F -spin multiplets and alpha-transfer systematics

J.B.Gupta

Ramjas College, University of Delhi, Delhi-7, India (Received 29 December 1986)

It is shown that the Sn-Gd $(N < 82)$ nuclei form relatively poor F-spin multiplets so that the recently proposed method for predicting the spectroscopic factor ratios in the α -transfer reactions will provide a poor estimate. However, the method may apply to the good F multiplets in the Dy-Pt region $(N < 104)$.

In the microscopic interacting boson model IBM-2, Arima et al ¹ used the subgroup chain $U_p(6)$ $\times U_n(6) \supset U_{p+n}(6) \times SU_F(2)$, where F spin is analogous to the isotopic spin and $F = \frac{1}{2}(N_p + N_n) = \frac{1}{2}N_B$ for Fsymmetric states. If H is invariant to the rotation in the p, ⁿ boson space, i.e.,

$$
[H, F_{\pm}] = 0 \tag{1}
$$

then the nuclei with the same $N_B = 2F$ and with different projections $F_0 = \frac{1}{2}(N_p - N_n)$, e.g., those differing by a quartet, will form an F -spin multiplet^{2,3} embedded in the U(12) super multiplet group.³ Harter et al.² pointed out the similar spectral properties of the neutron-deficient Te-Sm $(N \le 82)$ nuclei with $(A, A+4, \ldots)$ and constant $N_B = 6$ or 7, supporting (1) for a U(12) multiplet.

Recently, Frank⁴ proposed a novel use of the F invariance in a U(12) multiplet for predicting the relative spectroscopic factors of α -transfer reactions among the members of the $(A, A+4, \ldots)$ multiplet of even N, even Z nuclei. In this Comment, we look at the validity of the F-spin invariance in the proposed multiplets, on which his proposal is based.

Since the generators of the F -spin follow¹ the SU(2) algebra, one has

$$
F_{+} | FF_{0} - 1\sigma \rangle = [(F - F_{0} + 1)(F + F_{0})]^{1/2} | FF_{0}\sigma \rangle ,
$$

\n
$$
F_{-} | FF_{0} + 1\sigma \rangle = [(F - F_{0})(F + F_{0} + 1)]^{1/2} |FF_{0}\sigma \rangle ,
$$
 (2)

leading to the product nucleus (F, F_0) . Here σ denotes all the other quantum numbers corresponding to $U(6)$ and its subgroups. Frank pointed out in that if (1) holds over the U(12) multiplet, one can take the α -particle creation (annihilation) operator equal to aF_{\pm} , where a is a constant. Then, the spectroscopic factors for stripping and pickup reactions are Example the a-particle

o aF_{\pm} , where a is α^2 2.4

tors for stripping
 $|a \rangle |^2$, (3) $|a \rangle |^2$
 $|a \rangle |^2$ (3) $|a \rangle |^2$

$$
S^{\text{str}}(g.s. \to g.s.) = |\langle FF_0 \sigma || aF_+ || FF_0 - 1\sigma \rangle|^2,
$$

$$
S^{\text{PU}}(g.s. \to g.s.) = |\langle FF_0 \sigma || aF_- || FF_0 + 1\sigma \rangle|^2,
$$
 (3)

and the ratio $r = S^{str}/S^{PU}$ for a given member (F, F_0) of the U(12} group of nuclei will be a simple number obtained from (1), independent of the detailed structure of the target and product nuclei, 4 viz.,

$$
r = \frac{(F - F_0 + 1)(F + F_0)}{(F - F_0)(F + F_0 + 1)} \tag{4}
$$

Thus Frank illustrated the variation of the ratio r for Sn-Gd, $N_B = 6.7$ F multiplets with numerical values ranging from 0 to 3 (see Fig. 3 of Ref. 4) and suggested an α transfer experiment to verify this.

To test the validity of Frank's approach based on (1), i.e., on the existence of similar spectra of the nuclei forming an F multiplet, we illustrate the $R_4 = E_4/E_2$ vs Z data, linking the nuclei with same N_B (or F) by the broken lines (Fig. 1}. It is apparent that for none of the constant N_B values, the ratio R_4 is approximately constant. Even for the proposed^{2,3} F multiplets of $N_B = 6, 7$, at most three members in the central part, Ba-Nd have nearly the same R_4 . In Te, almost the same value is obtained for all N_B . The same is true for Sn (not shown) and partly true for Sm and Gd. Thus at most three nuclei with $N_R = 6$ or 7 can be assumed to be embedded in the U(12} super group to which Eq. (1) can apply, so that the assumption of the proportionality of the α -creation (annihilation) operator to the F_{\pm} operator and the use of (4) will be val-

2.6 ĥ a^2 2.4 2Z 20 sn Te Xe Ba Ce Nd Srn Gd

FIG. 1. Variation of the ratio R_4 with atomic number Z. The data points of the same boson number N_B are linked by the broken lines.

37 1781 **1781** 1781 **1988** The American Physical Society

5.0

TABLE I. The ratio R_4 in the *F*-spin multiplets of constant N_B .

$\boldsymbol{N_B}$	Dv	Er	Yb	Hf	W	Os	P _t
12	2.93	3.10	3.12	3.11	3.07	2.92	2.68
13	3.21	3.23	3.23	3.19	3.17	3.02	2.70
14	3.27	3.28	3.27	3.25	3.21	3.09	
15	3.29	3.29	3.29	3.27	3.23		
16	3.30	3.31	3.31	3.28			
17	3.31	3.31	3.31				

id only for these nuclei, and not for the full Sn-Gd $N_B = 6$ or 7 F-spin multiplets as suggested by Frank.⁴

Next we look at the numerical values of the ratio r . The calculated ratio r from (4) for $N_B=6$ ¹³²Ba (with Xe and ¹³⁶Ce as targets) is 1.0, and $r^{(136}Ce) = 1.2$. Similarly, for $N_B = 7$ nuclei 130 Ba, 134 Ce, and 138 Nd $r = 0.94$, 1.07, and 1.25, respectively. (Note the error in Frank's work⁴ where squares of these numbers have been taken erroneously, the total variation in r up to Sm being limited to 1.7 and not 3.0.) This already exhausts the possible useful points on the r vs F_0 graph in Fig. 3 of Ref. 4 for $N_B = 6, 7$, for the reasons explained in the preceding paragraph, so that the predicted⁴ large variation in r of up to $r = 1.7$ over the full F multiplet will not arise. Thus r is not sensitive to the variation in F_0 , lying within $\pm 15\%$ only, for the valid Ba-Nd F multiplet.

A comparison of the calculated value of r for the central member of the triad ($A-4$, A , $A+4$) with the experimental value could be useful for testing the validity of Eq. (1) . But this suffers from another difficulty. Arima et al.¹ pointed out that on account of the V_{pn} term in al.¹ pointed out that on accomparately $H_{\text{IBM}} = H_p + H_n + V_{\text{pn}}$, the term

$$
E_0 = \mu_p m + \nu_p \frac{1}{2} m (m - 1) + \mu_n n
$$

+ $\nu_n \frac{1}{2} n (n - 1) + \nu_{pn} m n$, (5)

(m and n being the number of proton and neutron pairs)

could be important for ground state (g.s.) energies, and that if E_0 is removed from H_{IBM} , the differences between proton and neutron bosons are only in their excitations and those are not different, so that the rest of H could be approximated by a scalar in F spin. Thus even if similar collective excitation spectra arise among the members of the F multiplet, the microscopic g.s. properties may still differ. Hence a g.s. to g.s. α -transfer reaction ratio $S^{\text{str}}/S^{\text{PU}}$ may or may not be equal to the r value derived from (4). Then it will be of interest to compare the experimental value of r with the value derived from (4) for the g.s. relative properties of the triad ($A -4$, A , $A +4$).

More valid F-spin multiplets do arise in the Dy-Pt region ($N \le 104$) for $N_B = 12, 13$ (Ref. 5). The ratio R_4 for $N_B = 12-17$ for these nuclei vary only slowly with $F_0 = \frac{1}{2}(N_p - N_n)$, i.e., with Z (Table I). Also the moment of inertia $\theta = 3/E(2_1^+)$ varies slowly with Z in these F multiplets (see Table I of Ref. 6). Hence a test of Eq. (4) should be possible in these F multiplets. However, note that the calculated value of r is again close to one (within 10%) in each of these multiplets, and the suggested⁴ large variation in r over the multiplet will not arise. But a test of relative g.s. properties as discussed above should be possible.

This work was partly supported by the Department of Atomic Energy, Government of India.

- ¹A. Arima, T. Otsuka, F. Iachello, and I. Talmi, Phys. Lett. 66B, 206 (1976).
- ²H. Harter, P. von Brentano, A. Gelberg, and R. F. Casten, Phys. Rev. C 32, 631 (1985).
- ³H. G. Solari, R. Gilmore, and M. Vallieres, Phys. Rev. C 35,

320 (1987).

4A. Frank, Phys. Rev. C 32, 351 (1986).

- 5P. von Brentano, A. Gelberg, H. Harter, and P. Sala, J. Phys. G 11,L85 (1985).
- ⁶J. B. Gupta, Phys. Rev. C 33, 1505 (1986).