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Nucleon self-energy diagrams, which are necessary to satisfy unitarity in NN scattering above
pion production threshold, are studied for a realistic one-boson-exchange model. It is demonstrated
that, in the framework of noncovariant perturbation theory, the independent iteration of {lowest or-
der) bubble diagrams at both nucleon lines leads to dressing factors which provide well-defined off-

shell corrections to the meson exchange contributions. It turns out that nucleon dressing yields ad-
ditional attraction in lower partial waves. A slight readjustment 'of meson parameters {especially a
reduction of the cutoff mass in the mNN vertex) leads to a reproduction of the empirical NN data
below pion threshold which is of the same quality as before. The resulting inelasticities are, howev-

er, much too small, which clearly establishes the need for using a NN potential model containing
the 5 isobar explicitly.

I. INTRODUCTION

It is generally accepted that quantum chromodynamics
(QCD} is the fundamental theory of strong interactions.
Therefore, the nucleon-nucleon (NN) interaction is com-
pletely determined by the underlying dynamics of the
basic constituents, i.e., quarks and gluons. However, due
to the nonperturbative character of QCD in the low-
energy regime relevant for nuclear physics, we are far
away from a quantitative understanding of the nuclear
force in this way. Moreover, there is a good chance that
conventional hadrons like nucleons, 5 isobars, and
mesons, while being manifestations of the quark structure
of matter, remain the relevant degrees of freedom for a
wide range of nuclear physics phenomena. In that case,
the overwhelming part of the force can be constructed in
terms of meson-baryon vertices, which represent a natu-
ral and effective description of a complicated multiquark
reaction.

Recently, the Bonn group has presented a meson-
exchange model of the NN interaction' for application
below the pion production threshold, which is solely
based on suitable meson-nucleon-nucleon and meson-
nucleon-5 isobar vertices W . The Hamiltonian
H =Ho+ W is treated in time-ordered perturbation
theory. The resulting (energy-dependent) quasipotential
V contains, in addition to single-meson exchange, explicit
2m.-exchange contributions consistent with results ob-
tained from dispersion theory (Paris potential ). Further-
more, it was essential to include corresponding m p-
exchange diagrams in order to obtain a quantitative fit to
the NN data. In fact, these contributions (2n+mp) re-.
place to a large extent the fictitious o. exchange used in
former one-boson-exchange (OBE) models.

The extremely good reproduction of the empirical NN
data with this model proves the usefulness of the meson

i ( Tzz —Tzz ) = Tzz Tzz+ Tz3 Tz3

Here Tzz is the elastic (NN), Tz3 is the tr-production am-
plitude, and T23 is the ~-absorption amplitude. It is im-
portant to realize that self-energy diagrams involving m

exchange are built up by T23 T23 and thus contribute, via
Eq. (1.1), to ImTzz.

The total cross section is obtained from ImT22, the
elastic cross section from

~ Tzz
~

. Since Tz3 Tz3 is Posi-
tive definite, Eq. (1.1) implies the (weaker) unitarity
bound

+total & +elastic (1.2)

exchange picture as an effective description of the low-
energy NN interaction. In order to further check its va-
lidity the same vertices should now be used consistently
in the description of other hadronic processes (e.g., those
involving strange particles, i.e., KN, AN) and in the eval-
uation of three-body forces and meson-exchange
currents. Furthermore, the vertex parameters (coupling
constants, cutoff masses), which have been fixed by ad-
justing them to the two-body data, can be checked
against information from quark-gluon models. Finally, it
is essential to extend the model of Ref. 1 above the pion
production threshold. This, however, cannot be done in
a straightforward way since the energy dependence of the
(time-ordered) meson propagators leads to direct meson
production. (Note that the use of static propagators does
not include this possibility. ) In order to still guarantee
unitarity, nucleon (and b, -isobar) self-energy diagrams
(which, so far, have only roughly been taken into account
by using empirical masses, see Ref. 1) must now be in-
cluded explicitly for the following reason: In the three-
particle (NNm} sector, unitarity of the S matrix implies
for the scattering amplitude T:
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in the inelastic region.
In this paper, we want to study self-energy effects aris-

ing from the dressing of the nucleon. This step is rela-
tively simple since it can be treated on the OBE level.
Nevertheless, it has sufficient structure in order to get in-

sight into the characteristic features and problems en-
countered in renormalization.

The basic concepts of our renormalization procedure
are introduced in Sec. II. Some details concerning our
numerical approach will be given in Sec. III. The results
will be presented and discussed in Sec. IV. Especially,
the following questions will be addressed.

(i) Does the inclusion of explicit nucleon renormaliza-
tion in the OBE picture still allow for a good reproduc-
tion of the empirical data below pion threshold?

(ii) What is the effect of nucleon renormalization on the
data above pion threshold, especially on the inelasticities?

inconsistent to consider higher order contributions to the
nucleon self-energy [Figs. 1(b)—(d)] explicitly. Therefore,
we include in our model only iterated one-loop correc-
tions to the nucleon propagator [Fig. 1(a)). (In fact,
higher order diagrams are to some extent taken into ac-
count by using the physical, renormalized mass for the
intermediate nucleon state. ) In addition, since the thresh-
old for production of mesons other than the pion is quite
high, we will consider only one-loop diagrams involving
the pion.

Renormalization involving one-loop corrections only is
exactly solvable in the framework of the Lee model and
has been studied extensively. We want, at this point,
only give those results, which are relevant for our model.
Taking into account the self-energy diagram of Fig. 1(a)
leads to the physical, renormalized nucleon energy E
given by

II. NUCLEON RKNORMALIZATION
WITHIN AN OBE MODEL

In a one boson exchange model, we start from a Hamil-
tonian

E =E+h(E),
where the mass operator is given by

~0 2

h (E )=y
p E~ —Ep —con

(2.2)

(2.3)

H =H0+ 8',
Ho

——g E a a + g co„b„b„,

W=gW „a a b„+Hc. .0

(2.1)

This allows one to write the Hamiltonian (2.1) in a more
convenient way, namely that the free part contains physi-
cal, renormalized energies only

a'an

a ~ and b f represent the creation operators for nucleons
and bosons, respectively. W ~ „describe the nucleon-
nucleon-meson vertices with unrenormalized coupling
constants and form factors, whose presence is dictated by
the extended hadron structure. Antinucleons are left out,
for good reasons. Both chiral invariance and quark mod-
el arguments require that the NN vertex is considerably
suppressed compared to the NN vertex. Thus, there is
only nucleon renormalization in the model; E stands for
the energy of the bare nucleon.

A perturbation expansion of the Hamiltonian (2.1)
gives, apart from conventional meson exchange process-
es, self-energy contributions to the nucleon propagator
up to infinite order in the coupling constant; some lower
order diagrams of this expansion are shown in Fig. 1.
Since we want to restrict ourselves to quasipotential con-
tributions of one-boson-exchange type, which are of
second order in the coupling constant and contain only
three-particle (nucleon-nucleon-boson) cuts, it would be

H =Ho+H

5E, 5E= gh (E )a a
(2.4)

The wave function of the dressed nucleon turns out to be

WO 2

(
~

a)a=Z (E )=1+g 2p„(E E& cu„)— —(2.6)

Introducing renorrnalized matrix elements

Wp„——Ws„IZ (E ), (2.7)

the wave function renormalization constant Z (E ) reads

0

~

a) =
~
a)+ g ~

Pn ) . (2 5)
p„E —EI3 —co„

(
~

a) =a
~

0);
~
pn ) =a b„~ 0),

~

0) being the vacuum
state. ) It is not normalized to 1 but

Z (E )=1—gp„(E E& co„)——(2.8)

(o) (b) (c)

It should be noted that the matrix element 8' &„has to
be chosen sufficiently small in order to ensure a positive
norm of the free one-nucleon state

~
a) . This constraint

imposes an upper limit on the NNm form factor (see
below). The correctly normalized wave function l(t of
the one-nucleon state can then be written as

FIG. 1. Nucleon self-energy corrections of various orders in
the coupling constant.

y.=Z. '(E. )
~

a)'=[Z —'(—E.)+Q.] ~
a)

with (2.9)
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p„E —Ep —a)„

For solving the NN scattering problem we have to take
into account that both nucleons have to be dressed simul-
taneously, which gives rise to three- and four-particle-cut
contributions (Fig. 2). They can be formally handled in a
Lee model framework, but require the introduction of an
effective three-body potential for the four-particle-cut
contributions. Alternatively, one could just suppress the
dressing for one nucleon, as done by Kloet and Silbar.
This asymmetric treatment, however, leads to problems
with respect to the Pauli principle. Therefore, we will
adopt the following procedure: We will keep the impor-
tant symmetry between both nucleons by independently
summing self-energy diagrams on both nucleon lines. On
the other hand, we will neglect four-particle cut contribu-
tions to the dressing. (In fact, in a recent covariant
study' based on the Bethe-Salpeter equation, they have
been shown to be quite small. )

Such a program can be achieved by starting with the
following ansatz for the "free" two-nucleon channel state

~
a&a2) =(1+Q )(1+Q )

~
a&a2) (2.10)

(
~
&I&z) =a a

~

0) ), where Q =Z (E }Q acts on

nucleon 1 only and Q =Z (E )Q on nucleon 2, and
2 2 2 2

[Q,Q ]=0 characterizing the independent summation

of self-energy diagrams. The correctly normalized wave
function can then be written as

\

r

I \

QI2 ——[Z '(E )+Q ][Z '(E )+Q ] ~
a&a2) (2.11)

T(z}=V(z)+ V(z), N, T(z}1

z —ho
(2.12)

(h 0
' represents the free Hamiltonian with nucleons

only). The quasipotential V(z) is given by

(a', az
~

V(z)
~
a,a2) =R, , (z) V, , (z)R (z),

(2.13}

where V denotes the usual meson-exchange potential [see,
e.g., Ref. 1, Eqs. (B7)-(B10)].This expression contains a
two-particle dressing factor, symmetric in both nucleons,

R 0 (z) = 1 —(z E E—)—
1

Z 0
(2.14)

(Q,2=Q +Q, ) which reduces to 1 at the on-shell point,
1 2

as it should be. [In Ref. 8 it has been demonstrated that
the independent summation of self-energy diagrams of
the type of Fig. 1(a) leads to dressing factors as in Eq.
(2.14). The only simplification adopted here is the neglect
of four-particle contributions arising from the three-body
interaction V3 of Ref. 8.]

Furthermore, it should be emphasized that V(z) con-
tains renormalized quantities only. Therefore, it coin-
cides at the pole of the NN T matrix with the standard
boson exchange model. '

The lowest-order diagrams contributing to V(z) are
shown in Fig. 3. Figures 3(a) and (b) represent the usual
one-boson-exchange diagrams, Figs. 3(c)—(I} are the self-
energy corrections due to the pion, which cancel on shell
exactly.

Equation (2.14) can be evaluated as

R (z) = 1 —(z E E)——

X[I' (z E)+I (z E—)]—

which automatically ensures the correct normalization of
the dressed one-nucleon state [see Eq. (2.9)].

The NN scattering states define a transition matrix

(~'~~2
~

7 (E +E,+is)
~
~,~2)

which is the solution of a Lippmann-Schwinger-type
equation

(2. 15)

(0)

(c) (e)

FIG. 2. Various contributions to three- and four-particle cuts
in an NN iterative diagram containing nucleon self-energy con-
tributions.

FIG. 3. Diagrams contributing to V(z). The dashed line in
(a) and (b) represents the exchange of all mesons, whereas in (c)
and (d) the dashed line stands for the pion only.
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with

I (z E— )
J

I
IV. p. I'

g„(E E—p co—„) (z E— Ep—co„—)
J

(2.16)

Explicit formulas for the energy shift, the Z factor, and
the dressing factor can be found in Appendix A.

III. T-MATRIX EQUATION
AND PHASE SHIFTS

In order to obtain the helicity matrix elements of the
NN transition amplitude, Eq. (2.12), we decompose it
into partial wave amplitudes, for details see the review ar-
ticle of Erkelenz. " In contrast to Ref. 11, we do not in-
troduce a K matrix since our potentials become complex
above pion threshold. Thus, we now have for the uncou-
pled case the following T-matrix equation

dkkT(q', q ~

2E )= V(q', q ~

2E )+P f V(q', k
~

2E )T(k, q ~

2E ) i —qE—V(q', q ~

2E )T(q, q (
2E ) .

0 2Eq 2Ek
(3.1)

The singularity for k =q in the principal value integral is
removed by subtracting the (zero-valued) integral

q 2E
P f dk V(q', q ~

2E }T(q,q ~

2E ) .
2(q —k )

(3.2}

The resulting integral equation with complex V and T is
solved numerically as a coupled system for ReT and ImT.
The method proceeds analogously for angular-
momentum coupled states.

The partial wave scattering amplitudes are related to
the partial wave S matrix by

SL'L (E ) = 1+2i TL, 'L ( E ) .

Sz t (E) can be parametrized as

2'5 (E)SJs (E) Js (E)
' L L~'

(3.3)

(3.4)

where 6L L (E) is the phase shift and riL L (E) the inelasti-
city parameter describing the absorption from the in-
cident channel. Because of unitarity, 0&riPL (E) & 1. In
our actual calculations we mostly use the phase shift pa-
rametrization of Amdt and Roper. '

In purely elastic scattering the T-matrix equation has
only one singularity, namely the pole of the two-nucleon
propagator. Above pion production threshold, our (re-
tarded) one-pion-exchange potential develops poles,
which enter the scattering equation. Such poles are an
expression of the fact that now real pions can be generat-
ed. However, they complicate things considerably and
require an elaborate treatment, which is described in Ap-
pendix B.

I

to the second inelastic threshold) by including the lowest
order (pion exchange) nucleon self-energy contributions
of Figs. 3(c)—(f).

As mentioned already [see Eq. (2.8)] the inclusion of
these self-energy corrections leads to a constraint for the
pion form factor since the wave function renormalization
factor must be positive. This condition implies an upper
limit of A in the range of 1200 MeV if a monopole form
factor at the vertex is used, see Table I. Of course, this
number is due to our restriction to single-loop correc-
tions; it should be expected to change when higher order
terms like those in Figs. 1(b)—(d) were also included. For
A =1200 MeV we get Z (m) =0.36 (which means that
the total nucleon wave function consists of 64% pion
cloud) and a nucleon mass shift Z (m)hz(m)= —817
MeV.

Next we want to study the effect of nucleon dressing on
the potential. Figure 5 shows the one-pion-exchange
(OPE) potential V (q', q ~

2E~ ) in the 'So state as a func-
q0

tion of q for q'=qa =250 MeV. Curve a is the original
OPE potential calculated with the parameters of Table I.
In a first step, we reduce the pion cutoff mass to
A =1200 MeV (curve b), which leads to a considerable
suppression of the potential. Next, we include the dress-
ing factor, Eqs. (2.15) and (2.16). On shell, i.e., for

q =q
' =q0, the potential remains unchanged because

Rz (2Eq )=1; for q &qo it is diminished, whereas for

q & q0 it is enhanced.
Since in the iteration of the OPE potential intermediate

momenta q around 600 MeV play the dominant role, the

IV. RESULTS AND DISCUSSION

Starting point of our calculations is a OBE model
based on time-ordered perturbation theory. It is an up-
dated version of Ref. 14; its meson parameters, given in
Table I, have been fitted to the empirical data below pion
production threshold. If this model is extended to the in-
elastic region the inelasticity parameter g, defined in Eq.
(3.4) exceeds one in several low partial waves, indicating a
violation of unitarity. This is illustrated in Fig. 4, for the
'SD and S, - D& partial waves in which the violation is
largest. (A very similar result has been obtained by the
authors of Ref. 10.) This unphysical feature is cured (up

g' /4m

14.4
0.9 (6. 1)

20
8.8819
1.0534
5

m (MeV)

138.03
769
782.6
550
983
548.8

A (MeV)

1750
1500
1500
2000
2000
1500

TABLE I. Meson parameters of the OBE model used in this
paper. The number in parentheses denotes the tensor to vector
ratio f /g . The form factor at the vertex is parametrized as
F =A —m /A +k . Nucleon mass m =938.926MeV.
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FIG. 4. Inelasticity parameter g in the inelastic region for
various partial waves with (solid line) and without (dashed line)
nucleon self-energy corrections.
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dressing should enhance strongly higher iterations of the
OPE potential. This is indeed the case, as shown in Fig.
6 for the second iteration. Obviously, the dressing en-
larges it by about 30%. Furthermore, the reduced
strength of the potential due to the smaller cutoff mass is
nearly completely compensated by the nucleon dressing.

The influence of nucleon dressing on the total OBE po-
tential is shown in Fig. 7. For small q the potential
remains nearly unchanged whereas for large q the repul-
sion (mainly originating from co exchange) is strongly
enhanced.

FIG. 6. Second iteration of the OPE potential
V (q', q ~

2E~ ) in the 'So state as function of q for q'=qo ——250
qo

MeV. The notation is the same as in Fig. 5.

The effect of nucleon dressing on the NN partial wave
phase shifts, obtained from a solution of the scattering
equation (2.12), is shown in Fig. 8. Since it is an off-shell
effect it is quite small in higher partial waves, e.g. , G4.
However, in lower partial waves, the nucleon dressing
has a visible effect leading always to additional attraction,
especially for higher energies. This is due to the fact that
now the iterations of the potential become important,
which are attractive and are increased by the dressing
factor.

In the D2 state, the effect of nucleon dressing is totally
1
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FIG. 5. One-pion-exchange potential V (q', q ~

2E, ) in the

'So state as a function of q for q'=q0=250 MeV. Curve a is
based on a cuto8' mass A„=1750 MeV, whereas b is obtained
with A =1200 MeV. Curve c is the exchange potential (b) mul-
tiplied with the dressing factor Rq (z). The on-shell point is
marked by an arrow. (z =2Eq is the starting energy. )qo

q (MeV/c)

FIG. 7. One-boson-exchange potential V (q', q ~
2E~ ) in

the 'So state as function of q for q'=q0=250 MeV. The nota-
tion is the same as in Fig. 5.
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FIG. 8. NN phase shifts 5L~ (in degrees) as function of the nucleon lab energy derived from an OBE potential. The error bars are
taken from Ref. 12 (open octagon) and Ref. 15 (open triangle). The notation is the same as in Fig. 5.

compensated by the use of a smaller A . On the other
hand, due to the vanishing tensor force in the 'So state,
the effect remains in that partial wave, leading to addi-
tional attraction necessary to describe the empirical data.
The same effect has been found by Faassen. ' '

The inelasticity parameters pL+J (defined in the Arndt-
Roper convention) are shown in Fig. 9. In general, they
are too small to fit the empirical data. This is to be ex-
pected because it is well known that pion production is
mainly due to the decay of a 6 isobar (which is not con-
tained in our OBE model). This is most clearly seen in
the 'D2 state; also, the resonance structure of the corre-
sponding real phase shift is missed completely. It
remains however that, based on the present OBE model,

nucleon dressing is essential in order to have a unitary
model above pion production threshold.

In order to show the combined effect of (a) nucleon
dressing and (b) a lower value of A„on the deuteron data
we started from the OBE model including dressing [case
(c)] and adjusted the meson parameters to fit the NN
phase shifts as well as the deuteron binding energy quan-
titatively. It turns out that, compared to the original
model which predicted a quadrupole moment QD

——0.278
fm and a D-state probability Pa=4. 19%, the quadru-
pole moment is now decreased by 0.007 fm, mainly due
to the smaller pion cutoff mass. On the other hand, PD is
increased by about 0.1%, showing that the effect of nu-
cleon dressing dominates at shorter ranges.
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FIG. 9. NN inelasticity parameters pi gJ in degrees (defined in the Amdt-Roper convention) as function of the nucleon lab energy

derived from the unitary OBE model. The error bars are taken from Ref. 12.

V. SUMMARY

This is the first in a series of papers dealing with the
extension of the Bonn meson exchange NN interaction
above pion production threshold. Since the energy
dependence of the time-ordered meson propagators leads
to direct meson production nucleon (and 5 isobar) self-
energy diagrams must now be included explicitly in order
to still guarantee unitarity.

In this paper we describe the basic principles of includ-
ing renormalization corrections in a realistic one-boson-
exchange model. It is shown that, in our framework
based on time-ordered perturbation theory, the indepen-
dent iteration of (lowest order) bubble diagrams on both
nucleon lines leads to dressing factors, which give well
defined off-shell corrections to the meson exchange dia-
grams.

It is demonstrated that due to its short-range nature
nucleon dressing provides additional attraction in lower
partial waves, below and above pion threshold. A slight
readjustment of meson parameters (especially a reduction
of the value for the pion cutoff mass) leads to a reproduc-
tion of the empirical NN data below pion threshold
which is of the same quality as before. The resulting
inelasticities, however, are much too small compared to
the empirical data. Nevertheless, with the use of energy-
dependent meson propagators, nucleon dressing is re-
quired in order to have a unitary model above pion pro-
duction threshold.

This work was supported in part by Deutsche
Forschungsgemeinschaft.

APPENDIX A: EVALUATION
OFA, Z, ANDR

Here, we evaluate explicitly the nucleon energy shift
[Eq. (2.3)], the Z factor [Eq. (2.8)], and the dressing factor
[Eq. (2.15)], in the two-nucleon c.m. system. The nota-
tion is displayed in Fig. 10.

Starting point is the ~NN (renormalized) interaction
matrix element

w.-,.„=
[2 (m') (2 )3]l/2

xu(q, A)iy'u(k, A,. .)F [(q—k) ], (Al)

where u (k, i, ) denotes the usual (positive-energy) Dirac
spinor with u u = 1, and

It is known that the bulk of the empirical inelasticities
can be provided by including the 6 isobar decaying into
N and n.. The study of such an extended model for the
NN interaction along the same guidelines as presented in
this work will be the subject of a forthcoming paper.
Also, the effect of noniterative stretched- and crossed-box
diagrams remains to be investigated.
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is suppressed. )

We first calculate

B (q) = g W' '„W'"'„
a' n

appearing in all quantities to be considered. With Eq.
(Al) we obtain

8(q)= f d k u(q, i, )
(2qr ) 2'"

&(i y A+(k)i y u (q, A, )F (A3)

~Ik

qi =q
The factor q =3 is due to the isospin dependence. A+(k)
is the projector on positive-energy nucleon states,

A (k)= E (y Ek ——y k+m)
k

(A4)

FIG. 10. Nucleon self-energy diagram displaying the nota-
tion as used in the text.

[Ek =—(k +m )'~, m the nucleon mass]. Equation (A3)
can be simplified as

A —m

A +(q —k)
(A2)

A being the cutoff mass. (The trivial isospin-dependence

coq 'k=—[m +(q —k) ]'

is the relativistic pion energy. F is the ~NN form fac-
tor, conventionally parametrized as

1&(q)=, f d'k u(q, A, )
(2n ) 2'

yEk —yk —m0

X u(qk)F
k

(A5)

Without loss of generality we put q on the z axis and k
into the x-z plane, which leads to

3g ~ EqEk —m —qk cosO
8(q)= d k F2

(2qr) 4coq kEqEI,

f dk f d cos8(E Ek —m qk cos8)(co—" k ) 'F
4m 4vrE o Ek

where 0 is the angle between q and k.
We then obtain for the energy shift

h (E ) g'„3 „k' +, E,E„m' qk cos8- —
dk d o8 F

Zz(E ) 4qr 4qrEq 0 Ek —t co k(E Ek ro"
k )——

for the Z factor

Z (E )=I I—
2 23 «k

4m 4~E o E f +1 EqEk —m —qk cos8
d o0 F—1 coq k(Eq Ek —&q k

)'—
and for the dressing factor

R (z)= l —2(z —2E )I (z E), —

3 k +& (Eq Ek —m qk cos8)F
I (z E)=-dk d cosO

4~ 4~E o E

(A6)

(A7)

(A8)

(A9)

APPENDIX B: TREATMENT OF SINGULARITIES IN THE OBE POTENTIAL

In the two-nucleon c.m. system and helicity state basis the one-pion exchange potential (OPEP) is given by
(k =—q' —q)
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g 1 u(q', A', )iy u(q, A, )u( —q', Az)ip u( —q, A2)
&q'A'iAz

I
V (z)

I
qAiAz& =2

477 2' k z —E —E —uk+&aq q

The resulting partial wave amplitudes have the following structure

(B1)

+1i—n' dt 5(z E.—E —co—~, )f (q', q, t),—1

(B3)

which depends on both momenta q and q'. This pole may be removed by adding and subtracting the integral

V (q', q ~

z)- dt
+1 (q', q, t)

1 z Eq& Eq coq&qt + l F

=P f +~
d f (q', q, t)

(B2)
z —E —E —co ~

q q qqt

where t—=cos8, 8 being the angle between q' and q. f(q', q, t) is a well-defined function of q, q', and t. For
z & 2m +m the principal value integral has a pole for

m„+q' +q —(z E, —E}—
2q'q

f +& (z E& E—&)f (—q', q, t ~) (z E E—)f—(q', q, t ~)
z Eq' Eq ~q'qt+

co ~ (z E E——co—~ )qqt q q qqt q'q z —E —E —co ~

q q qqt

where t + —21. Then Eq. (B2) becomes

+~ coqq&f(q', q, t) (z E—~ E)f—(q', q—, i, ) (z E E— )f (—q', q, t ~)

q'q

(B4)

ln
z —E —E —a) ~

q q qqt

z —E —E —a) ~,q q qqt

z —E .—E —a) ~

q q q qt+

z —E —E —co ~,q q qqt
(B&)

(8 is the usual step function). The logarithmic term still
contains singularities which depend not only on the start-
ing energy z but also on the (off shell} momenta q and q'.
They are located in a bounded region on the real axis
with q', q &qo (z=2Eq ).

In order to solve the equations in the presence of such
singularities the path of integration is shifted into the
complex plane by a we11-defined mapping so that the con-
tour does not meet any region of singularities. '

Since the logarithmic singularities of the pion propaga-

tor are located in a region q', q & qp, the mapping

r

q —+q 2 — +iP (q —qo)
q . q

qp qp
(B6)

was chosen for q', q E(O, qo}. Note that on shell all mo-
menta are real. Therefore no extra transformation must
be performed to obtain a solution of the T-matrix equa-
tion for real momenta. In practice, values for P in the
range between 1.2 and 0.8 turned out to be suitable.
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