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An ab initio calculation of the deuteron in the Skyrme-Witten model is presented. Without as-

suming any a priori symmetries of the configuration, two B=1 skyrmions are placed on a three-
dimensional lattice and a numerical relaxation procedure is used to find the minimum energy
configuration. Using no free parameters, the well depth, range, mass, and quadrupole moment of
the configuration are found to be in reasonable agreement with deuteron properties. Although the
product ansatz is used initially, it is discovered that the relaxed configuration no longer appears to
be that of a product of chiral fields. Thus the calculation seems to justify the symmetry assumptions
of Braaten and Carson in their derivation of the deuteron quantum numbers.

I. INTRODUCTION

Any fundamental theory of the strong interaction
should be applicable to the realm of nuclear physics. Un-
fortunately, the quantum chromodynamic coupling con-
stant becomes large at nuclear energy scales, thereby in-
validating the usual perturbative expansion when investi-
gating low-energy strong processes. Thus although QCD
is generally accepted as the underlying theory describing
the strong interaction, its predictive abilities for low-
energy processes such as nuclear physics are severely lim-
ited.

In an attempt to find a suitable expansion parameter
with which to implement perturbation theory, 't Hooft
generalized quantum chromodynamics (QCD) from an
SU(3) to an SU(N, ) gauge theory, where N, is the num-
ber of colors. ' Assuming confinement to be operative for
any value of N„'t Hooft discovered that for a large num-
ber of colors, 1/QX, emerges as a viable expansion pa-
rameter; QCD then reduces to a theory of mesons and
glueballs at all energy scales. Expanding upon this ap-
proach, Witten showed that for large X„baryons emerge
as solitons in a weakly coupled theory of mesons.

This view of the strong interaction —and of baryons in
particular —had already been advanced by Skryrne be-
fore the invention of QCD. Skyrme added a particular
quartic term to the minimal SU(2)SU(2) chirally invari-
ant Lagrangian of the nonlinear sigma model in order to
stabilize the solitonic solutions:

U iF(rI"r r (2)

to derive properties of the nucleon and delta. Adjusting
and e in order to correctly reproduce the nucleon and

delta masses, they found results in =30% agreement
with known values, certainly reasonable for a model with
only two free parameters. More details of the Skyrme
model are presented in the surveys listed in Ref. 6.

It is natural to consider extending these results to 8 ~ 1

solutions. Indeed, if the Skyrme-Witten model encom-
passes low-energy strong-interaction phenomena, it
should provide a new approach to nuclear physics. In
particular, if such an approach has any validity, it must

Here F is the pion decay constant ( = 186 MeV) and e is

a parameter introduced by Skyrme. The finite energy
configurations U(x)@SU(2) fall naturally into topological
sectors labelled by an integer, identified by Witten as the
baryon number B.

In addition to the large N, motivation, the connection
between the Skyrme model and QCD is reinforced by
Witten's justification of the Wess-Zumino anomaly term
in effective chiral Lagrangians. Witten showed that just
such a term is required in chiral Lagrangians in order
that they possess only those symmetries respected by
QCD. This turns out to be crucial, because although the
anomaly vanishes in a two-Aavor model, its addition to
the three-Aavor Skyrme Lagrangian allows the solitons to
be quantized as fermions (which is essential if they are to
be identified as baryons).

The ability of the Skyrme model to reproduce low-

energy phenomenology has been encouraging. Adkins,
Nappi, and Witten used the spherically symmetric
hedgehog ansatz,

37 1799 1988 The American Physical Society



1800 ALEC J. SCHRAMM 37

at least reproduce the simplest of nuclear systems, the
deuteron. Moreover, since F and e can be taken as fixed

by the B =1 results, we have the framework for an ab
initio calculation of the deuteron.

The primary obstacle to describing a deuteron in the
Skyrme-Witten model is mathematical. In particular, a
way is needed to find the symmetry properties of the
minimum energy static solutions for any sector with
8 )2. Unfortunately the symmetry in the 8 =1 sector,
though relatively simple, is not applicable to the 8 =2
sector. Specifically, the 8 =1 hedgehog ansatz has the
very useful symmetry known as equiuariance: It is invari-
ant under combined spatial and isospin transformations,

U(r;)~AU(R~r )A

When quantized, this symmetry requires the spin and iso-
spin quantum numbers to be equal; clearly, then, any
equivariant solution cannot produce the deuteron, with
I =0, J =1. One is therefore presented with a frame-
work in which the deuteron is expected to emerge, while
the configuration from which it springs is unknown.

Among the many attempts to find a description of the
deuteron, the work of Jackson, Jackson, and Pasquier
seems the most satisfactory. Using the fact that the
point-wise matrix product of two 8 =1 configurations
has B =2, they constructed an approximate solution
from the product of two 8 =1 skyrmions located a dis-
tance R =

t x, —x2
~

apart:

satz breaks down for sma11 R, and the concept of the
two-skyrmion potential loses much of its relevance.
Moreover, the product ansatz is inherently ambiguous,
since in general

U(x ] ) U(x2 )~U(xp ) U(x, ),
and there seems no way to choose between the two.

Soon after the work of Jackson et al. an important
contribution was made by Sommermann, Wyld, and
Pethick, ' who compared the effects of a product ansatz
to a B =2 numerical solution. The baryon number distri-
bution was discovered to be quite different in the two ap-
proaches. The correct deuteron solution can be dis-
tinguished, then, by its baryon number distribution,
which should resemble the latter solution of Sommerman
et al.

The present investigation was undertaken in order to
discover what symmetries the exact deuteron
configuration possesses. Assuming no underlying sym-
metries, two skyrmions are placed on a lattice and al-
lowed to relax to the minimum value of the static energy.

Y

r

Us 2= A ) U(r —x, )A, A2U(r —x2)A2 . (4)

They then identified the classical energy of this product
ansatz, less two skyrmion masses, as the potential energy
of the skyrmion-skyrmion interaction:

V(R, W)=E(R, W) —2M'

1~7f
I

I

I

where 8' = A, A 2 is the relative isospin orientation of the
two skyrmions. In the absence of any relative rotation,
the interaction was discovered to be everywhere repulsiUe;
if one skyrmion were rotated by m about an axis perpen-
dicular to the interskyrmion axis, however, an attractive
potential resulted. The effect of such a rotation is shown
in Fig. 1. Using these results, Braaten and Carson ana-
lyzed the properties of this B =2 product configuration
and obtained the correct quantum numbers for the deute-
ron.

There are both promising and disturbing aspects to this
potential-energy approach. For large separation,
V(R, W) agrees with an interpretation in terms of single-
pion exchange; in addition, the two skyrmions maintain
their individual identities, since for large R the
configuration of one skyrmion will not be greatly affected
by the weak asymptotic field of the other. There are,
however, problems with a product ansatz describing the
deuteron. When there is a large overlap between the two
skyrmions, they fuse into a single configuration and are
not easily resolved into individual skyrmions with centers
x; and isospin orientation A;. Indeed, for small separa-
tions, large distortions of the skyrmions are to be expect-
ed since the interaction energy may be comparable to the
skyrmion rest mass. Thus the validity of the product an-

I

I

I
t

l

)i
l3

FIG. 1. Hedgehog configurations. The spheres represent
contours of equal chiral angle, the arrows, the isospin direction.
(a) Standard hedgehog; (b) Hedgehog with an isorotation of ~
about the I, axis.
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From the resulting 8 =2 configuration, the symmetries
of this minimal energy solution are examined. In order
to examine the effects of chiral symmetry breaking, two
parallel tracks were undertaken, one following the ap-
proach of Adkins, Nappi, and Witten with a massless
pion, and one with a massive pion, as in the work of Ad-
kins and Nappi. " By using values for F and e deter-
mined from these 8 =1 investigations, the present work
becomes an ab initio calculation of the deuteron.

II. CALCULATIONAL METHOD

In order to solve the deuteron problem, two skyrmions
are placed on a three-dimensional cubic lattice, and a nu-
merical relaxation method is employed to solve the field
equations. First one skyrmion, in the hedgehog
configuration, is placed in a box and allowed to relax to
minimum energy. This serves both as a source of data for
the value of the field U on the lattice and as a check that
the procedure yields results consistent with previous
work on the 8 =1 hedgehog ansatz. '" Using this newly

generated data, two skyrmions are placed together and
allowed to relax using the same relaxation procedure as
for the single skyrmion. With malice aforethought, one
of the skyrmions is rotated by ~ about an axis perpendic-
ular to the line connecting the centers of the skyrmions in
order to attain the most attractive skyrmion-skyrmion
potential. Despite the interpretative drawbacks, the
product ansatz is used for the overlapping region of the
two skyrmions; this ansatz seems the best starting
configuration in light of the work of Braaten and Carson
in determining the deuteron quantum numbers. The in-
terskyrmion separation is then taken to be the distance
between the two lattice points where the baryon number
density is a maximum (i.e., at the centers of the two skyr-
mions).

The numerical relaxation method used is a procedure
adapted from the work of Klebanov. ' For each itera-
tion, the field U is updated according to

U'=(1+is r)U

for some small parameter e. The central element of the
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FIG. 5. Isovector pion field projected into the XYplane for the minimum-energy biskyrmion configuration with m =O. The rnag-
nitude of the projected field is proportional to the length of the arrow, and the direction in isospace is given by the direction of the ar-
row.
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5EI ———C Al +0 ( e ) . (9)

For sma11 C and thus small e, the higher-order effects can
be neglected; if so, the total energy necessarily decreases
after every iteration. The relaxation is accomplished by
sweeping through the lattice until the configuration con-
verges to a minimum. Convergence is measured by deter-
mining the percentage change in the energy of the

relaxation technique is the determination of the depen-
dence of the updated energy upon this parameter. Allow-

ing FI to denote the contribution to the total energy at
lattice site 1 = (i,j,k), it can be shown that the change in

EI after one iteration takes the algebraic form

HEI ——el. AI+O(e ),
where AI is a function of U at (i,j,k) and the neighbor-

ing lattice sites. Once the algebraic form of AI is known,
it can be computed numerically for each iteration.
Therefore, by defining e according to

eI —=—C A)

with C some positive constant, one finally obtains

configuration after each iteration. For the present inves-

tigation, the lattice sweep was repeated until the conver-

gence was within 0.005%.
The constant C is important not only to justify the dis-

carding of the higher-order terms in (9), but also to en-

sure the conservation of baryon number. The baryon
number is computed using a discrete analog of the usual
continuum expression

B = e""J d'x Tr(U 8;UU 8 UU B„U) . (10)
1

24m
J

It is crucial that C be sufficiently small so that any given
iteration will mimic a homotopic deformation of the con-
tinuum configuration U. Without this, the topology will

change and baryon number will be lost with each itera-
tion. As long as 8 =1, the homotopy is preserved and it
is assumed that a good approximation to the continuum
limit has been attained.

Ultimately, it is the value of the baryon number that
gives a measure of the precision of the calculation; thus a
lattice spacing that yields a good, stable baryon number is
essential. Since the chiral angle F(r) in Eq. (2) drops off
very quickly, it was determined that the lattice need only
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FIG. 6. Isovector pion field projected into the XZ plane for the minimum-energy biskyrmion configuration (m =0).
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extend a distance p =eF r = 10 from the origin. This dis-
tance was then divided into thirtieths, yielding a
60 X 60 &(60 cubic lattice with a lattice spacing of
(Pic /3F„e) fm. This lattice was chosen in order to have a
spacing which would optimize the baryon number while
minimizing the memory requirements of the computer
code; dividing each length of eF r =1 into thirds pro-
duces a satisfactory compromise.

Since the B = 1 hedgehog configuration exhibits
equivariance, only an octant —a 30)(30&(30 lattice —is
needed for the initial single-skyrmion computations.
This being the case, the project was begun on a VAX
11/750; it was soon evident, however, that the VAX
could not provide the memory and speed necessary for
the full biskyrmion problem. As a result, the code was
eventually adapted to exploit the capabilities of the FPS-
164 attached array processor at the Triangle Universities
Computation Center (TUCC), a machine designed for
large array processing.

III. RESULTS

The single-skyrmion relaxation is measured against the
standard results. '" As already mentioned, the accuracy

of the calculated baryon number determines the overall
precision of the minimization. For a 30)(30)(30 octant,
the baryon number is initially found to be approximately
0.95 in both the massive and massless pion cases, and
only decreases by about 1% over the course of the entire
relaxation procedure. Although a baryon number closer
to 1 would result from using a larger lattice, a 5% error is
considered satisfactory. Moreover, the memory and time
requirements of a larger lattice soon become overwhelm-
ing.

Once the single-skyrmion runs were completed, their
relaxed configurations were used as input for the biskyr-
mion investigation. The goal, of course, is to find a
bound state of the two-skyrmion system, signalled by a
total energy less than twice the static energy of the B =1
configuration. In order to generate a static potential and
find the true energy minimum, several relaxation runs
were required with different interskyrmion distances. Al-
though the baryon number varies with the distance
separating the two skyrmions, the relaxation retains an
overall precision of approximately 5% to 8%.

In Fig. 2 are plots of the variation of static mass with
interskyrmion distance for the massless and massive pion
configurations, respectively. (For the latter, we take

M = 138 MeV
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FIG. 7. Isovector pion field pro)ected into the XY plane for the minimum-energy biskyrmion configuration (m =138 MeV).



1806 ALEC J. SCHRAMM 37

m = 138 MeV). A bound state occurs in both cases, but
the massive pion shortens the range of the interaction, so
that a bound state occurs at a smaller skyrmion separa-
tion. Using the appropriate values for F and e already
determined, " the minimum occurs at

E~ 2
—2E~ )

———1.17F le = —26 MeV,

at a separation of (10/3F e)=1.26 fm. The potential
with a massless pion is, by comparison, considerably wid-
er and shallower, with a minimum of 0.56F„/e =13.2
MeV at a distance of (19/3F e) =1.76 fm. That the re-
sults using a massive pion should be better than for a
massless pion is to be expected; indeed, additional im-
provement is anticipated with the inclusion of the p and
co vector mesons in the Lagrangian.

Several characteristics of the deuteron should emerge
from these minimum-energy configurations. ' At the
classical level, the deuteron mass is the energy corre-
sponding to the minimum of the curves in Fig. 2. Using
the appropriate values of I: and e, the classical biskyr-
mion mass is found to be 1744 MeV for a massless pion
and 1775 MeV for the massive pion, only 5% to 7% from
the deuteron mass of 1876 MeV. These results are most
encouraging, for the quantum corrections are expected to
improve the classical mass by only a few percent, as is the

case for the single skyrmion quantization. '"
One of the essential characteristics that must be repro-

duced by the biskyrmion configuration is the deuteron's
quadrupole moment. Since the deuteron is an isoscalar,
the electric charge density is equal to half the baryon
number density; the electric quadrupole moment is thus a
good measure of baryon number distribution. Indeed,
the difference between the massless and massive pion
configurations can easily be seen in the quadrupole mo-
ments. The classical quadrupole moment for the massless
pion is found to be Q„=(Q ) =1.44 fmz, as compared
with the actual deuteron quadrupole moment of
Qd

——0.282 fm . In contrast, however, is the classical
quadrupole moment for the massive configuration,
Q„=0.492 fm, only about 43% above the actual quadru-
pole moment of the deuteron. Though this appears to be
a relatively large error, recall that the quantized
hedgehog ansatz is only accurate at the 30% level; having
effectively multiplied two hedgehogs together, a 43% er-
ror is consistent. Once again, proper quantization of the
biskyrmion should improve the results.

Another deuteron characteristic which should emerge
from this ab initio approach is the root-mean-square elec-
tromagnetic radius. This time, the massless pion
configuration yields ((r ) )' =1.04 fm, a slightly better
result than does the massive pion configuration value of

M = 138 MeV
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FIG. 8. Isovector pion field projected into the XY plane for the minimum-energy biskyrmion configuration (m =138 MeV).



37 Ab initio APPROACH TO THE DEUTERON IN THE. . . 1807

TABLE I. Static properties of B =2 relaxed configurations.

Quantity

Well depth
Range
Mass
(g)

((r ))'

Massless pion
configuration

13.2 MeV
1.78 fm
1744 MeV
1.44 frn

1.04 frn

Massive pion
configuration

26 MeV
1.26 frn

1775 MeV
0.492 frn

0.92 frn

0.92 fm. Comparison with the measured value for the
deuteron ((r ) )' =2. 1 fm, betrays a 50% error.

In order to get some measure of the inherent sym-
metries of the configurations, we consider the planar dis-
tribution of baryon number. Figure 3 contains contour
plots of the baryon number for both the massless and
massive pion configurations in perpendicular planes
through the origin. (In these and the remaining dia-
grams, the axes are labelled in units of lattice points. )
The baryon number distribution clearly indicates that
despite the fact that the initial configuration uses the
product ansatz (shown in Fig. 4 for a massive pion), the
minimum energy configurations are no longer products of
two hedgehog configurations. These identifications are
consistent with the results of Sommermann, Wyld, and
Pethick. ' That the correct deuteron solution is not, in
fact, a product configuration is encouraging, considering
the difficulties of the product ansatz. Though this result
is by no means conclusive, a larger lattice should yield
greater precision and strengthen the identification.

If the deuteron solution is not a product, then the effect
of relaxation on the product ansatz symmetries of the iso-
spin fields must be examined as well. Figures 5 —8 con-
tain plots of the isovector pion fields projected into per-
pendicular planes through the origin for both pion
configurations. In these figures, the magnitude of the
projected Geld is proportional to the length of the arrow,
and the direction in isospace is given by the direction of
the arrow. Comparison with /he depiction of the
hedgehogs in Fig. 1 shows that in so far as isospin is con-
cerned, the configuration is still that of two hedgehogs
with a relative orientation of m about the F axis. The key
result is that the relaxed configuration maintains this ini-
tial setup, even though the baryon number distribution
does not. This is important, as it implies that the relaxed,

bound configuration does indeed display the symmetries
assumed by Braaten and Carson, even though it is no
longer strictly a product of chiral fields.

IV. CONCLUSIONS

Without the imposition of a priori symmetry con-
straints, the product ansatz was used as an initial
configuration in search for a proper deuteron
configuration in the Skyrme model. In order to study the
effects of chiral symmetry breaking, two different ap-
proaches were undertaken, one using a massless pion, the
other with a massive pion. For both cases, most of the
calculated properties of the presumed deuteron
configuration are within the 30% limits of the usual
single-skyrmion analysis; these results are reproduced in
Table I.

Chiral symmetry breaking seems to play an important
role in stabilizing the numerical analysis, as can be seen
by comparing the contours in Fig. 3. Moreover, the pres-
ence of a pion mass term in the Lagrangian improves all
but one of the static properties listed in Table I. Perhaps
most importantly, however, is that a massive pion seems
to reproduce a more realistic nucleon-nucleon potential,
as seen by juxtaposing the curves in Fig. 2.

The symmetries of the relaxed configuration were
found to be just those postulated by Braaten and Carson
for the product ansatz. Thus their analysis of the
configuration and derivation of the deuteron quantum
numbers apply to the energy configurations discovered in
this investigation. Moreover, this would seem to be the
case even though the relaxed biskyrmion no 1onger ap-
pears to be a product configuration. Thus the interpreta-
tive drawbacks of the product ansatz need not arise.

While this work was in progress, a preprint was
discovered describing similar work by J. J. M. Verbaar-
schot. ' Although different methods were employed, he
is in general agreement with the results of the present in-
vestigation.
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