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We present a new formal approach for the calculation of the s-wave optical potential for pionic

atoms which makes extensive use of the Lindhard function, its analytical properties, and its useful

low density limit. The conventional parameters bo and Bo are calculated and compared to results

from empirical fits to pionic atom data. We show that the virtual excitation of ph-hh components

by the pion is the main source of the real part of Bo. Higher order effects from the polarization of
the pion lead to some enhancement of ImBO, providing values which are compatible with the

empirical data. The real part of the potential suffers from larger uncertainties due to the off-shell

extrapolation of the mN scattering amplitude.

I. INTRODUCTION

The properties of pionic atoms have been traditionally
studied in terms of a pion-nucleus optical potential that
contains an s-wave part and a p-wave part. ' The s-wave
part, which is the subject of this paper, is given by

opt ( +e) bpp( r)+ ( 1 +e)b ) [p„(r)—pp(r))

+ 1+—Bop (r)

bo ———,'(a, +2a3),

b, = ——,'(a, —a3) .

Values for a i,a3 can be found in Ref. 2:

a, =(0.171+0.004)ls

a3 ——( —0. 105+0.003)p

(1.2)

(1.3)

Because of a large cancellation in (1.2), bo has an ab-
normally small value, bo ———0.013@ ', compared to
bi ———0.092IM '. Because of this cancellation, small
corrections tend to influence the s-wave part of the po-
tential appreciably. One correction which is customarily
included in the first order optical potential term is
the Pauli corrected s-wave rescattering piece. '

with p~,p„ the proton and neutron densities and

p=p„+pp, to the pion energy, and e=plm the ratio of
the pion to the nucleon mass. The following relation-
ship' between bo, b&, and the isospin —,', —,

' scattering
lengths a„a3 holds:

With the potential of Eq. (1.1), together with the p-
wave part, one can carry out fits to the shifts and widths
of the pionic atom levels. By fixing the parameter bo,
this fit provides empirical values for the complex second
order parameter Bo. The parameter 80 has an imagi-
nary part which is meant to account for pion absorption,
a process that in free space cannot occur in a single nu-
cleon and is extraordinarily suppressed in finite nuclei,
although the conservation of energy and momentum al-
lows for it to occur in bound nucleons. The most simple
assumption is that pion absorption takes place through
pairs of nucleons and this justifies the empirical form for
this part of the optical potential as a p (r) functional. '

The assumption of absorption by a pair of nucleons has
received strong theoretical support from a recent work
which explicitly calculates the contribution from two-
body to three-body absorption in the p wave. ' The re-
sults there show that more than 95% of the absorption
at threshold takes place through pairs of nucleons. The
arguments used there can be easily extrapolated to the
s-wave part, and one should expect similar results for
this case. This does not mean that the form of the po-
tential should be of the p type. Integration over the
Fermi sea momenta, the effect of the Pauli exclusion
principle, and other many-body effects actually produce
diversions from the p functional.

The p functional for the second order optical poten-2

tial is, however, a natural and useful way of parametriz-
ing this part of the optical potential, and its tremedous

1 6—14 ~

success ' in correlating a large amount of experimen-
tal data' ' deserves obvious recognition. A recent
study of the correlations between the second order and
first order parts of the optical potential shows, however,
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that the shape of the potential is not too important since
one can get equally good fits by changing simultaneously
the bp and Bp parameters in an appropriate way. ' This
suggests the existence of an effective density which the
pions "feel" when they interact strongly with the nu-
cleus. ' This can explain why such good fits to the data
can be obtained with the potential (1.1) or with other
theoretical based functionals of p which differ appreci-
ably from the p or p form Is

We now show a couple of best fit parameters:
bp Bp

—0.017@
—0.0308

( —0.049+ i0.046)p, (Ref. 7)
(0.000+i0.050)p (Ref. 11)

(1.4)

FIG. 1. Diagrammatic representation of s-wave pion ab-
sorption. The solid circle stands for the m.N s-wave t matrix.

These results show that ImBp is rather constant in
different approaches, while bp, and ReBp are not so well
determined.

With respect to the theoretical approach to this part
of the optical potential, there has been a substantial
amount of work done. ' The most common approach
in order to consider the s-wave pion absorption by pairs
of particles is shown diagrammatically in Fig. 1. A pion
collides with one nucleon through the s-wave part of the
nN t matrix (solid circle in the figure). The scattered
pion now travels virtually through the nucleus carrying
part of the energy and momentum to a second nucleon.

The part of the optical potential that contains the ab-
sorption mechanism of Fig. 1 is given in Fig. 2 in the
form of a many-body Feynman diagram. The vNN ver-
tex in Fig. 1, where the scattered pion is absorbed, is the
standard mNN Yukawa p-wave coupling.

The imaginary part from the diagram in Fig. 2 for
pions at threshold will come from the analytical cut cor-
responding to the horizontal line in the figure; in other
words, from the situation where the particles cut by the
horizontal line are placed onshell. This is obviously the
pion absorption process, with the pion exciting two par-
ticles and two holes or, equivalently, pion absorption
through the process of Fig. 1.

The mechanism of Fig. 1 has been checked in pion ab-
sorption by deuterons or in the related NN~md reac-
tion with good results. ' It has also been successfully
used in the study of proton induced pion production in
nuclei, i.e., inclusive (p,m) reactions, close to threshold.

In addition to the imaginary part of the diagram in
Fig. 2, which we have discussed, there is also a real part

FIG. 2. Many-body diagram of the pion nucleus optical po-
tential that contains the absorption mechanism of Fig. 1. The
straight horizontal line indicates the absorption cut. It gives
rise to an imaginary part of the optical potential when the
two-particle —two-hole states are placed on shell. The curved
line indicates the quasielastic cut and gives rise to an imaginary
part when a ph and a pion are placed on shell.

associated with it, necessarily linked to this imaginary
part because of the analytical properties of the optical
potential. One can directly evaluate the real and imagi-
nary parts of the diagram or evaluate the imaginary part
and later use dispersion relations in order to evaluate the
real part, which is often used in the literature.

If one wishes to summarize the theoretical results, one
could say that, on the average, the results for ImBp are
from —,

' to —', of the empirical results and ReBp is of the
order of magnitude of ImBp and of positive sign. Hence
the results for ImBp are systematically too small, while
the results for ReBp have an opposite sign to those that
one gets from bets fits, Eq. (1.4). As an example, we
quote two different results. Reference 28 has
ImBp ——0.036p and ReBp =2.6 ImBp ~ Reference 29
gives ImBO=(0 020 0. 027—)p, . and ReB0=0.008@
although the authors offer this last magnitude as a
lowest one.

The agreement of the different authors on the sign of
ReBp is remarkable, with some exceptions, such as the
one in the early work of Ref. 22, done under assump-
tions which turn out to be incorrect when more accurate
calculations are carried out.

In view of these persistent discrepancies between
theoretical and empirical values of the s-wave optical po-
tential parameters, a thorough revision of the
problem —by looking at all the approximations done in
former calculations and trying to improve all of them
systematically —has seemed advisable to us. At the
same time we have also introduced new pieces which
affect the real part and which had been neglected before.

The usual approximations where the improvements
have been done are the following:

(1) In the calculation of ImBO from the diagram in
Fig. 2, the effects of the Pauli blocking in the particle
states are generally neglected. They are taken into ac-
count in the 2p-2h excitation of Ref. 30, though with a
model quite different to the one we study here.

(2) As we have mentioned, most of the approaches use
a dispersion relation to calculate ReBp once ImBp is cal-
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culated as a function of the energy. However, as we
have pointed out before, at threshold the only source of
the imaginary part in the diagram of Fig. 2 corresponds
to the absorption cut, where the pion energy goes into
exciting two particles and two holes. However, when we
increase the pion energy, a new channel, the quasielastic,
is open, and one also gets the imaginary part from this
source. A dispersion relation requires the use of ImBO
for different energies. Hence the source of ImBo will

come from both the absorption and the quasielastic cuts.
Thus the rea1 part of Bo will be influenced by both
sources of ImBO. The different approaches so far have
paid attention to the absorption cut and neglected the
second. Our formalism, which pays particular attention
to the analytical structure of the diagrams, finds a con-
sistent and satisfactory answer to this problem by direct-
ly calculating the real part of the diagram at threshold,
without the need of a dispersion relation and the evalua-
tion of the quasielastic cut.

(3) A look at the diagram in Fig. 2 shows that the in-
termediate pions are off shell. Hence one needs the n.N
s-wave amplitude off shell in order to evaluate Bp ~ The
same can be said about the off-shell effects affecting the
lowest order part of the optical potential. In nuclear
matter the pions necessarily scatter in the forward direc-
tion; there is conservation of four-momentum. Hence
the optical potential will require the mN amplitudes on
shell, as one assumes implicitly in Eq. (1.1). However, in
a finite nucleus, where the single particle states are
eigenstates of the energy but not of momentum, only the
pion energy is conserved in the collision, not the
momentum. Situations where the pions are off shell can
then occur in intermediate steps which lead from the op-
tical potential to the m-nucleus T matrix. This automati-
cally leads to modifications in the lowest order part of
the optical potential.

(4) If one cuts the two intermediate pions in Fig. 2 by
a vertical line and looks at the diagram remaining on the
right-hand side, it looks 1ike the renormalization of a
pion in nuclear matter through ph excitation. The
4( —,', —', ) degrees of freedom in such processes have been
repeatedly emphasized ' and they play an important
role in the dressing up of pions inside matter. Thus in

FIG. 4. Higher order terms of the diagrams of Figs. 2 and 3
which come from the polarization of the pion.

addition to the ph excitation of the pion, we will also
consider hh excitation, as shown in Fig. 3. This will not
contribute to the imaginary part of Bo, but it will con-
tribute to the real part, and actually quite strongly as we

shall see. This reAects once more the dif6culties encoun-
tered in evaluating ReBO through a dispersion relation.
The fact that the diagram of Fig. 3 gives an important
contribution to ReBO implies that in a dispersion rela-

tion approach one should have evaluated ImBO at ener-
gies sufficiently high that the channel mNN ~DNA
would be physically open.

(5) By following the line introduced in the former
point, we would like to dress up the pion propagator not
only by a single ph or hh excitation, but we would like
to have the full series of reducible diagrams that gives
rise to the pion propagator in the medium. This leads
to the iteration of the ph or hh excitation in the way
shown in Fig. 4. In the wavy lines, however, other in-
gredients of the ph interaction, in addition to one-pion
exchange, will be included.

(6) In addition to the diagram of Fig. 4, crossed terms
and exchange terms corresponding to this diagram are
equally calculated.

The paper continues, with Sec. II devoted to the for-
malism of the s-wave absorption; Sec. III deals with the
exchange and 6 terms; Sec. IV is devoted to the study of
the effects of the Pauli exclusion principle; Sec. V deals
with off-shell effects and short-range correlations; in Sec.
VI we introduce higher order contributions in the densi-
ty expansion. Section VII deals with the influence of the
off-shell extrapolation on the lowest order parameter bo
and in Sec. VIII we summarize our conclusions.

II. FORMALISM FOR S-WAVE ABSORPTION

FIG. 3. Many-body diagram for the pion self-energy (or
equivalently pion-nucleus optical potential), through ph-Ah ex-
citation, which gives rise to a real part of the self-energy at
threshold.

5H„NN(x) = igy(x)y57. y"(x)y(x—), (2.1)

where g(x) is the nucleon field and P (x) is the pion field

We will start by evaluating the contribution to the op-
tical potential from the diagram in Fig. 2. We need two
ingredients, the s-wave part of the m.N t matrix and the
mNN coupling. For the ~NN coupling we will take the
usual Yukawa interaction given by
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(1+@)bo———

(1+@)b,=—

2

p
2A2

(2.3)

In order to evaluate the optical potential (1.1) corre-
sponding to the diagram of Fig. 2 we will use the stan-
dard Feynman rules in momentum space. The vertices
corresponding to Eqs. (2.1) and (2.2), which are shown
diagrammatically in Fig. 5, are given by

NN ~
—&m'

I
o qI m. &&mt'

I

r"
I mt &

p
2A ]

5H '„'N'=4m 5, 5, 5g gm m, + m m,

(2.4a)

, (q +q '}&m,'Ir Im, )
p

(2.4b)

where f lp, =g l2m, and we have used the nonrelativistic
reduction for the y~ coupling of Eq. (2.1).

With these ingredients it is now easy to calculate the
contribution of the diagram of Fig. 2. For the pion self-
energy 0, related to the optical potential as
V, , =II(p)l2p, one obtains

II(p) = i f UN(p —q)DO(q) UN(q)q
d'q f'(q')

(2m } p
2A fX(4~)' ~20 0+2, (p'+q')

p
, (2.5)

where p, q are the momenta of external and intermediate
pions, respectively. In Eq. (2.5), Do(q) is the free pion
propagator,

of isospin A, . On the other hand, in order to account for
the ~N s-wave amplitude, we will use a popular phenom-
enological interaction Lagrangian given by

5H'N(x) =4m f(x)P(x) P(x)f(x)
p

'2-
+ f(x)r [$(x)XB,Q(x)]ltt(x), (2.2)

p

where A, „i,z are related to the isoscalar bo and isovec-
torial b, scattering lengths by means of the relationships

Do(q) =
q —q —p +rg

(2 6)

and UN(q) is the useful Lindhard function, defined as

d'k
UN(q) = 4—i f Go(k)GO(k +q),

(2n )
(2.7)

with Gp the Pauli corrected nucleon propagator

1 —n(k) n(k)
k e—(k)+ig k —e(k) —ig

+2min (k)5(k —e(k))
k e(k—)+ig

= G~Q" (k)+5Gp(k), (2.8)

with n (k) the occupation number and e(k) the kinetic
energy of the nucleon. Equation (2.8) explicitly shows
the Pauli correction to the free nucleon propagator. By
carrying out the k" integration in (2.7), UN(q) can be
rewritten as

dk n(k)[1 n(k—+q)]UNq =4
(2m } q —e(k+q)+e(k)+ig

n (k+ q) [1 n(k)]-+ 0—q —e(k)+ e(k+q)+i'
(2.9)

where a factor 4 is introduced for convenience to ac-
count for the spin and isospin degrees of freedom. Ex-
plicit expressions for the real and imaginary parts of
UN(q) can be found in Ref. 40 for real values of qo, and
in Refs. 39 and 41 for complex values of q, which are
needed in the present work.

The first thing to note is that Eq. (2.9) contains both
the direct and the crossed ph excitation terms which
means that by using the Lindhard functions in (2.5) we
will automatically account for all the diagrams in Fig. 6.
The last three diagrams will not contribute to the imagi-
nary part of the optical potential, but will give some

mt

, IT) s, m t

aj

lq, A

b)

p, ms, mt

p ms mt

g P
IC

gP

,n
+ )'

P P

+ vg .q g, +
7l

FIG. 5. Vertices for the n.NN interaction and the s-wave
mN scattering matrix.

FIG. 6. Set of diagrams for the pion self-energy taken into
account automatically by means of the Lindhard function UN
in Eqs. (2.5).
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contribution to the real part. A fact worth mentioning
is the analytical structure of the Lindhard function, with
the function UN(q) continuous for complex values of q
in the first and third quadrants.

In (2.5) we have introduced the q dependence of the
p-wave ~NN coupling to account for off-shell effects.
We will deal with the s-wave off-shell extrapolation later
on. The p-wave m.NN coupling has been studied
thoroughly through analysis of many different processes
where the pions are off shell. Studies from n. absorption
in the deuteron, ' np and pp charge exchange scatter-
ing, dispersion theoretical analysis, quasi-two-body
hadronic reactions, or the NN interaction indicate
that the off-shell dependence of the vertex can be
parametrized by means of a monopole form factor.
Thus we have

~ de' —2'' ImU(co', q)U q, q =
0 ir q —Qj +i@/

(2.11)

with q the pion four-momentum and A=1000—1500
MeV.

The q integration in problems similar to the one here
is normally carried out by closing some contour over the
complex plane q . However, such a procedure is im-
practicable here because UN(q) and UN(p —q) have cuts
on opposite sides of the real axis.

In order to be able to exploit the analytical properties
of (2.5) to carry out the q integration, we will make use
of a Lehmann representation which allows us to express
the Lindhard function in terms of its imaginary part for
real values of the energy variable:

f (q') f
7

p p A —q
(2.10) By using (2.11) to express UN(p —q), Eq. (2.5) can now

be rewritten as

+~ dq dq ~ den' 2co ImUN(~ p
11(p)=&'

(2~) (2n) o & (p —q ) —co' +i'3 0 02 i2 ~

2( 2)
X(4m ) Do(q) 2 UN(q)q

p

2
2A, 1 ~2+2, (p'+q')
p p

(2.12)

The analytical structure of the integrand for q is now simplified since we have replaced the cut of UN(p —q) by the
integral over co of single poles. This analytical structure is shown in Fig. 7 and immediately suggests that we do a
Wick rotation in order to avoid the cuts of UN(q). Note that the poles of Do(q) are in the same situation as the cuts
of UN(q). By carrying the q integration over the contour shown in Fig. 7, we obtain

+I d0 d d p dII(p)=i f +'" f 3 UN(p q, p —q—)F(p, q) —f 3 f ImUN(co', p —q)F(p, q)—i m 2m' (2~)3 (2~)' q =Po —co'
(2.13)

where

2( 2)
F(p, q)=DO(q) UN(q)q (4m)

p

2k]
+2

A2

, (p'+q')
p

'2

(2.14)

The first term in (2.13) is a real background since there is a cancellation of the imaginary parts of the integral for
values of q and —qc on the imaginary axis. Thus, the imaginary part of II(p) comes only from the second term of
(2.13). It can either come from the imaginary part of UN(q) in F(p, q) (pion absorption into 2p-2h), or through the
pole in Do(q) (quasielastic contribution). At threshold the quasielastic channel is not open and thus the absorption
contribution to the imaginary part is the only one that occurs. Thus we have

ImII(p) = —f f ImUN(~', p —q) Do(q)
dq po dm' f'(q')

(2~)3 o p

&(ImUN(q)q (4n. )
2A i +2 (p+q)

P2 q =p —~
(2.15)
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(2.13)—(2.15) and add extra terms, it is quite illustrating
to make some approximations in (2.15) in order to get an
easy analytical formula. We will make use of the small
density limit where ImUN(q) has a trivial representation:

0
~ P —W

IIIIIII&IIIIIIIIII
~ P +W

i ImUN(q) ~ 4f n (k)( i—)m5
~ qp-0 (2' )'

2

iver—5 /q /

—q p.
2m

q
2m

(2.16)

FIG. 7. Analytical structure the Lindhard function UN(q).
The hatching indicates the cuts of UN(q). In the first and third
quadrants UN(q) is a continuous function in the complex vari-
able q . Path followed by the Wick rotation of Eqs. (2.12) and
(2.13), with indication of the poles and cuts of the integrand.

2

fdco5 co-
2m

2

6 p —N—0

2m

2

=5 p—0
m

(2.17)

By means of this approximation one can immediately
evaluate (2.15) for p =p, p=O. One will have the fol-
lowing integral:

This equation has a very clear physical interpretation.
The imaginary part of the UN(q) function appears when
a real ph excitation can be done with energy q and
momentum q. Thus, in (2.15) the energy of the pion is
split into two parts, co' and q, with clear limits for the
values of co', co'K[0,p ], and q =p —m'. With the en-

ergy co' one excites one particle-hole, with the particle
and hole on shell, and with the rest of the energy one ex-
cites a second ph with the particle and hole on shell.
The range of the q integration is automatically limited,
because for fixed energy there is only a limited range of
momentum for which UN(q) has imaginary part.

Equation (2.15) gives the imaginary part of II(p) at
threshold coming from pion absorption into 2p-2h. At
higher energies we would also get an imaginary part
from the pole of Do(q) in Eq. (2.13). However, the for-
mula in (2.15) can still be used to calculate the contribu-
tion to the imaginary part of II(p) from pion absorption.

Before we proceed to make improvements in

Hence,

0CO'=q0=
2m 2

(2.18)

which gives us the 5 of conservation of energy for the
case where the pion energy goes into throwing two parti-
cles to the continuum with momentum q. (This has
come about because of the limit of zero momentum for
the holes in Fig. 2, which is equivalent for this purpose
to assuming static nucleons in the Fermi sea. ) It also
shows that the pion energy is equally shared between the
two particle-hole excitations (in this approximation) and
that the energy transferred by the virtual pion is p /2.
These approximations, which have been used in previous
works, ' appear naturally and in an obvious way in the
present context when one uses the low density limit of
Eq. (2.16).

Explicit calculation of (2.15) gives, in the present case,

ImII(p, p=O)= 4n.
2 p mq—Do(q, q)0 (q) 2 —3 2 0—

p

2A ] ~2 0 0+2, (p'+q')
p

2

q =p /2, q=(mp )

(2.19)

where q is given by (2.17),

q=(mp )'

By means of (1.1) we can write the value of ImB&,

(2.20)

2p Irn V,„,=ImII = —4~ 1+—ImB0p (2.21)

Hence,

f(q) —3 2 o—
1+e/2 p2

2k]

p

~2 0 0+2, (p +q )
p

2

(2.22)
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by using f /4@=0.08 and the values for A, , and A, 2

through Eqs. (1.2) and (2.3) (k& ——0.0075, Az ——0.053), we

obtain
ImBO ——0.021p (2.23)

Thus we get similar results to those in Ref. 29, and
about a factor of 2 low compared with the empirical
values.

We cannot get such a similar analytical expression for
the real part of 80 in the same limit, but a numerical
evaluation of (2.13) gives

III. EXCHANGE AND h, TERMS

Let us now consider the diagram of Fig. 3, which re-
places the ph excitation of the pion in Fig. 2 by a Ah.
The formalism that we are using allows for immediate
inclusion of this piece. All one has to do is to substitute
for UN(q) by Uz(q) in (2.14), where Uz(q) is the Lin-
dhard function for hh excitation.

For the ANm vertex one takes a phenomenological
Hamiltonian given in momentum space by

ReBO ———0.0042p (2.24) 58„Na=i &m.
I
S'q

I M. ) &mi I

T~
~
Mt ~ (3 1)

p
which comes approximately in equal parts from the real
background in the Wick rotation and the pole term
[second term in (2.13)]. This sign is different from other
approaches, but this should be less surprising after what
we said in the Introduction. The fact that we include
some crossed terms by means of the full Lindhard func-
tion is partly responsible for this sign.

This value of ReBO is, however, only a piece, and not
the most important of the total Re80. As we shall see,
most of the contributions come from other diagrams
that involve hh excitations. In addition to this new dia-
gram, which contributes to the real part of Bo, we will
also consider exchange terms to the one considered up to
now, which also contribute to the imaginary part, help-
ing to improve the agreement of ImBO with the empiri-
cal values.

2( 2)
IIN(q)=

2 q UN(q) .
p

(3.2)

Thus we will define Uc, (q) such that

2 2

II (q)= 2 q [UN(q)+Uz(q)],
p

(3.3)

with

corresponding to the vertex of Fig. 8. The hh Lindhard
function has to be correspondingly normalized to match
the definition of UN in (2.7). With this normalization
the pion self-energy due to ph excitation is given by

16 f'
y

dk n (k)
f (2m') q +e(k) —co+ —ez(k+q)+i(1 (k +q)/2)

n (k)+ —q +e(k) —a)„e~(k —q)+i—(Pk —q)/2)
(3.4)

where co+ —mc, —mN, and I (q) is the free width of the
b„which is zero for the arguments that we need in this
problem. The two terms of (3.4) correspond to the
direct and crossed hh excitations exhibited in Fig. 9.
Equation (3.4) can be integrated and explicit expressions
can be found in Refs. 39 and 41.

A low density approximation of (3.4) immediately
gives for positive q

second term in (2.13) and evaluate the Lindhard func-
tions in an average point of the integrand, which for
simplicity can be taken to be the same as that which
gives rise to the imaginary part in the low density ap-
proximation, Eqs. (2.17)—(2.19). A direct evaluation of
UN(q) gives

2

P
q —co+ —q /2m~+iI (q)/2

—q —~~ —q /2m~0 2
(3.5)

t s
We can get an estimate of the real part of (2.13) due to
ph or hh excitation. For this purpose we will take the FIG. 8. Vertex of the ONE interaction.
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K ir

q

FIG. 9. The Lindhard function representation for the hh
excitation. Direct and crossed terms.

FIG. 10. Exchange terms of Figs. 2 and 3.

cj

1+e/2
2

ReUN q = =,q
0 p q

2 2'
Ptl

2 p~ p~0
q

(3.6)

1 ~2 p p 1

, (2p'+2q')+
p p . ~'=S'/2

(3.9)

Re80, b k =0.0012p

ReB0,pole 0 054@

ReB0 ——0.055p

(3.7)

where the background and the pole part of ReB0 corre-
spond to the first and second terms in Eq. (2.13). The b,

term gives a sizable contribution to ReB0, of the order
of ImB0 and of the same sign.

We would like to calculate the exchange part of the
diagrams in Figs. 2 and 3. These diagrams are now de-
picted in Fig. 10. The explicit calculation of the dia-
grams is technically more involved and the details can be
seen in Ref. 46.

We recall here the results in the low density limit.
From the diagram of Fig. 10(a), we get

ImB0 ——
1+e/2 mq Do(q, q)

Actually, we can identify the result in (3.6) with the
crossed term [second term in (2.9) in the limit of p~0].
This shows a peculiar characteristic of the Lindhard
function. The direct term [first term in (2.9)] changes
sign precisely at q =q /2m in the low density limit, as
can be seen directly from (2.9), with ReUN &0 for
q &q /2m and ReUN &0 for q &q /2m. One should
then expect large cancellations in that integral, which
appears to be the case, with a small contribution to
ReBo from this source. On the other hand, Uz(q) has a
sizable magnitude [U~(q)=2UN'"' (q)] and has the
same negative sign over the entire integration domain.
Thus, the contribution to ReB0 from the Ah excitation
piece can be appreciable. When actual calculations are
carried out, one obtains

which has the numerical value

ImB 0 =0.004p (3.11)

Hence, the exchange terms introduce a 20% increase in
ImB0, which now has the value 0.025p, still low com-
pared to the empirical numbers.

With respect to the real part, a numerical calculation
in the low density limit for the sum of the nucleon ex-
change graphs gives

ReB 0,back = —0.0008@

ReB 0 p 1
= —0.0024@

ReB N'" = —0.0032'-4 .

(3.12)

Once again the real part coming from the 5 exchange
graph from Fig. 10(c) gives a larger contribution to
Re80 than the nucleon part, and one gets

ReB o,back =0.004p

ReB0 '",1, ———0.015p (3.13)

ReB 0 = —0.01 1P

Thus, with all the diagrams included, in the limit of low
densities one obtains

On the other hand, the diagram of Fig. 10(c) does not
contribute to the imaginary part.

As one can see from (3.8) and (3.9), there is a cancella-
tion of the term with (A. , /p) when both diagrams are
added. We will present, in what follows, results relating
to exchange terms as the sum of the contribution from
both diagrams. Hence,

p2( 2) 2A, l ~2
ImBO" = "

z mq 'Do(q, q )3p1+8/2 p, p p

(3.10)

Ar 1X,(2p'+2q')—
p p q =p /20 0

(3.8)

ImB0 =0.025p

e 0=0 7p
(3.14)

with the same values for q and q as in Eq. (2.19).
Analogously, from Fig. 10(b), we get

The low density limit considered here has allowed us
to do simple analytical calculations for the imaginary
parts, or easy numerical calculations for the real part,
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3

1 —8(2—q ) 1 ——', q+ 16
(4.1)

where q =
~ q ~

/kF. Equation (4.1) is a sensible improve-
ment over (2.16) and gives rise to results very similar to
those obtained with the exact value of ImUN when used

inside an integral.
If we now evaluate the imaginary part of II(p )

through Eq. (2.15},we will need

ImUN(co', q)lmUN(p —co', q) (at p=0) .

Because of the 5 function in (4.1), we still have the same
integration as in (2.17) which fixes co', q, and q /2m to
the value p /2 as before. Since q is fairly large, the
effects of the Pauli correction are not too large. Even at
p=po one has q =1.35 and the correction to ImUN from
(4.1) is only of 15%. This justifies the fact that the Pauli
exclusion effect in ImBO is not too important, as we have
seen in Fig. 11.

However, if we evaluate the real part of II(p), things
are rather different. Indeed, let us concentrate on II (p),
which gives the largest contribution to the real part of
80. The real part now comes from Eq. (2.13) after sub-
stituting for UN(q) in (2.14) by Uz(q). The contribution
of the real background [Euclidean contribution from
Wick rotation or first term in (2.13)] is not affected by
the Pauli exclusion principle since it involves only the
Lindhard function UN(q) for complex values of q,
where the Pauli exclusion is inoperative. The contribu-
tion from the pole term [second term in (2.13)] now re-
quires ImUN(co', q), where the Pauli exclusion effect is
operative.

One can actually evaluate analytically the integral in
(2.13) by using Eq. (4.1) (we ignore, for simplicity, the
m.NN form factor, which does not play an important role
here because of the limited range of integration). After a
few approximations one obtains

Re8 o' ' ——0.050@ —0.019k+p (4.2)

The value 0.050p at p=0 is in fair agreement with the
more accurate calculation of Eq. (3.7). The fact that the
Pauli correction goes as kF, rather than as kF, makes the
correction more considerable. The fact that the q
power of the phase space dq, as we11 as the other q
power in the integrand, are cancelled by the pion propa-

peculiar behavior. We know that ReUN(q) is not
affected by the Pauli exclusion principle. The same hap-
pens to UN(q) for complex values of q .

On the contrary, ImUN(q) is appreciably affected by
the Pauli exclusion principle. In Eq. (2.16) we obtained
an approximation by disregarding the n (k}n (k+q) term
in (2.9). We can now do a better approximation by
neglecting the (k q)/m term in the denominator of (2.9),
but keeping the product n(1 n—). This immediately
leads to the result

ImUN(q) = —np5(
~ q ~

—e(q))
p~o

gators is the essential element responsible for the kF
dependence. At p=po/10, kF ——0.90p and the Pauli
correction subtracts around 0.017p from the p=O
value of Re80'~". This is also in fair agreement with
the more elaborate calculation of Fig. 12.

The calculations carried out in this section and their
discussion have served to stress the role of the Pauli
principle in such calculations and the need to consider it
properly when evaluating the real part of the optical po-
tential.

An alternative approach to the one followed here,
which is particularly useful to avoid double counting di-
agrams, is shown in Appendix A, where the second or-
der Pauli corrected term is derived and a critical discus-
sion of higher order corrections in connection with it is
done.

V. OFF-SHELL EFFECTS

jl
/

/q

g
I

/

ql

I

l

(b)

I

P

ql

I

I

(c)
FIG. 13. Diagrammatic model of the s-wave m.N scattering

matrix. (a) Pair term, (b) o.-exchange term, and (c) p-exchange
term.

We have already introduced the off-shell dependence
of the p-wave m.NN coupling in Sec. II through a mono-
pole form factor, Eq. (2.10). But up to now we have not
considered the off-shell extrapolation of the s-wave m.N
amplitude.

The off-shell extrapolation of the s-wave amplitude re-
quires some extra attention. The virtual pions which ap-
pear in the calculation of ImII(p) have q =p/2 and

~ q ~

=&pm . The real part meets with pions that essen-
tially go from the on-shell situation [when co'=0, q =p,
q=0 in (2.13)] to off-shell situations with q =0,

~ q ~

=&2mp, if we take the pole part of (2.13) as a
reference. An off-shell extrapolation that starts from the
on-shell value at threshold and extrapolates the results
to the situation found here would be appropriate to our
problem.

In the spirit of dealing explicitly with the mesonic de-
grees of freedom, as we have done so far, we have also
followed a mesonic exchange based model for the s-wave
part of the amplitude, shown graphically in Fig. 13.
Such an off-shell extrapolation has been used in a prob-
lem similar to that we have here, i.e., pion absorption in
the deuteron and its reverse process, pp~dm+.

In this model the off-shell dependence of the A,2 pa-
rameter is given by the t dependence of the p meson
propagator [t =(q —q') ]. The off-shell dependence of
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the A,
&

parameter will be given by the t dependence of
the o. propagator. One is implicitly assuming that the
vertices involved in Fig. 13 are of shorter range than the
range given by the inverse mass of the meson masses.
Because of the large mass of the NNN intermediate state
in the pair term, this piece will have a short range and
can be approximately taken as constant; hence the A.

&

part will contain a constant background and the cr term,
while the A, 2 part of the interaction will contain the p
meson piece of Fig. 13. The off-shell extrapolation is
then straightforward and one has

2m~
l&(t) = —

—,'(I+a)p asR+a 2m —t
(5.1)

2
mp

A.,(t) =A,, m' —t
'

P

where a =0.220@ ' (Ref. 47}, rn =770 MeV, m =550
MeV, and asR ———0.233p ' to match A, , on shell. The
parameter k, sho~s the cancellation at t =0, as required

by PCAC, and provides larger values of A, &(t) if one goes
to situations with t &0.

We have performed the calculations by using Eq. (5.1}
for consistency with the pion absorption in the deute-
ron worked out with the same model. The results us-

ing other off-shell extrapolations, shown in Appendix B,
do not differ much from this one.

In Fig. 14 we plot the results of the different off-shell
extrapolations in the A. , parameter. The label LMM
stands for the extrapolation of Ref. 64 [Eq. (B4)], that
called PCAC stands for Refs. 60, 61, and 63 [Eqs.
(Bl)—(B3)], while that labeled Hamilton stands for the
off-shell extrapolation of Eq. (5.1).

We can easily check the influence of the off-shell ex-
trapolation on the imaginary part of Bo in the low densi-

ty limit that we used in Sec. II. Indeed, by means of the
fixed kinematics in (2.18), and substituting for X„A,2 by

k, (t), A2(t) of (5.1) in Eq. (2.22), we have (at p=0)

ImB o ——0.027p (5.2)

ImB o" =0.019p (5.3)

Thus the total value of ImBo from the direct and ex-
change terms is now

ImBo ——0.046p (5.4)

which shows a 70% increase with respect to the
0.025p value that we had before and is in much better
agreement with the empirical results, although, as we
shall see immediately, the effect of short-range correla-
tions will kill much of this enhancement.

With respect to the real parts, we now get for the
direct terms, also at p=0,

ReBo, b k
——0.041p

Re8o, pole 0'06 p

ReB o ——0. 108p

and, for the exchange terms,

ReBo b k = —0.007p

(5.5)

Hence ImBo has not changed much after all these in-

gredients have been introduced. The small effect of all
these corrections is due to cancellation among different
effects. By means of (5.1), A, &(t) appreciably increases its
value with respect to A, ,(0) and the factor A&(t) is slightly
reduced. Altogether, the net effect is small, as we said.

The situation is different, however, in the exchange
term studied in Sec. III. Indeed, the contribution to
ImBO from those terms, given in Eq. (3.10), is propor-
tional to A, , X2, and, as we said, I, , was increased more
effectively than A,2 was decreased, such that this piece
gets appreciably modified. By using the same kinematics
as we used before, we now obtain

0.05

Re8 o",l, ———0.020p

ReBo" = —0.027p

Hence the total contribution to Re8o is given by

(5.6)

Reao ——0.081p (5.7)

q (m„j

FIG. 14. Di8'erent off-shell extrapolations of the isoscalar s-
wave amplitude. PCAC: from Refs. 59—61 and 63. Hamilton:
from Ref. 47. LMM: from Ref. 64. The unlabeled curve is

p(q), the Fourier transform of the ' 0 density with arbitrary
normalization, shown for comparison purposes.

As was the case before, the 5 term in the direct and ex-
change terms gives the largest contribution to (5.5) and
(5.6). If we compare these results with those in (3.14),
we see that the imaginary part of Bo has increased by
about 70%, while ReBo has been modified by about
100%.

Another ingredient that should be considered here is
the effect of short-range correlations in cutting the con-
tribution from small distances or conversely from large
momenta. Such effects have been considered on other
occasions and show very small corrections for ImBo
but larger corrections in ReBo. We will implement the
corrections in momentum space. For this purpose we
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will use a correlation function in coordinate space,
which is simple enough to allow for analytical calcula-
tions and allows one to account approximately for the
effects of more realistic correlation functions.

We take

Im Bp

(io-' .—~

)

FULL PION POLA R I ZATON

g (r) =1—j,(q, r),
where q, is the inverse of the range of the short range
correlations. With the value of q, =m, Eq. (5.8) shows
an appreciable similarity to more realistic correlation
functions.

By following steps similar to those of Ref. 49, we find
that the potential in momentum space, V(q), coming
from a pion exchange with an s-wave vertex and a p-
wave vertex,

40

LOWEST ORDE R

V(q)= u(q —)q;cr;r (5.9) 30—

is changed to

V(q)= [v (q—') u(q'—))q;o;r~, (5.10)

where v (q )—:v (q —q, ). We introduce the short-

range correlations according to the prescription of
changing (5.9) by (5.10) and we obtain, at p=0,

20

10-

Im Bo (E)

ImBo =0 0319

ReBo ——0.041p
(5.11)

Thus, the effect of correlations is a decrease of 40% in
ImBo and a reduction of a factor of 2 in ReBO. The
short-range correlations are effective in cutting down the
contribution from large momentum transfers and thus
make the final results less sensitive to the off-shell extra-
polation than in the case where the correlations are not
considered. The results in (5.11) are very similar to
those obtained in (3.14) before off-shell effects and corre-
lations were introduced.

The static correlation function of Eq. (5.8) is obviously
an approximation to a more microscopic dynamical
correlation function. It provides a fair approximation in
the sense that it cuts the contribution of short distances
in a realistic range of the repulsive forces. This is so
much better for the long-range part of the potential as
the pion exchange that we are considering here. The
effective forces obtained by means of this simple correla-
tion function compare very well with G-matrix calcula-
tions even for nonstatic situations (q and q exchange) as
the ones found here. In any case we shall comment
later on the changes of the results brought up by reason-
able changes of this correlation function, which can give
us an idea of the theoretical uncertainties of our calcula-
tion.

With respect to the density dependence of ReBo and

ImBO, we show the results in Fig. 15 (dashed lines) and

Fig. 16. Figure 15 shows in dashed lines the results for
ImBo. As we saw before in Fig. 11, there is some reduc-
tion at finite densities with respect to the results at p=0,
due to the effect of the Pauli exclusion principle (studied
in Sec. IV). The reduction is moderate, however, in

04
I

oe 0.8 1
V

1 2
Vo

FIG. 15. Density dependence of IrnBD, calculated with the
inclusion of off-shell effects, form factor, and short-range corre-
lations. Dashed lines: the calculations here only include the
polarization of the pion in lowest order. D: direct (graphs of
Fig. 2). E: exchange [graphs of Figs. 10(a) and 10(b}]. T: to-
tal. We refer to this calculation as lowest order in future
figures. Solid lines: Density dependence of Im80 when, in ad-
dition to the off-shell extrapolation and short-range correla-
tions, we consider the full polarization of the pion.

ImBo. In contrast, Fig. 16 shows the important reduc-
tion due to the Pauli effect in ReBo. In Fig. 16 we can
see the contribution of the different parts of ReBo. The
comments are much the same as those exposed in Sec.
IV and we omit their repetition here. We only mention
that proper consideration of the Pauli exclusion princi-
ple here leads to a 20-25% reduction of ReBo when all
contributions are added. The reduction in size,
5 ReBo ——0.010p, is about the same as that found in

Fig. 12.
For values of p=(0. 5—0.65)pv as found in Refs. 14

and 18 for the effective density, one obtains values of
ReB&-0.031p and ImBo -0.030p . The value for
ImBo is a little low compared with the empirical results
of Eq. (1.4). On the other hand, Re80 has an opposite
sign to that we assume as the best fit parameter in Eq.
(6.11).

As we shall see in the next section, including higher
order terms to account for pion polarization in the medi-
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2

U (q )q U(q)q, q, [ 5, +[A (q)(5, q—;q, )+B(q)q, q ]U(q)
p

+[A (q)(5& q;—q&)+8(q)qq&][A (q)(5& gt—q, )+8(q)qrq, ]U (q)+ (6.4)

One can immediately see that because of the orthogonality of the pion mode with the transverse mode, the terms
with A (q) vanish in (6.4) and one has the geometrical series

2 '2

P
v„(q )U(q)q [1+8(q)U(q)+8 (q)U (q)+ ]= — v'„(q )U(q)q

p
"

1 B—(q)U(q)
(6.5)

Hence the difference with respect to the old calculation
amounts to substituting

( )
U(q}

1 —8 (q}U(q)
(6.6)

in Eq. (2.14). As we have already mentioned, if in (2.14)
we substitute UN(q) by U(q), containing the Lindhard
function for ph and Ah excitation, and later on imple-
ment the change given by (6.6), we will be automatically
considering the full induced interaction through both ph
and hh excitation.

With respect to the imaginary part of 80 it is easy to
estimate the effects of this medium renormalization.
Indeed, we will now have in Eq. (2.15)

U(q)
1 B(q)U—(q)

ImU

I
1 BU I—(6.7)

Im80 = (0.039-0.041 )p (6.8)

which compare quite well with empirical estimates
[ImBO =0.042p in Ref. 14 in addition to other values
quoted in Eq. (1.4)].

Similar polarization effects have been studied before,
but considering only the pion polarization through Ah
excitation. ' Thus the part of the ph excitation is absent
in the denominator of Eq. (6.7) and hence the interfer-
ence of ImUN between the numerator and denominator
of Eq. (6.7) is lost.

By successive steps we have come to an expansion that
looks like a standard expansion in powers of the nuclear
density but, however, with the bare NN interaction sub-

Hence, in the limit of low densities where the kinematics
is defined by Eq. (2.18), the results for ImBo will be mul-

tiplied by the factor
~

1 BU
~

. F—or the kinematical
conditions of Eq. (2.18) one has Re UN = —p,
Uz= —1.6p, ImUN--—1.5(p/po), and 8 = —0.21, all
in pion units. At p=po the renormalization factor in
(6.7) introduces an increase of 60%. If one uses the
effective density p,swapo/2 of Ref. 14, one has an in-
crease of 30%.

These estimates compare extremely well with the ex-
act calculations shown in Fig. 15. Around the values

p/po=0. 5 —0.65, preferred as effective densities in Refs.
14 and 18, the values that we obtain for ImBO are
around

stituted by the induced interaction. ' This last is con-
structed in two steps: the first one sums ladder diagrams
to correct for short distances (effect of the short-range
correlations) and the second one excites iteratively ph
(and hh excitations in our case) to correct the long-range
behavior of the interaction. Such a type of expansion
appears naturally in other successful many-body schemes
as the hypernetted chain expansion and the planar
theory. The organizing principle in the expansion is
then the number of ph excitations. The diagram of Fig.
4 would contain 2p-2h excitation in this scheme. A
thorough study of terms with three-particle-three-hole
excitation with the same expansion scheme, but for the
p-wave part of the interaction, has been carried out in
Ref. 5. The results show that at energies around reso-
nance the three-body absorption mechanism can be com-
pared to the two-body mechanism, but at energies
around threshold the three-body mechanism becomes
negligible compared with the two-body one. Since the
phase space for the reaction is mostly responsible for
these effects, we estimate that the three-body absorption
mechanism is also small for the s-wave part, granting
reasonable convergence of our expansion at the level of
2p-2h excitation. We expect the contribution from
higher order to be of the same order or smaller than the
theoretical errors from other sources as we shall com-
ment later.

With respect to the real part of 80 the density depen-
dence is shown in Fig. 17. Comparison of the results
with those of Fig. 16 in lowest order of the density
shows that the real parts have not changed much when
introducing the polarization of the pion. This situation
has been found before in the evaluation of the X self-
energy and the 6 self-energy' ' in nuclear matter.
This particular feature of the self-energy has to be attri-
buted to the fact that the real parts get their contribu-
tion from large momenta, where the Lindhard function
is much smaller (q dependence asymptotically), and
also one has the factor (1 BU) ' instead of

~

1—
—BU

~

that one has in the imaginary part.
From Fig. 17, and again for values of the density

around p=(0. 5 —0.65)po, we obtain

ReBO =(0.031—0.033)p (6.9)

In the calculations of this section we have introduced
all the elements that we have proven to be relevant in all
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A, , (t)p(&),

with

t =(co—co)2 —(q —q') = —(q —q')

(7.2)

instead of A, &p(t), where p(t) is the Fourier transform of
the nuclear density. Since in coordinate space Eq. (7.2}
would give rise to a convolution of the nuclear density
with the Fourier transform of A, ,(t), we can thus inter-

w, g w, g W, g'

+ '. +

/

/
W, g w g w g

FIG. 18. Diagrammatic expression of the pion-nucleon t
matrix constructed from the pion-nucleon optical potential.
Square box: t matrix. Open circle: Optical potential.

2cov,'~', (r)= —4n(1+@)[bop(r)+b&(p„(r)—p (r))],
(7.1)

where bo, b, are related to A, „Az via Eqs. (2.3), and to
the scattering lengths through Eqs. (1.2). The values of
bo, b, from Eqs. (1.2) give the on-shell value of the pa-
rameters at pion threshold and these are the values used
in (7.1) up to the Pauli corrected second order s-wave re-
scattering piece, (A10), which is normally added to bo.
However, bo or, equivalently, A, , is changed appreciably
when one goes off shell. In infinite nuclear matter,
where there is only forward propagation (conservation of
a pion four-momentum in the interaction with infinite
matter), the values needed for bo or A, , are only those at
t =0 and hence the on-shell values. This is the formal
justification for using the on-shell value for the parame-
ters bo, b, in Eq. (7.1), since this last equation implicitly
assumes that the finite nuclei potential can be induced
from the infinite matter results after implementing the
local density prescription. However, in a finite nucleus,
if the optical potential is used as an input to calculate
the m nucleus T matrix, the pions in the optical potential
in intermediate steps can be off the mass shell. Indeed,
although the energy will be conserved because it is a
good quantum number of the nucleon states in the nu-
cleus, the momentum is certainly not, and thus momen-
tum is not conserved. This is depicted in Fig. 18, where
the value of q" can be, in principle, any one, thus lead-
ing to a momentum transfer even at threshold

qI = Iq'1=0
Since we saw that the t dependence in A,

&
of Eq. (5.1)

was so important, we tend to think that this will have
important repercussions in the lowest order optical po-
tential. The immediate way to take this into account is
to work with momentum space and use a potential of the
type

pret Eq. (7.2) as a way of considering the finite range of
the interaction. In the case of a constant density p, we
obtain from Eq. (7.2) the local density result A, ,(t =0)p.
In a finite nucleus Eq. (7.2) will take account of changes
of p(r} at the nuclear surface. These ideas have been
considered in Ref. 34.

In addition, one is adding the Pauli piece of Eq. (A10)
in the lowest order. Note that bbo of Eq. (A10) is not
appreciably renormalized by these off-shell effects be-
cause most of the contribution in Abo comes from b„
and the b„or the A.2, parameter is not so drastically
changed by the off-shell extrapolation as bo, or A,

Intuitively, one might think that because the effect of
the off-shell extrapolation is to increase effectively the bo
value, one might get a repulsive effect in the potential
which would have to be compensated for by an increase
in the attraction of the second order optical potential
(leading to positive values for the Re80 parameter). The
results are, however, surprising. Instead of a repulsive
effect, one actually finds an attractive effect and, in order
to compensate, one needs a value of Re8&' even more
negative than that quoted in Eq. (6.11), and therefore in
stronger contradiction to our ultimate results written in
Eq. (6.10}. The attractive character of this interaction,
also noticed in Ref. 14, has to be attributed to the non-
perturbative character of the problem. The attraction
comes ultimately after very subtle cancellations between
the contribution to the energy shifts from small values of
r, which is repulsive, and from large values of r, which is
attractive. The cancellation is so much more subtle that
it changes sign for pions of a few MeV of kinetic energy.
This is found in Ref. 14, and agrees with the repulsive
effects from this off-shell extrapolation found in Ref. 35
for low energy pion nucleus scattering.

The results of Ref. 34 should only be taken as indica-
tive that the off-shell extrapolation of bo has important
repercussions in the construction of the lowest order op-
tical potential. The fact that a small change in energy
changes the sign of the effect indicates that binding ener-
gies of the nucleons should also be considered and might
have very important effects. Therefore an off-shell extra-
polation not only on the momentum variables, as done
up to here, but also on the energy variable, would have
to be done.

A natural conclusion of the above discussion is that a
proper way to deal with this problem would be to con-
struct directly a potential, or even the T matrix without
the need of the optical potential as the intermediate
step, by means of a microscopic scheme, working in
momentum space and considering the contribution of
each nucleon for the different nuclei. This procedure
would, however, be extremely cumbersome in order to
deal with the second order optical potential and also un-
necessary. Indeed, we have already noticed that in the
second order parameters most of the contribution comes
from the parameter A, 2, which has a very smooth off-shell
extrapolation compared with k&. In addition, we have
already included these off-shell effects in the intermedi-
ate pions in our diagrams. Extending the range of q of
these pions —because of the range allowed to the mo-
menta of the external pions —would not alter appreci-
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ably our results. This means that the treatment that we
have given to these pieces along the lines in this paper is
quite adequate and, indeed, is the most economical in
view of the large number of considerations that its evalu-
ation involved.

We could then conclude from this section that our
study provides a reliable second order optical potential,
within the uncertainties quoted, but that a proper treat-
rnent of the lowest order optical potential for the isosca-
lar part requires a delicate study beyond the scope of the
present work.

VIII. CONCLUSIONS

We have presented here a new formalism to evaluate
the s-wave optical potential for pionic atoms. Particular
emphasis was put on calculating the second order piece
in the density of this optical potential, which contains an
absorptive (imaginary) and dispersive (real) part account-
ed for by the term Bop, with 80 a complex parameter.

Special care was taken in carrying out all the integra-
tions without approximations. It was shown that this
has important consequences in the evaluation of ReBp
and provides quite different results to other approaches
that use dispersion relations and Im80 from the absorp-
tion cut as an input. We have shown that such an ap-
proach should also consider the imaginary part of 80
from the quasielastic cut and avoid typical approxima-
tions done in evaluating Im80 from absorption. Failure
to do both leads to highly unreliable results for ReBO.

We have also shown that the real part of 80 coming
from pion absorption into two particles and two holes is
very small and most of the contribution to Re80 comes
from the excitation of the 1ph-1hh component.

The effect of the Pauli blocking was shown to be
moderate in Im80, which justifies to some extent calcu-
lations done in the low density limit. However, the
effects on the real part of 80 were very important and
led to reductions of 30%.

Another aspect that was considered was the effect of
higher order corrections which were included in the pa-
rameter 80. The renormalization of the pion propaga-
tors in the medium led to some enhancement with an in-
crease of about 25% in ImBo. The values obtained for
Im80 are in agreement with present empirical values.
The meson-nucleon form factors as well as nuclear
short-range correlations were also considered and the re-
sults were quite stable under changes of these form fac-
tors or details of the correlations.

The off-shell effects, particularly those of the isoscalar
part of the amplitude, had some repercussions on the
problem and led to some increase in both the real and
imaginary parts of Bo. Qn the other hand, when consid-
ering the off-shell effects in the isoscalar lowest order op-
tical potential we noted that the effect was indeed impor-
tant, but the results depended on subtle cancellations
which suggested other methods than those used here in
order to evaluate reliably this piece of the optical poten-
tial.

The implementation of the off-shell effects in the
second order optical potential was much more straight-

forward, and much of the contribution came from the
isovector A, 2 parameter, which is not so drastically
affected by the off-shell extrapolation. This makes our
evaluation of this part of the potential rather reliable.
The imaginary part appears only in the second order op-
tical potential and our results are in good agreement
with experiment. The real part of the second order opti-
cal potential is attractive in our calculation and, together
with the lowest order part of the optical potential, based
on the LDA, and the Pauli rescattering term does not
suSce to explain the empirically needed repulsion in the
isoscalar s-wave part of the potential. The solution most
probably lies in a proper treatment of the lowest order
optical potential, incorporating off-shell effects in
momentum and energy. However, a fully consistent
treatment of these pieces would require a different for-
malism than the one used in this paper, and it still
awaits an answer.
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APPENDIX A

5H =v(p', k', p, k), (Al)

with the same normalization as in (2.4b). In this way the
standard scattering amplitude in the Born approxima-
tion is

mf (p; ~pf ) = — —5Hf,
on shell

(A2)

Let us remark that the Hamiltonian in Eq. (Al) is the
elementary interaction, while that in Eq. (2.4b) is an

effective interaction, i.e., the t matrix obtained by iterat-
ing the elementary interaction, as will be shown below.

With the interaction Hamiltonian of (Al) we now con-
struct all the many-body diagrams that contribute to the
pion self-energy. These include all irreducible diagrams
with two external pion legs and no external fermion legs.
Here irreducible means that one cannot get two valid di-
agrams by cutting an internal pion line. ' In this way
one generates the sort of diagrams shown in Fig. 19.
The analytical expression for these terms is then given
by

We came to the pieces of the optical potential of Figs.
2-4 by considering the basic absorption diagram in Fig.
1. Now we would like to follow a different formal ap-
proach, more in connection with the developments of
Ref. 3.

We will start with a mN —+m.N potential as input for
the interaction Hamiltonian with matrix elements given

by (we follow Bjorken-Drell normalization of the fields)
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—ilI(p)= y f dk
(2ir )

isospin

n(k) i—v(p, k;p, k)+ g f ( —i)v (p, k;p +k —q, q)iDO(p +k q—)iGO(q)
d4q

spin
Isospln
line q

&(( —i)v(p+k —q, q;p, k)+ . (A3)

If Do and Go were the free pion and nucleon propagators the series in the large parentheses of (A3) can be immedi-

ately identified as the t matrix from the potential U:

t (p, k;p, k)=v (p, k;p, k)+i g &
v (p, k;p +k q, q)D—O(p +k q)GO(—q)t (p +k q, q;p—,k),d q

spin
IsospIn
line q

(A4)

which can be expressed in a simpler way after the q integration:

t(p, k;p, k)=v(p, k;p, k)+ g v(p, k;p+k q,q)—dq

spin
Isospln
line q

I 1
X t (p +k —q, q;p, k) .2'(p+k —q) p +ko tv—(p+k q—) e(—q)+ig

(A5)

Hence the series of terms in (A3) can be summed up and
we can express it as

—iII (p)= g f n(k)( i)t(p, k;p—,k),
spin

isospin

(A6)

P

/p

~k+ p&k+q' ' '«+, " + & ~
' +--"

FIG. 19. Diagrams for the pion self-energy constructed

from the mN potential of Eq. (A1).

which gives the first term of the low density expansion
for the optical potential. ' ' We can express graphi-
cally the Lipmann-Schwinger equation of (AS) in Fig.
20, where the line f means free propagator. The dia-

gram to the right of the equal sign signifies the free t ma-
trix of Eq. (AS). Equation (A3) can now be expressed
graphically if we allow only for free pion or nucleon
propagators as shown in Fig. 21, where the line h stands
for a hole line, implying a sum over occupied states.
One can now easily go on and evaluate higher order
terms in the density by modifying either the nucleon or
the pion propagator in order to substitute the free prop-
agator by the propagator in the medium. Let us first
proceed with the modification to the nucleon propaga-
tor. We will take the same series of (A3) and take all
terms where in one nucleon propagator we have substi-
tuted the propagator by the Pauli part of Eq. (2.8). This
is depicted in Fig. 22, which also shows the obvious re-
sult of the summation. The piece after the equal sign in
Fig. 22 is the well-known Pauli corrected second order
rescattering piece for the s wave that has been formulat-
ed before in different languages. ' '

The interesting feature of the approach which we are
following is that the different pieces of the pion self-
energy can be expressed in terms of the free aN scatter-
ing matrix (AS).

Next, we would like to take medium modifications to
the pion propagator. For this purpose we will follow the
standard renormalization of the pion propagator by al-
lowing an iterated series of ph or Ah excitations. If we
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FIG. 20. Diagrams for the free mN t matrix constructed
from the potential of Eq. (Al}.

i)h + lPL' -h + f
p

lych + {~ ~[ ll

r U

FIG. 21. Lowest order in density contribution to the pion
self-energy.

li)vh

itter

FIG. 23. Higher order corrections to the pion self-energy
coming from the medium corrections to the intermediate pion
pro pagators.

5 ni
+ h&r $( +--

{a) {b} ~ {c)
FIG. 24. same as Fig. 23, where the intermediate pion is al-

lowed to be renormalized in the medium through a random-
phase-approximation sum of ph and hh excitations.

FIG. 22. Higher order corrections to the pion self-energy
coming from the Pauli corrections to the nucleon propagator.
The two short dashes stand for the Pauli correction to the nu-

cleon propagator 56~ of Eq. (2.8). This piece is the second or-

der Pauli corrected rescattering piece.

make such modifications to one of the pion propagators,
we obtain the series of Fig. 23 with the obvious result
shown there (we allow only one ph excitation for illus-
tration purposes; the whole result is shown in Fig. 24).
We can go one step further and substitute the free nu-
cleon propagator in the diagram to the right of the equal
sign in Fig. 23 by the medium propagator of Eq. (2.8).
In this way it will now be a standard many-body dia-
gram with the nucleon lines containing a particle and a
hole line. Of course, only the particle line will contrib-
ute in this diagram. Ho~ever, we can think in terms of
the line f containing now the free and the Pauli piece of
the propagator. If we take this last part, the diagram
will be equivalent to that in Fig. 22 when we polarize the
pion with a ph excitation. Thus one should not polarize
the pion in Fig. 22 in order to avoid double counting if
the diagram of Fig. 23 is considered in the standard
many-body sense, which implies using for the propagator
of the line f the medium propagator given by Eq. (2.8).
One can, of course, repeat the procedure for the polar-
ization of the pion through hh and include the iteration
of these pieces. This leads to the series of diagrams in
Fig. 24, which correspond formally to those implicit in

Fig. 4. In Refs. 20 and 21 the pion is polarized in the
second order Pauli corrected rescattering piece of Fig.
22 (only through b h excitation). If one wishes to do so,
one must then add the diagrams on Fig. 24, though with
line i as a free line. On the other hand, if one evaluates
the series of diagrams of Fig. 24 in the standard many-
body sense [keeping the nucleon medium propagator of
Eq. (2.8) for the nucleon lines], then one should not in-
clude the polarization of the pion in the diagram of Fig.
24, but use only the free pion propagator in order to
avoid double counting. We follow the latter procedure
in the present work.

The different pieces of the optical potential that we
have calculated rely on the free m.N scattering matrix.
In the energy and momentum range we consider in the
present work, the amplitude is well reproduced by an s-
wave part and a p-wave part. Since we are concerned
with the s-wave optical potential, only the s-wave part of
the amplitude has to be taken in the t matrix of the dia-
grams in Figs. 22 —24. The diagram in Fig. 21 accounts
for the lowest order optical potential in (1.1), the terms
proportional to bo, b, . The terms in Fig. 24 are com-
pletely equivalent to those of Figs. 2-4. Since we need
the free s-wave t matrix in the solid circles of the dia-
grams, we can once again use the effective interaction
Hamiltonian of Eq. (2.4b), since it is meant to give the
s-wave t matrix in lowest order.

We have thus used a different formal approach that
does not rely on the process of pion absorption as an in-
put. We have, however, obtained the same series of dia-
grams that we had before. At the same time we have
obtained the lowest order optical potential and, in the
same context, have obtained the s-wave Pauli corrected
rescattering piece as well.

We are now ready to evaluate this latter piece, corre-
sponding to the diagram of Fig. 22. By carrying out the
energy integrations, the spin-isospin sums, and omitting
the trivial isospin dependence, we get
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II"'(p) =4 J f n (k)n (q)
dk dq

(2tr) (2m )

X
1

(4n )
2ro(p+ k —q)

1

—p + e(q)+to(p+k —q) —e(k)+it)
'2 2

2X] AQ+2, b '+~(p+k —q)l'
p p

(A7)

In the low density limit and for m &&p, this integral can
be evaluated analytically and gives

F+(v, t;q, q' )= —1
t o (t)

p2 f2

11(p =p, p=0)=24p, (A, ', +2k,,'),k~

p

which by means of the relationship

F +(() & ~ & &)
+( 2+ 2 r) P P P

p

+f+v2 (B1)

II(p) = —4m(1+a)bop (A9)

6kF
b, bo — —— (A, |+2',t),

mp' 1+&
(A10)

can be effectively included in the lowest order term of
the optical potential by incorporating a correction to the
parameter bo,

o(0)o(t)=
2 2 2 7

(1 tip&—) (1 t lpz)—
(B2)

where the first term on the right-hand side is the Adler
term and o (t) is the nN sigma commutator. 6' The vari-
able t is the four-momentum transfer, t =(q —q'), and
v=(q+q') (p+p')/4m, where q, q' are the initial and
final pion tetramomenta and p,p' the same variables for
the nucleons. By following Ref. 60, we take, for cr(t),

in agreement with Refs. 1, 20, 21, and 34.

APPENDIX B

We would like to compare the extrapolation of Eq.
(5.1) with others existing in the literature. In Refs.
59-62 the authors use field theoretical methods and con-
straints from current algebra to extract the amplitude
off-shell. Reference 63 uses the same current algebra
constraints and works out useful interpolations between
known points. Reference 64 assumes separable poten-
tials and determines the off-shell extrapolation by means
of dispersion relations.

We have followed the different approaches and evalu-
ated the isoscalar part of the s-wave amplitude, the most
sensitive to the off-shell extrapolation, for the situation
found in pionic atoms. For not too large values of the
kinematical variables, the isoscalar amplitude satisfying
the current algebra constraints can be written as

with p, =8.24@, p&
——7.5p, and cr(0) =25 MeV (Refs. 59

and 60). For the other variables we take f„=93 MeV,

f3+ ——0.82@ ', and F+(O,p;p, p )= —0.30@ ', the
latter in the range of accepted values such that Eq.
(Bl) gives the appropriate on-shell value at threshold
through the relationship

+ . 2 i2
)

l on shell
=—4m2A, )

(B3)

The amplitude of Ref. 64 for the half-shell situation
that one finds in the diagram of Fig. 2 can also be evalu-
ated easily. This provides a function b&&(q') to replace
the bo parameter given by

U, (q') U, (q')
bo(q')= — a, +2 a3 (B4)

3 vi 0 V3 0

where the vertex functions v&(q'), U3(q') are evaluated in
Ref. 64. The results of these different extrapolations are
shown in Fig. 14.
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