-density ra-
dius, and the saturated density of the nucleus, respective-
ly. Based on the experimental results of high energy elec-
tron scattering, ' parameter values a =0.54 fm and
ro =1.I A fm are used. It can be seen from Eq. (Al) that
the density of component sphere depends on the radius
difference A, =r —ro only. Even in two unequal nuclei
there exist one-to-one component spheres with equal den-
sity, which are called the component pairs with equal
density. A component pair with equal density will not in-
teract each other unless they overlap. The interaction be-
tween an overlapping component pair with equal density
is proportional to their density and the decreasing of
external surfaces of the two components owing to their

I

where r, and r2 are the radii of the two components, d

the overlapping length of the component pair with equal
density on the line linking the centers of mass. The nu-

clear potential, caused by the interaction between the
diffuse tails of two nuclei, is assumed to be proportional
to the sum of all the nuclear interactions between every
overlapping component pair with equal density in the
two nuclei because the saturation of nuclear force. If ro '

and ro ' are the half-density radii of the two nuclei, and D
is the separation distance between the two nuclei, the ra-
dii of the minimum overlapping component pair with

equal density are ro" +D/2 and ro '+.D/2, because this

pair of radii corresponds to equal radius difference,
b r; =hr2 D/2, and the s——um of them is just equal to the
distance between the centers of mass of the two nuclei,
r o + r o

' +D. Starting from this pair of minimum radii
we made up all the overlapping component pairs with
equal density by enlarging r& and r2 while keeping
hr, =hrz. It follows from the above assumptions that
the nuclear potential at the separation distance
D =2R —2ro" can be written as

U 2R —2"'— I ao r](r] +rp ro ) exp[(r —ro )/a]dr&(2) (1) (1)

Un 2R 2 0 ) 4~(r, +1 2)1VO (r) R ) (~) ())R 2r&+ra ' —ro ' aI1+ exp[(r —ro ')/a])
(A3)

where y, and y2 are the surface-tension coefficients of
both nuclei, No is a constant related to the saturation of
nuclear force. When we estimated the nuclear potential
for a touching configuration of two spherical liquid

I

drops, the parameter value R =1.22493 ' fm was tak-
en, which corresponds to the sharp edge. The nuclear
potential as a function of separation distance for heavy
and mediate-heavy systems were calculated by means of
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Eq. (A4) systematically, which fit proximity potential well
when the parameter value No ——1.85 was used. The typi-
cal results for Ar+ ' 'Sb and Kr+ Bi compared
those predicted by proximity function and energy density
formalism, are shown in Fig. 9. It indicates that the as-
sumption about equivalent component pairs with equal
density is reasonable.

A similar procedure can be made by estimating the nu-
clear potential between two nuclei with any geometric

shapes. The half-density radius is no longer a constant,
but a function of 8 and y instead. The component drops
are still the similar figures of original liquid drop and
have the same center of mass as original nucleus. The
density of the component drop no longer depends on the
separation radius itself, but depends on its projection on
the line linking the centers of mass. A general expression
of nuclear potential between the two nuclei is obtained

l't+y2 „„. . . exp[(r r'o" )/a—]dr,
U„(2R —2ro")= No S(R,rt, ro (Ht, rpt), ro (~2~+2))

a [ I+ exp[(r ro—")/a]]
(A4)

where ro ' and ro ' are the half-density radii of both nu-
clei on the line of the centers of mass, r& the radial dis-
tance from the center of mass of a component drop to its
surface along the line of centers of mass, and
S(R,r„ro (et Ipt) ro (Hz Ip2)) the decreasing of external
surfaces of the two components when they overlap,
which, of course, depends on the shape of the liquid drop.

Since the density of the component drop decreases rap-
idly with its surface radial variable r& increasing; namely,
the nuclear potential mainly depends on the interaction
in the closest approach region between the two frag-
ments, it is accurate enough that R +7a is taken as the
upper limit of the integral (A4). For evaluation of the in-
tegral (A4), a pair of cones with vertex angle 94' is, there-
fore, taken instead of the scission-point shape in Fig. 4.
When two cones overlap each other, the decreasing of
their external surfaces owing to overlapping is given by

tg(5/2) d2
2 cos(5/2)

where 5 is the vertex angle of the cone, and d the overlap-
ping length of the two cones on their symmetrical axial.
The mutual nuclear potential at the scission point is ap-
proximately expressed by

U„(2R —2ro )

tg(5/2)
cos(5/2)

exp[(r ro)/a —]
X (r —R)

a [ I + exp[( r —ro ) /a ] I

(A5)

where 6=94', No ——1.85, and R =1.2249M ' fm corre-
sponding to the sharp edge of the liquid drop. The es-
timated values of the nuclear potential at the scission
points for 0.33 & x & 0.67 are between —3 and —4 MeV.
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