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The speed of sound v is calculated for asymmetric nuclear matter within the general framework
of a finite temperature Green’s function method with normal pair cutoff approximation and Skyrme
interactions. A rather strong dependence of v on a, the asymmetry coefficient, is observed at high
density. Causal violation of v at high density and/or high temperature is studied. This violation
may be avoided if the Skyrme interaction parameters at high density may be readjusted to obey the
conditions —1 <d <0, t;(3—a?—2aX;) >0, and [(3¢, 4 5¢,)ta(t, —t,)] <0. Implications of these

conditions are discussed.

Hartree-Fock theories using Skyrme effective interac-
tions have been quite successful in describing the ground
state properties of a lar§e number of finite nuclei as well
as of nuclear matter.! =3 Thus it is natural, as has been
done by many authors,*~® to use these interactions
within the framework of a finite temperature mean field
theory to derive the nuclear matter equation of state
(EOS) at finite temperature. In fact, derivations of the
nuclear matter EOS have been a subject of much current
interest.”

There is, however, one rather serious shortcoming
about the EOS derived from Skyrme interactions and
within the theoretical framework mentioned above. As
pointed out by Osnes and Strottman,®® and by two of the
present authors,!? the speed of sound v calculated in this
way violates the causal constraint v <c, ¢ being the speed
of light, at high density and/or high temperature. This
causal violation, usually known as superluminosity, is of
course a serious problem and deserves further investiga-
tion.

The primary purpose of the present work is to further
study the above superluminosity problem. First we want
to derive a general expression for calculating v in asym-
metric nuclear matter with asymmetric coefficient . In
previous works® ! » was calculated only for symmetric
nuclear matter. As described later, our derivation is car-
ried out within the general framework of a finite tempera-
ture Green’s function method with normal pair cutoff ap-
proximation.'"!2 We will calculate v in asymmetric nu-
clear matter for several Skyrme interactions. As dis-
cussed later, although v depends rather strongly on a at
high density, the superluminosity difficulty persists for
any a (0<a<1). We next turn to the question whether
we can readjust the parameters d, ¢, ¢,, t,, and ¢; of the
Skyrme interactions so that superluminosity never
occurs. We find that if we choose —1<d <O,
t;(3—a’—2a%X;)>0 and [(3t;+5¢t;,)a(t,—1,)]1<0,
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then the superluminosity difficulty may be entirely elim-
inated. The feasibility of these conditions and the possi-
bility of modifying the Skyrme interaction parameters at
high nuclear matter densities are also discussed later on.

Two basic thermodynamic quantities which are needed
in the calculation of the speed of sound in nuclear matter
are the internal energy and pressure. In the present work
we shall calculate them using a real-time finite tempera-
ture Green’s function method with normal pair cutoff ap-
proximation. Since the details of this method have been
given elsewhere,'!"!? in the following we only present our
main results.

In1 %ur calculation, we employ the Skyrme interac-
tion

V12=t0(1+X()P0 )8(1‘1—1'2)

+16,[8(r; —1)k? +k'28(r;—1,)]

1,k -8(r; — 1)k + Lp%,(1+ X3P, )8(r, —1,) .
(1)

With this interaction, the internal energy per nucleon (T)
for nuclear matter can be readily derived. For symmetric
nuclear matter, this has been done by Su et al.'"'? In a

similar way, we have derived U for asymmetric nuclear
matter as

U=Cylp,a)+I,(p,a,T)+I,(p,a,T), (2)

where

t
Co(p,a)=?0p(3—a2—2a2X0)
t_3 d+1 2 2
+4gP"t3—a?—22%5) (3)
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8 1
Ip(p,a,T)= m_p+3t1+512+a(t1'—t2) W
X [ g*n,(q)dq , @)
I ( T)= —8—+3t +5t,—alt;—t,) 1
P&, - mp 1 2 1 2 16172

Xf q*n,(q)dq . (5)

The nuclear matter density is denoted by p, and the
asymmetric coefficient a is defined by

pr=(1+alp/2 and p,=(1—a)p/2, (6)

where p, and p,, are, respectively, the neutron and proton
nuclear matter density. The neutron and proton Fermi-
Dirac distribution functions are denoted, respectively, by
n, and n, and are calculated from a self-consistent
Green’s function method.!!!?

It may be noted that Cj is independent of the tempera-
ture T where the I’s are temperature dependent. There-
fore, they may be referred to as the compressional and
thermal internal energy, respectively. As T becomes
zero, U becomes the ground state energy per nucleon E,,.
Clearly E, is different from C,,.

The speed of sound v in a medium is given, in units of
¢, by the well-known relation v?=(9p/d€)g where E is the
internal energy density p(m +U), m being the nucleon
mass. S denotes the entropy. p is the total pressure
which is equal to the sum of the proton and neutron par-
tial pressures. Since p=p%dU /3p)s, v? can be expressed
directly in terms of (3U /3p)g and (32T /dp?)s. We have
derived U as given by Eq. (2). The calculation of the den-
sity derivatives of C is straightforward. To calculate the
density derivatives of I, and I, we have employed the
relation p;4(i)=12p,I;, i=p,n where p4 is the ideal gas
partial pressures and the I’s are the thermal internal ener-
gies defined in Eqgs. (4) and (5). In this way the speed of
sound in asymmetric nuclear matter is derived as

2pCo+p*Co +J Iy +J,1,
C m4+Co+Co+[1+b(PI,+[1+b(n)]I,

v2

» (D)

where Cy, I, and I, have been given by Egs. (3)-(5).
The other quantities in the above equation are, for i=p,n,
J;=b(i)+b(i)*+pb'(i) ,
om}
dp

with the effective mass given by

(®)
bli=2— L

3 m?*

’
a

-1
mi‘=m[1+%[2(I1+t2)p+(t2_tl)pi]] . &2

In the above, the primes denote 3/9dp. And in calculating

v2, we first perform a self-consistent finite temperature

Green’s function calculation'"'? to determine the Fermi-

Dirac distribution functions.

For symmetric nuclear matter, =0 and Eq. (7) readily
reduces to the equation for the speed of sound given by
Ref. 10. We would like to point out, however, that Eq.
(7) is different from the corresponding equation given by
Refs. 8 and 9. Here C; is the compressional internal en-
ergy given by Eq. (3). It is the temperature independent
part of the internal energy, and it is not equal to the
ground state energy E,. In addition, our thermal internal
energy I is defined as the temperature dependent part of
the internal energy. In Refs. 8 and 9, C, was treated as
the ground state energy E; and, in addition, I was treated
as constants. In the present work C, and I of Eq. (7) are
those given by Egs. (3)-(5) and have been calculated as a
function of p, @, and T.

Using several Skyrme interactions, we have calculated
72 of Eq. (7). Some representative results, using SkM*
and SKIII, are presented in Figs. 1-3 and may be summa-
rized as follows.

(i) In earlier calculations of the speed of sound in sym-
metric nuclear matter, a problem of much concern has
been the occurrence of superluminosity at high nuclear
matter density.® ! A main purpose of the present work
is to investigate this problem for asymmetric nuclear
matter. As shown by the figures, the superluminosity
problem still arises for asymmetric nuclear matter at high
density. However, as illustrated by Fig. 1, the neutron
excess appears to delay its occurrence. For example, for
kyT=10 MeV and SkM* superluminosity takes place at
p=9.82p, for a=0.4 but at p=20.51p, for a=1.0 where
Po is the normal nuclear matter density.

(ii) The shapes of the v2 vs p/p, curves for various a
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FIG. 1. Dependence of the speed of sound in nuclear matter
on the asymmetric coefficient a, for interaction SkM* and tem-
perature kz T=10 MeV. p, is the normal nuclear matter density
(0.16 fm~3).
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FIG. 2. Dependence of the speed of sound in nuclear matter
on temperature, for a=0.8 and SkM*.

values are generally similar to each other. And for most
cases, v2 decreases as the neutron excess increases as seen
from Fig. 1. The dependence of v? on a is in fact strong
at high densities.

(iii) For a given a, v? depends rather strongly on the
temperature at low densities but rather weakly at high
densities, as shown in Fig. 2. This is because at high den-
sities the terms in the numerator and denominator of Eq.
(7) which are temperature dependent are each
overwhelmed by the respective temperature independent
terms. As a result, the causal boundaries shown in Fig. 3
are nearly straight lines parallel to the temperature axis.
Here we see that for ¢=0.8, v? does not become super-
luminous until p=5p, for SKIII while the corresponding
boundary is at p=10p, for SkM*. That the causal
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FIG. 3. Causal boundaries for a=0.8 calculated with SkM*
and SKIII.
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boundary for SkM?* is considerably further out than
SKIII is mainly because the latter interaction has a much
stronger density dependent component. (Both interac-
tions have a density dependent term of the form p® The
value of a is + for SkM*, while for SKIII it is 1.)

Let us now study why the above superluminosity takes
place and under what conditions it may be avoided. It is
convenient to study the symmetric nuclear matter first.
For this case we have!°

, 2pCo+p°Cy +(b+b>+pb")I
V=

; , (10)
where
C 3 t3 d
ozip to—«}—-g‘ s (11)
2 dlom* 2 p om*
== _ == . 12
b 3 dInp 3 m* op (12)

Consider first the situation that I is small so that it can be
neglected. Then Eq. (10) may be rewritten as

d+1
2L 1 CD(d+1)d+2) | £
Po Po
Uz= d+1 , (13)
m+2CL +CD(d +2) | £
Po Po
where
and
_15 4
D: 6 topo . (l4b)

From Eq. (13) we see that if CD >0 and —1 <d <0, we
will always have v? < 1. Since CD = Lt;p8*!, the condi-
tion CD >0 is satisfied by the Skyrme interactions
SkI—SkVI and SkM* which all have #; > 0. But the con-
dition —1 <d <0 is not satisfied by any of these interac-
tions. (SkI—VI haved =1, and SkM* hasd =1.)

For the general case, the thermal energy is nonzero
and depends on temperature and density. Then to have
v? <1 we need not only ;>0 and — 1 <d <0 but also

b2+b'p<1. (15)
For symmetric nuclear matter, we have!©
«__ m
m*= 1+ Ap (16a)
with
m
A=—->(3t;+5t,) . (16b)
8ﬁ2 1 2

Substituting Egs. (12), (16a), and (16b) into Eq. (15) leads
to the condition

Ap< . (17)

Since we would like this inequality to hold for any p, the
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above means (3t,4+5¢,)<0. And this is not satisfied by
any of the Skyrme interactions SkI— VI and SkM*."!

The above analysis can be carried out in a very similar
way for asymmetric nuclear matter, starting from Eq. (7).
Since the derivation is rather straightforward, let us just
state our results. First we consider the case that the
thermal energies I, and I, are both small and can both
be neglected. Then to have v2<1 we need —1<d <0
and t,(3—a®—2a*X;)>0. For the general case of I,#0
and I,+#0, the additional conditions for v2<1are

bUp)+pb'(p)<1 (18a)
and
bXn)+pb'(n)<1, (18b)

where b(p) and b(n) are given by Eq. (8). We rewrite Eq.
(9) as

my=m[l1+A(plp]™",

(19a)
m*=m[1+ A(n)p]~!,
where
3t,+5t,—alt,—t;)
A(p)=— 28’12 el
(19b)
3t,+5t,+alt,—t)
A(n)= 2 m .
8#

Then expressions (18a) and (18b) lead to the condition
(32, 4+5t,)talty—t,;)<0. Clearly this condition is not
satisfied by the Skyrme interactions mentioned earlier.
The above discussion indicates clearly that the speed of
sound in asymmetric nuclear matter calculated from the
usual Skyrme interactions and with the pair cutoff
Green’s function method is bound to violate the causal
constraint at high density and/or high temperature, as
proved above and as also demonstrated by our numerical
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results (see, for example, Fig. 3). This is, of course, un-
physical. The following conclusions are in order.

We may proceed in two directions to remedy the above
superluminosity problem. We have shown that if the
Skyrme force parameters satisfy the conditions
—1<d <0, t;(3—a’—2aX;)>0, and [(3t,+5¢,)talt,
—1,)]1<0, the above superluminosity will never happen.
These conditions, however, are not all satisfied by the ex-
isting Skyrme interactions. In other words, force param-
eters satisfying these constraints are not compatible with
the empirical nuclear matter properties near normal nu-
clear matter density. Thus a possible way to avoid the
superluminosity is to let the Skyrme force parameters be
density dependent. For example, at low density we have
d >0 while after some high density we use d <0. This
kind of spline approach is in fact closely related to the
spirit of the equation of state proposed by Sierk and Nix!?
where the density dependences of the equation of state at
low and high density are taken to be different.

Another direction for avoiding the superluminosity is
towards the method used in calculating v2. All calcula-
tions in this paper are based on the first order normal
pair cutoff approximation of the real time finite tempera-
ture Green’s function.!! Improved methods, such as
summing up the ring diagrams to all orders,’* may
significantly change the value of v? at high density
and/or high temperature. Such studies are being
planned.
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