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A scheme for orthogonalizing correlated states while preserving the diagonal matrix elements of
the Hamiltonian is developed. Conventional perturbation theory can be used with the orthonormal
correlated basis obtained from this scheme. Advantages of using orthonormal correlated states in
calculations of the response function and correlation energy are discussed.

I. INTRODUCTION

Correlated basis theories' of Fermi liquids are a natu-
ral extension of the variational theories in which the trial
ground state is written as
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where
~
0) is the ground state of ideal Fermi gas, and G is

a suitably chosen correlation operator. We use
~ ] and

~
) to denote noninteracting and correlated states, re-

spectively. In the early days of these theories G was tak-
I

en as a product of Jastrow pair correlation functions

G= g f(r,, ), (1.2)

Eo (0) H——[0) . (1.3)

In more recent work correlation operators containing
two-body backflow or spin correlations, as well as three-
body correlations have been used.

The correlated basis (CB) states are defined as

and the f(r; ) was determined by minimizing the ground
state energy

G
I p&

ph
(1.4)

where
~ p& p„h, h„] is the n-particle n-hole Fermi

gas state, and
~ p, . h„}is the corresponding n-particle

n-hole CB state. The CB states are normalized but not
orthogonal to each other. They have been used with
nonorthogonal basis perturbation theory to study vari-
ous properties of quantum liquids. This approach, which
is often called CBPT (correlated-basis perturbation
theory), has been proved to be renormalizable and the
perturbative series corresponding to the energy eigenval-
ues have been explicitly derived. Recently, detailed mi-
croscopic calculations on helium liquids " and nuclear
matter' ' have been performed by using the low order
CBPT theory.

A clear analysis of the convergence properties of the
CBPT theory has not yet been done and, in particular,
the truncation of the series at some perturbative order
generally leads to nonorthogonality spuriosities whose
effects may not be negligible. Moreover, the properly or-
thogonalized eigenvectors cannot be easily extracted out
from CBPT and this may be a major problem in calculat-
ing quantities other than the eigenvalues of the Hamil-
tonian.

In studies of hot quantum liquids the free-energy
F(p, T}obtained with CB states has been minimized. The
results obtained for the F(p, T) of He liquid' and nu-
clear matter' are reasonable, but the corrections due to

I

nonorthogonality have not been calculated. If the states
are orthogonal, the calculated F(p, T) is an upper bound
due to the variational principle. It is interesting to in-
quire if this variational property remains when the
nonorthogonal CB states are used.

The dynamical structure function S(k, to) of nuclear
matter, calculated with the nonorthogonalized lp-lh CB
states does not satisfy the sum rule

fS(k, to)dto=S(k) .

The static structure function S(k) obtained from lp-lh
CB states has the wrong behavior at k~ao because of
the spuriosity due to the lack of orthogonality amongst
the 1p-1h CB states. '

It is possible to orthogonalize a set of states by using
the Lowdin' transformation. However, it is known that
if all CB states are orthogonalized together the resulting
orthogonal states are not as good as the CB states in
several respects. For instance, the expectation value of
the Hamiltonian in the ground state of the orthogonal-
ized set is higher than Eo of the CB ground state, "
whereas the ground state eigenvalue must be below Eo by
the variational principle. Therefore, the two-step pro-
cess, in which the CB states are first orthogonalized by
using the Lowdin transformations and then used in per-
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II. CB MATRIX ELEMENTS

In this section we review the calculation and the prop-
erties of the matrix elements (pi h'

I p, h„}and
(p', h'

I
H

I p& h„}using well known diagrammat-
ic methods. ' 3' These properties are used in Sec. III to
construct the desired orthogonal set. The CB matrix ele-
ments are constructed from the Fermi-gas (FG) matrix
elements

and

[pl h'
I
G G

I pl

turbations theory, is not recommended. The Lowdin or-
thogonalization moves up the energies of low lying states,
and the perturbative corrections move them down, both
effects being larger than the net displacement. " In
nonorthogonal basis theory only the net displacement is
calculated.

In this paper we propose an orthogonal correlated
basis (OCB) theory in which we first orthogonalize the
CB states and then use them in perturbation theory. The
problems mentioned above are avoided by using a com-
bination of Schmidt and Lowdin orthogonalizations such
that the energies of the orthogonal states are equal to
those of CB states in the thermodynamic limit. There-
fore, conventional perturbation theory with these states
has a convergence at least as good as that of the
nonorthogonal basis theory.

The general properties of the CB matrix elements of
the unit and the Hamiltonian operators are reviewed in
Sec. II. Most of the material in this section is not new;
however, our objectives are different from those of the
earlier works. It is primarily reviewed for the sake of
completeness and to clarify the notation. The properties
of the matrix elements with the new states are given in
Sec. III. Section IV is devoted to the discussion of the
proposed OCB theory in the case of two examples of in-

terest, the dynamical structure function and the perturba-
tive correction to the variational ground state energy Eo.

line that starts from vertex i, ends on vertex j, and has a
direction arrow labeled k. These lines are called state (or
exchange) lines.

Diagrams representing terms in the expansion of the
diagonal matrix element [p& h„ I

6 G
I p&

.h„] can
have a number of points r1, r2, . . . , connected by either
correlation or exchange lines. All points may form a sin-
gle connected piece or two or more disconnected pieces
as illustrated in Figs. 1(a) and (b). In principle all dia-
grams should have N points, where N is the number of
particles in the liquid. However, isolated unconnected
points, as in diagram (c}of Fig. 1, are not shown because
they give unit factor. Diagrams in which uncorrelated
particles are exchanged, such as shown in Fig. 1(d) are
discarded because they give zero contribution. The ex-
change lines must form closed loops, and can have mo-
menta of states occupied in

I p, h„]. The contribu-
tion of a diagram is given by

( 1) k I f g d3
g N~0 i =1,N~

(product of all correlation and exchange lines) .

(2.3)

Here 0 is the normalization volume, and we assume the
thermodynamic limit in which N and Q~ 00 at fixed den-
sity p=N/Q. N& is the number of state lines in the dia-
gram; it also equals the number of vertices in the diagram—N~
by construction. The factor 0 ' takes into account the
normalization of the plane wave states. N& is the number

of closed loops, and ( —1) takes into account theN~ —N(

sign changes due to exchange. Only one way of labeling
the particles in the diagrams is considered, i.e., all dia-
grams that can be obtained by labeling the points 1, 2, 3,
and 4 in diagram a of of Fig. 1 in a different way are ig-
nored. If we keep all the N points in the diagram, then
there are N!/s ways of labeling them, where the symme-
try factor s equals the number of exchanges which leave

[p', h' IGHGIp, h„]. (2.1)

The FG matrix elements are expanded by substituting

G= IIfij II fg~

4p-- ——--~
kg

k;) Ikj

kj
3~-=~4

kl

i(j(k
= g (1++;,) g (1++;, ),

i &j&k
(2.2)

r————-~k
2 k

where F; =f; —1 and F~&
=f~i,

—1 are functions of
short range. They then break up into a sum over in-
tegrals that contain small groups (clusters) of particles.
The terms of this expansion are represented by diagrams
using the following notation.

The points or vertices of the diagrams represent coor-
dinates r,- to be integrated, and correlation lines represent
the functions f,jf; —1, fji,f;Ji, —1, etc., in the integral.
We use dashed lines to denote these functions. A factor
exp [ik.(r; —r. )] is obtained when the state k is occupied
in the bra [p', h'

I
by a particle j, and in the ket

I p, h„] by a particle i. This factor is denoted by a

(c)

k

3~=~4
I k.

I -~ 2
k;

FIG. 1. Examples of cluster diagrams in the expansion of
[p
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A. CB matrix elements of the identity operator

We first calculate the ratio of normalizations

I p h. I

6'6
I p h. )

[p'] h' IG'6lp] h' ]
(2.4}

which occurs in many expressions. Let c],c2. . . , be the
single-particle states occupied in both kets Ip, h„]
and

I
p', h' ]; a„az aD be the D states that are oc-

cupied in
I p, h„] but not in

I
p', h' ], and

1„12 bn are occupied in
I

p', h' ] but not in

I p, . h„]. We assume that the number of states c; is
proportional to 0, but D is finite. The nondiagonal ma-
trix elements of the unit and Hamiltonian operators be-
tween two states that difkr in D orbits would be practi-
cally zero when D is large.

The numerator of (2.4) can be written as

the diagram unchanged. The N! factor is used to cancel
the two 1/&Ni factors in the normalization of the
Fermi-gas states.

In principle all diagrams that come from expanding

[p, h„ I
6 6

I p] h„] have one state line for every
momenta occupied in

I p, h„]. All the labels

k1,k2, . . . , in a diagram, thus, must be different from
each other; however, this restriction k]+k2&k3. . . , can
be ignored because diagrams with two or more identical
state lines cancel each other as illustrated in Fig. 2.

[p] h„ I
6 6

I p] h„]= 1+ Xz (c; only)

X n 1+X(a)
i =1,D

(2.7)

A similar expression can be obtained for the denominator
of (2.4},and

[p h IG'6lp h 1

[p,' h' IG 6 Ip] h' )

1+ X, (a;)

i=],D 1+ X, (b,. )

one a; line and any number of c; lines, while X,(a;+aj }
is the sum of connected diagrams having one ai and one
a line, etc. A generic diagram contributing to X,(a; ) has

Nk points and N~
—1 c; lines, and its contribution is of

the order of 0 ' from Eq. (2.3). Note that since all
correlations and state lines are functions of interparticle
distances we obtain a factor 0 for every connected piece
in the diagram from the integrations over r;. The sum

Nk —1

over Nk —1 c s gives a factor 0,and hence X,(a;) is
of order l. On the other hand, X,(a;+a } diagrams are

—Nk+ 1

also of order 0 ' before summing over the c;; how-

ever, they have Nk —2 c; lines, and so the sum over c;
gives a factor Q . Thus, X,(a;+a ) is of order 0Nk —2 —1

X,(a;+a, +a], ) is of order 0, etc. We neglect them in

the limit 0~ 00 and obtain

[p] ' ' ' h. I
6 6

I p] ' ' ' h. ) = 1+ X] (a] a2 aD )

X 1+ X„(c;only)

(2.5}

where X,(a, , a2 aD) is the sum of diagrams which con-
tain one or more of the lines a1 aD and any number of
c; lines, and in which a line a; occurs, at most, once,
while a line c; may occur any number of times. Xz (c;
only ) is the sum of diagrams having only c; lines; a line

c; can occur any number of times. We can further sim-

plify (2.5) as follows:

X] (a],a2 aD)= y X, (a;)
i =1,D

+ g g X, (a;)X,(a )
i=1,Dj &i

+ X, (a, +a, )

(2.6}

(2.8)

When 6 contains only Jastrow correlations, X,(a, }can be
further simplified to obtain a sum of only irreducible dia-
grams. '

Nondiagonal CB matrix elements of the identity opera-
tors are, in general, different from zero, since CB states
are not orthogonal. The diagrams occurring in the ex-
pansion of

lp] h'
I
6 6

I p] h. ) (2.9)

[p', h' IG GIp, h„)

have D transition lines going from vertex i to j with two
arrows and two labels ak and bk. These indicate that
particle i was in state ak in the ket

I p, h„], and j in
state bk in the bra [p', h'

I
. The pairs akbk can be

chosen at convenience; however, diagrams such as (b) and
(c) or (d) and (e) of Fig. 3, which differ only in the choice
of the pairs akb, k are in fact identical and only one choice
of pairs akb'„should be considered. One obtains

where X,(a, ) is the sum of connected diagrams having X, (a,b, +a,b2+ . +aDbD )

X 1+ X„(c;only) (2.10)

k] ~———-Qik4

k ~----k
I 3

+ k]) )ki'~——-Qk 3

FIG. 2. Cancellation of diagrams with more than one k& line.

wher~ X](a]b,+a2b2+ +aDbD} is the sum of dia-
grams containing one each of the D transition lines and
any number of c; lines. The CB matrix element is given

by



1700 S. FANTONI AND V. R. PANDHARIPANDE 37

h. ] [pi h. I
G G

I p1
. . h. ](K

[p1 h. I
G G

I p1
' ' h. ] [pl ' ' h'

I
G G

I p1
. h' ]

X, (a,b, +a2bz+ . +aDbD)
1/2 1/2

1+ X, (a;) 1+ X, (b;)
i =1,D

(2.11)

Momentum conservation requires that (2.14)

i =1,D
a;= g b;.

i =1,D
(2.12) D &2S,

S&1.
(2.15)

(2.16)

If there are no subsets containing a number d of a s and

b, 's, d & D, such that B. CB matrix elements of the Hamiltonian

ga;= gb;,
iind i ind

(2.13) Let us consider diagonal CB matrix elements of the
Hamiltonian:

all the transition lines must occur in a single connected
diagram, and the order of magnitude of the matrix ele-
ment (2.11) is 0 +'. We note that, since momentum
conservation requires a change in at least two states,
D &2. Let S be the number of subsets satisfying Eq.
(2.13), S=1 if there are no such subsets. Since each sub-
set must have changes in two or more momentum states,
2S &D. If S &2 we can have disconnected diagrams, as
illustrated in Fig. 4(b), contributing to the numerator of
(2.11). In this case (2.11) is of order 0 + . In general
order of magnitude of

$2H= — g V'2+ g U +
i=1,N i &j&N i & j&k&N

VJk+

(2.17)

The terms in [p& h„ I
G HG

I p& h„] in which the
7; operate on the ket

I p& h„] give

I I

I I

Q Q

(a)

Ci

o~ bp

I I

I I

(c)

(b)

0~ b&

Pb

Opt
I i)c

bI
CI)

Cp

FIG. 3. Examples of cluster diagrams in the expansion of
(Pl h' IG Gipl h. l.

FIG. 4. Connected and disconnected diagrams in the expan-
sionof[p', h'

I
G 6

I p, h„].
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[pi h„ I
6 HG

I pi h„] contain either one of the
potentials v;, V; k, etc., or gradients of correlations V,f;,
V;fJ V;f;k, V;fJ.V; I pi . . h„], etc., and they are eval-
uated with cluster expansions. In the diagramatic nota-
tion the functions f, v; f; , . f;. Vf.;, f; f kV f; V. f. k., .

f; Vf, .V, e. -tc. are represented by interaction lines, and it
is easy to show that

[pi h„
I

GtHG
I p, h„]= TF(pi h„)+ X, (I)

X I+ X„(k; only)

FIG. 5. Example of disconnected diagrams in the expansion
X& (a&b&+ aDbD+I ).

(2.20)

where X, (I) is the sum of all connected diagrams that
have one interaction line and any number of lines k;,
i =1,¹ The diagonal CB matrix elements are given by

(Pi ' ' ' h. I
H

I pi ' ' ' h. ) = X. (I)+TF(Pi ' ' ' hn»

TF(pi h. )[Pi h. I
G G

I pi h. l

TF(pi h. )= X
i=1 N

(2.18)

(2.19)

and are of order Q.
The nondiagonal element

[p', h' IGHGlp, h]

(2.21)

We denote all the states occupied in
I p, h„] by k;,

i =1,¹ Thus k;, i =1,N is the sum of the states c;, i =1,
N —D and a;, i = 1,D. The other terms of

I

has one term containing TF(p, h„) and others con-
taining an interaction line. It can be expressed as

[p' h' IGHGlp h ]—T(p h )[p' h' IGGlp h ]

+ X, (a,b, +a~b2+ aDbD+I) 1+ X„(c;only) (2.22)

and we get

TF(p, h„) X, (a,b, + anbD)+ X, (a,b, + aDbD+I)
(p' h' IHlp h )—

i =1,D
1+ X, (a, )

1/2 1/2
1+ X, (b, )

(2.23)

If there are S subsets in the transition, the X, (a,b, + aDbD) is of order Q D+s, and the leading diagrams of
Xi (aibi+ aDbD+I) illustrated in Fig. 5, are of order Q + +'. TF is of order Q, and, hence the order of magni-
tude of

(p', h'. IH I p, h„)=Q-'+'+'. (2.24)

The largest terms have D =2, S = 1 and they are of order 1.
The nonorthogonality of CB states raises the order of magnitude of the nondiagonal matrix elements of H by a factor

Q. Let us consider states near the CB ground state
I
0). These states have finite values of m and n The matrix . element

(Pi ' ' h'
I
H —Eo I Pi '

T

TF(p, h„)—TF(0)—X, (I) Xi (a,b', + . aDbD)+ X, (a,b, + . . aDbD+I)

1/2 1/2
1+ X, (a;) 1+ X, (b;)

i =1,D

(2.25)

where X, (I) is the sum of connected diagrams contributing to Eo. Now
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TF(p, h„)—Tf(0) = g (pj —hj )

j= 1., n

(2.26)

is finite, and the leading term of X, (a,b, + . aDbD+I ), of the type illustrated in Fig. 5 is separated out to obtain

Xi (a,b, + aDbD+I) = X&(a&b&+ . aDbD ) X, (I,c; only)+ X, (aib, + . . aDbD+connected I), (2.27)

where X, (I,c; only) is the sum of connected diagrams with an interaction line and any number of c; lines, while

X, (aib, + . . aDbD+connected I) is the subset of Xi (a,b, + . . aDbD+I) diagrams in which the I line occurs to-
gether with a transition line in a connected diagram. The states c; and those occupied in

I 0] can be classified as a large
(of order 0) number of common states z;, states x; that occur in c; only, and states y; that occur in

I 0] only. We then
have

X, (I,c; only) —Xo (I)= g X, (I +x; ) —g X, (I+y; )+ terms of order 1/0 . (2.28)

Here X, (I+x; ) denotes the subset of X, (I,c; only) that has one x; line, while X, (I+y; ) is the subset of X, (I) that has
one y, line. These terms are of order I. We obtain

$2
(p', h'

I
H Eo I p, —h„)= X, (a,b, + aDbD) g (p —h, )+ g X, (I+x, ) —g X, (I+y;)

j=l, n i l

' 1/2 1/2
+ X, (a,b, + aDbD+connected I) g 1+ X, (a, ) 1+ X, (b, )

(2.29)

which is of order 0 + instead of (2.23) which is of order 0 +s+'. We note that the CB matrix elements of H are
larger than those of 1 by a factor 0, while those of H Eo are of—same order of magnitude when m and n are finite.

IIL CORRELATED ORTHOGONAL (CO} STATES

An intermediate, partially orthogonal (PO) set of states, denoted by I p, h„J is defined as

h. }- X X
m &np I I

p) m

h. ) ~ (3.1)

The PO n-particle n-hole (n-ph) states are obtained by orthogonalizing the CB n-ph states to all m &n ph CB states
with Schmidt procedure. Since the CB n-ph state is directly coupled to few states with m & n ph, the PO states are not
too different from CB states. As we will see, the diagonal matrix elements do not change in going from CB to PO states
in the limit Q~ oo, and thus the PO states are normalized.

A PO n-ph state is orthogonal to all PO mPn ph states by construction, but not to other n ph PO s-tates. Complete
orthogonalization is obtained by making separate Lowdin transformations to orthogonalize the n-ph states among
themselves

P ) I(I„

IPi h'IIPi h' IPi ' h. f

+-',

n pi '''"n
I
pi' ' ' ' h" l I pi' ' ' ' h" I pi ' ' ' h' J I pi ' ' ' h' I pi ' ' ' h. J + ' ' ' . (3.2)

The
I p, . h„) are the desired correlated orthonormal

(CO} states. The coefficients 1, ——,', +—,'. . ., of the terms
in the Lowdin transformation are those that occur in the
expansion of (1+x) '~ . The bar on any matrix element
denotes that diagonal elements are to be omitted,

m&n pl m

T2= X X

f(pi

m &n m'&np h p1 m 1 m'

(3.5)

(a
I
b)=(a

I
b}(1—fi,b), (3.3) X (Pl

where
I
a) and

I
b) are two states in any basis.

We will Srst study the properties of the diagonal ma-
trix elements with PO states:

X(pi h' Ip, h ).

Ipi . h„ I pi . . h„ I =1—Ti+ T2, (3.4) (3.6)
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D =D'+n —m . (3.7)

Since D &2, D'&1 if m =n —1, otherwise D'&0. The
contribution of matrix elements with S= 1 and D'& 1 to
T, is of order

(Q D+—1}2QD' 1Q— D —(n ——m)+1 & Q
—2 (3.8)

The factor 0 ' in the above estimate comes from sum-
ming over D' momenta with one momentum conserva-

I

Using the properties of the CB matrix elements we prove
in the following that T, is of order 0 and T2 of order0, and therefore that these terms are negligible, and
hence the PO states have unit norm.

Consider the term T&. Let there be D' states p&. . . h'

that do not occur in p&
. h„. The total number of

diff'erent orbits in the states
I pi h' ) and

I pi h„}
is then given by

tion constraint. Contribution of the matrix elements hav-
ing S=1, D'=0 and, hence, n —m &2 is of order
0 + &0 . These are the largest contributions to
T] ~

When S=2 we have two possibilities. The first is that
one subgroup contains all the D' states, and the other
contains some or all of the n —m states that change. In
this case n —m & 2, and the order of magnitude of the
contribution is 0 '" '+ &0 since D&4 when
S =2. The second possibility is that one subgroup con-
tains a part of the D' states, and the other contains the
rest. In this case n —m & 1, but we sum over D' momen-
ta with two contains, and, hence, the contribution is still(0 . This proves that the leading contribution to T,
is of order 0 . By using a similar procedure one can
prove that the leading contribution to T2 is of order 0
and it comes from states such that all the three matrix
elements in Eq. (3.6) have D =2. We also find

and

[p, h„ I
H

I p, h„J =(p, h„ I
H

I p, h„)+terms of order Q 'or smaller, (3.9)

(p, h„ I
(H —Eo) I p, h„j =(p, h„ I

H Eo I p, —h„}+terms of magnitude Q or smaller . (3.10)

In either case the changes in diagonal matrix elements, on going from CB to PO basis, are negligible in the limit Q~ ao.
Let us now consider the off diagonal matrix elements of n-ph PO states and compare them with the corresponding

matrix elements of CB states

h'n
I P1 hn J =(pi h'.

I p1 h. ) —Ti+T2 (3.11}

Tl= X r (Pi'''h' lP"'''h" }(P"'' h" IP
m gn&". . . h"

1 Ilt

T2 2 X X 2 (P1 h' I
Pi" h"')(Pl" ' h"'

I
P1' h'm )(Pl' h'm

I pi hn } ~

gpss (g II hll ~ g g III s III
n'

(3.12}

(3.13)

fhe (p'1 h'„
I pi h„) is of order Q + and when

S =1, we represent it in Fig. 6(a) as a box with D particle
or hole lines from p&

. h„below it and the new D parti-
cle or hole lines from p', h'„above it. Figure 6(b)
shows a term of T', in which two particles and a hole of
the D states combine into a one particle state. The ma-
trix element (p", h"

I p, h„) in Fig. 6(b) is of order
Q ', while (p1 h„'

I
pi' h" ) is of order Q +2,

and the contribution is of order 0 +' when S=1.
There are also other terms, such as those shown in Fig.
6(c) in T'1, and Fig. 6(d) in T'2 with contributions of order
0 +, but none of order 0 + +'. Thus, we obtain
the result that the off diagonal elements of the unit, H or
H —Ep operators between n-ph states may be different in
CB and PO states, but they have the same order of mag-
nitude.

Finally, we prove that the diagonal matrix elements of
H with CO and CB states are equal. Let

(p, h„lH Ip, h„) E—
and

= (pi h„ I
H E

I p, h„)—, (3.15)

From the definition of CO state (3.2} and Eq. (3.16} we
obtain

(pi h„ I
H E

I p, h„)=x—2+x3+, (3.17)

where x; are sums of products of i nondiagonal matrix
elements. The x2 is given by

+2 +2, 1++2,2

x21= ——, g (pi'' h. IH —Elpl

(3.18)

[pi h„ I
H E

I p, h„j =—0+ terms of order 1!Q .

(3.16}

(p h IHlpi h) —E(p . . h)
we have

(3.14) P 0 ~ ~
I
It

x[pi . h; Ipi . h. J+c c
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pi "i pa%"a

~+
Pl I P2P3 2

(o)

h2 p) h) p2p

a, 3

P/I, Pll

Q2
ir

h2p~ h~ p2p3

(c)

FIG. 6. Diagrams

apl h' I pI h. I.

p~ h~ p p&h&

iIL 'i( i( i II, 'IIII

p h p p h

ii

p h p2p3h

(d)

representing terms

l hl l lhli%pa a

Q

in

states are properly orthogonalized; therefore, standard
perturbative techniques are adopted and the correspond-
ing schemes at each perturbative order do not contain
any spuriosity concerned with orthogonalization. On the
contrary, in CBF theories, every order of the perturbative
series contains spurious terms, and the due orthogonality
corrections come only from higher order contributions.

In this section we discuss the nature and the implica-
tions of such orthogonality corrections which, in most of
the CBF calculations performed until now, have been
neglected. To this aim, we analyze the calculations of the
dynamical structure function' and of the nondiagonal
matrix elements of the Hamiltonian between states hav-
ing two different orbitals. These matrix elements enter
into the calculation of the perturbative corrections to the
ground state energy, ' the optical potential, ' as well as
that of the particle-hole effective interaction. We will
limit our analysis to the first order terms in the power
series (PS) expansion, ' namely those having only one
dynamical correlation amongst the particles which are
not directly connected by the Hamiltonian operator.

For the sake of simplicity, we consider the case of a
correlation operator of the Jastrow type, but similar ar-
guments and conclusions can be drawn for the more gen-
eral case of a state dependent correlation operator.

+2,2 4 Q I (pi hn I pi
Pl

. h'„

X [pI ' h„'
~

H E~ p', h'„ —I, (3.20)

and if
~ p, h„j differs from

~

p', h„' I in D states
the order of magnitude ofx2 is 0 + (Q '. In a simi-
lar way we can show that all the x; (i & 2) are of order of
magnitude (0 ', and hence we obtain the desired re-
sult.

&pi h. IH Ipi h. )=(pi''
+terms of order I/O .

(3.21}

A similar procedure has been used to orthogonalize
the states of few-body systems. The states are classified
according to the number of particles in the continuum.
The states ~O, I), for example, denote all the bound
states, while

~
1,I) denote states where one particle is in

unbound continuum, and the rest are bound, etc. The en-
ergies of these states are known from the spectra of the
bound system, and a way to obtain orthonormal states
with the correct energies is to Schmidt orthogonalize the
states

~
n, I) to all states

~
m &n, J) to obtain PO states

~
n, II, and then use the Lowdin transformations to or-

thogonalize them.

S(k, co) =—ImD(k, co),
1

D(k, N) = &0
~ pI,(H EQ N i r/—) 'p—i, ~

o—),
(4.1)

(4.2)

p~ —— g exp(ik r, ), (4.3)

where ~0) is the exact ground state with energy Eo.
Formally, the Hamiltonian H is written as a sum of an
unperturbed part Ho and an interaction term HI defined
by the following equations:

&m ~Ko~n)=(m ~H ~m}5 „,
&m )Hl ]n)=&m (H [n)(l —5 „),

(4.4)

(4.5)

and the right-hand side (rhs) of Eq. (4.2) is expanded
around HI ——0. For the present purposes it suffices to
keep only the very first term of the expansion, which is
equivalent to say that, in Eq. (4.2), we approximate H
with Ho and assume the CB state

~
0) to be the exact

ground state
~
0) and consider the lp-lh CO states as the

only intermediate states. Under these assumptions
S(k, co) is given by

S'I, '(k, co)= g ~X(p,.h;)
~

5[e(p;)—e(h;) —co], (4.6)

A. Dynamical structure function

A dynamical structure function S(k, co) is obtained
from the density-density correlation function

IV. COMPARISON OF OCB WITH CBF THEORY x(p,.h, )= &p, h,. I p„ I
o), (4.7)

Orthogonal and nonorthogonal CB theories make use,
in general, of different perturbative schemes to calculate
various quantities of interest. In OCB theory the basis

where e(p;) and e(h;) are single particle energies, ' and
p;=h, +k.

The OCB state
~
p;h; ) is given by
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N&}=(p;h; I pa I
o)

N(ij)=(p;h,
~ p h )(1—5,"),

X(p;h; ) =g(t}——,
' y N(t'j)g( j)

J

+—,'g N(ij }N(j1)g(1)+

(4.9)

(4.10)

{4.11)

In nonorthogonal CBF theory X(p;h;} is approximated
with g(i); the higher terms in Eq. (4.11}are orthogonality
corrections. Both g(i) and N(ij ) have a diagramatic ex-
pansion given in Ref. 16. It is interesting to analyze the
cancellations among the various terms in X{p;h;), they
reveal the spurious contributions in g(i).

The zeroth and first order terms of g(i ) are given by'6

g(t'}=(' '(t'}+/"'(&)+'
g' '(i)=D(7, 1),
g'"(i) =D (7,2)+D(7, 3)+—,'D (7,4)

+ ,'D(7, 5)+D—(7,6),

(4.12)

(4.13}

(4.14)

where D(7,1) are diagrams of i of Fig. 7. N(ij) has no
zeroth order contribution, and in first order it is given by

N"'(ij)=D(7, 7)+D(7,8) . (4.15)

h . hh p )

h~ ik

(7, i) (7,2) (7,3)

~ p;h; ) =
~
p;h;) ——,

' g ~ p, h, }{pjh, ~
p;h;)+, (4.8)

J

since the PO 1-ph states
~ p;h;) =

~
p;h;). The X(p;h;)

can be calculated as

In order to calculate X(p, h, } up to first order we need to
consider only the term —,

' N'"(ij)g' '(j) from orthogonality
corrections. It is easy to multiply diagrams and sum over
j as illustrated in Fig. 8. The product of the zeroth order
g diagram (7, 1) with the first order N diagrams (7,7) and
(7,8) gives the four diagrams (7,2), (7,3), (7,4), and (7,6).
It follows that X(p;h;} differs from g(i) due to ortho-
gonality corrections: in fact, diagram (7,4) is completely
cancelled and the remaining first order diagrams come all
with a factor —,':

X(0)(p h ) g(0)(t )

X' "(p;h; )=—,
' [D(7,2)+D(7, 3)

+D(7, 5 }+D(7,6)],

(4.16)

(4.17)

= g ~X(p;h, ) ~2. (4.18)

The last equality holds on account of the fact that the
density fluctuation operator pz commutes with the Jas-
trow correlation operator and, therefore, pi, ~

0) is a com-
bination of 1p-1h CO states. It is easy to verify that dia-
gram (7,4} can be folded into a part which coincides with
diagram (7,1) and a vertex correction X, , (h, ) given by
diagram (7,9) depending on the hole momentum h; only.
As a consequence, when it is included in X(p;h; }appear-
ing in Eq. (4.18}, it generates terms which are indepen-
dent of k and, therefore, violate the property of S(k) to
heal to one when k goes to infinity. Similar cancellations
of diagrams are also present at higher orders of the PS
expansion and a cluster decomposition of X(p;h; } at all
the orders is not known yet. However, Eq. (4.11) can be
numerically solved by means of an iterative procedure, '

few iterations being suScient to reach the convergence.
In absence of correlations /=X =1. Thus, the quanti-

ty 1 —X measures the effect of correlations, and in

It is worth mentioning that diagram (7,4), if included in
X(p, h, ), would lead to a violation of the sum rule

—(0
~

pitooi,
~
0)=S(k) =f dc' S & (k, ru)

1

h; p; h; p;

l( k

(7,4)

h;

h.

(7,7)

(7,5)

h; p;

h.
j pi

(7,8)

k' h

(7,6)

hl

h(

(7,9)

PJ hl

x Q-g
h. p;

pj hl

k~~ ~
h)

h;

I

FIG. 7. The zeroth order contribution to g(i } is given by 7, 1.
First order diagrams 7,2-7,6 contribute to g(i }; 7,7 and 7,8 con-
tribute to (p;h;

~ p;h, },and 7,9 to vertex correction I, , (h;). A
sum over hl, h&, and h3 is implied.

FIG. 8. Illustration of diagrammatic multiplication. The
second equality is obtained by writing the sum over pj as a sum
over all states minus the sum over hole states. Sum over h& is
implied as in Fig. 7.



1706 S. FANTONI AND V. R. PANDHARIPANDE 37

TABLE I. Typical values of the quantities 1 —( and 1 —X for
a Jastrow model of nuclear matter at kF ——1.33 fm '. g and X
are given for h =0.56 fm ' and p =k. The pair correlation and
the Fermi-hypernetted chain (FHNC) equations given in Ref. 16
are used to obtain these results.

(9,i) (9,Z)

k/kF

I —g
1 —X

0.14
0.07

1.5

0.14
0.08

0.10
0.06

2.5

0.06
0.04

(9,4) (9,5)

nonorthogonal theories it is approximated by 1 —g. We
see from Table I that 1 —g is much larger than 1 —X
showing that it is necessary to treat orthogonality correc-
tions to calculate correlation effects in S(k,m).

B. Correlation energy

The second order perturbative correction to the
ground state energy Eo is given by

H(0;p;p h;h

e(h;)+e(h ) —e(p;) —e(pj)

p; h; p;

I j

h;

h
(9,io) j

h~l~ I

h2 h.
9,8

P, P ~&i

h)
(9,ii)

hp hp

(9,i4)
h; hj
(9,i5)

H(0;p;pih;hi ) = (0
I
H

I p;pih;hj ) . (4.20)

In nonorthogonal CBF theory the matrix element

H(0;p;pih;hi ) has the following expression:

FIG. 9. Diagrams 9,1-9,14 give the zeroth and first order
contributions to Hc»(0;p;p, h;h, ). First order orthogonality
corrections change the contributions of Diagrams 9,2-9,7 and

9,9-9,14, and give the new diagram 9,15.

HcB„(0;p; p h;h )=(0
I
H Eo I p;p, h;—hj )

f2
=(0

I pip, h, h, ) (p, '+p,' h h—,') —2, (I—+h, ) —X, (I+h, )

+Et (p;h;+p hi+connected I) 1+ X, (p, ) 1+ g, (p. ) 1+ g, (h,. ) 1+ y (h. )

1/2

(4.21)

h (o
I p tp2h th2) has no zeroth order contribution. In first order it is given by diagrams (7,7) and (7,$) on replacing the

transition line h;p; with p;h;. The second term of (4.21) has zeroth and first order contributions illustrated by diagrams
(9,1)—(9,14) of Fig. 9. These are denoted by D(9, k =1,14). The remaining direct diagrams contributing to the second
term are obtained by interchanging p;h; with pihi in diagrams (9,2)-(9,12). These diagrams are denoted by
DS(9,k =2, 12). There are no DS (9,k = 1 or 13,14) diagrams because D(9,k = 1 or 13,14) are symmetric under this in-

terchange Exchan. ge diagrams DE(9,k=1, 14) and DSE(9,k=2, 12) are obtained by exchanging h,. with h . We ob-
tain

HcBF(0iprpih|hj)=T, + g [D(9,k)+DE(9,k)][1 ,'5k4 ,'5ks]————
Jc =1,14

+ g [DS(9,k)+DSE(9,k)][1 ,'5k~ ,'5ks], ——=
k =2, 12

(4.22)

where T, is the first term in Eq. (4.21). Note that there is partial cancellation of diagrams having k =8 with the terms
ln T1.

In OCB theory the PO states
I p;hih;hi. } with zero total momentum are given by

p;pjh;hj }=
I p,.pih, hj. ) —

I
0)(0

I p;pjh;hj ),
since (p,h,

I p;pjh, hj ) =0 for such states. Thus

I0 I
H

I p;pjh;hj }=(0
I
H Eo I p, pjh;h, ), —

(4.23)

(4.24)
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and the CBF theory takes into account the nonorthogonality of the ground and
~ p, pjh;h ) states. In order to analyze

the effect of the nonorthogonality of states
~ p;pjh;hj. ) and

~ p,'p~h, 'hj. ), etc., we calculate the first order Lowdin correc-
tion to this matrix element:

bH(0;p;pjh;hj ) = ——,
' g (0

i
H —Ec i

2')(2'
i p;p. h;h ), (4.25)

where the 2p-2h states
~

2') have two momenta difFerent from p;pjh;hj, namely

Iplpjhhj) I pxpjhh, ') Ip pjhhj) Ip.pjhlhj) I p pjhIhj) . (4.26)

States having three or four momenta p,'p'h, 'h' difFerent from p;pjh;hj do not contribute to bH in the first order of PS
expansion.

The products of zeroth order terms of (0
~

H Ec
~

—2') (i.e., those without a dashed line) with the first order terms of
(2'

~ p;pjh;h ) also generate all the first order diagrams of Fig. 9. Thus up to first order terms we get

Hoes(0;p;pjh;hj ) =HcaF(0;p;pjh, hj )+bH(0;p;pjh, hj )

=T)+D(9, 1)+DE(9,1)+ g —,'[D(9,k)+DE(9, k)][1 5k5+—5ks]
k =2, 14

,'[DS(9—,k)+DSE(9,k)][1—5ks+5ks] ——,'[D(9, 15)+DE(9,15)] .
k =2, 12

(4.27)

We note that the orthogonality corrections completely
cancel the diagram D(9, 5) along with its DS, DE, and
DSE counterparts, and they reduce the contribution of all
other first order diagrams except D (9,8) and its counter-
parts, by a factor of 2. However, new diagrams D (9, 15)
and DE (9, 15 ) are added. Thus, it is not consistent to
calculate the first order PS corrections to the matrix ele-
ment without taking into account the orthogonality
corrections. Particularly, in dense systems like He dia-

l

grams of type D(9, 5) give large contributions in
nonorthogonal theories, and these may be entirely spuri-
ous.
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